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Abstract: Using a recent theorem of Galatius [G] we identify the map on stable

homology induced by Artin’s injection of the braid group βn into the automorphism

group of the free group AutFn.

Classification: 20F28; 20F36; 57M07.

1. Definitions and results.

Let βn be the braid group on n strings and AutFn the automorphism group of

the free group Fn on n generators x1, . . . , xn. Artin [A] identified βn as a subgroup

of AutFn as follows. Let σi ∈ βn denote a standard generator, the braid which

crosses the i-th over the (i + 1)-st string. Artin’s map

φ : βn −→ AutFn

is defined by taking σi to the automorphism

φ(σi) : xj 7→



















xj if j 6= i, i + 1

xi+1 if j = i

x−1

i+1
xixi+1 if j = i + 1.

φ extends to a map from β∞ := limn→∞ βn to AutF∞ := limn→∞ AutFn. We will

describe this map of stable group on homology.

Theorem 1. φ∗ : H∗(β∞; k) −→ H∗(AutF∞; k) is trivial when k = Q or k = Z/pZ

for any odd prime p. It induces an injection on

H∗(β∞; Z/2Z) = Z/2Z [ xi | deg (xi) = 2i − 1].
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Theorem 1 is a corollary of the stronger, homotopy theoretic Theorem 3 below.

Another way to state our results in more algebraic terms is in comparision to

another homomorphism defined as follows. An element of the symmetric group Σn

acts naturally by permutations of the generators on Fn. This defines an embedding

Σn ⊂ AutFn. Precomposition with the natural surjection from the braid group to

the symmetric group defines the homomorphism

π : βn −→ Σn ⊂ AutFn.

As φ, π also commutes with limits and extends to a map of stable groups. Though

these maps are very different, they induce the same map on homology.

Theorem 2. φ∗ = π∗ : H∗(β∞; Z) −→ H∗(AutF∞; Z).

Remark 1: Unlike for (co)homology with trivial coefficients, as considered in this

note, for (co)homology with twisted coefficients φ∗ can be non-trivial even ratio-

nally, cf. for example the recent work of Kawazumi [K].

Remark 2: There are many other homomorphisms from βn to AutFn. Those that

factor through the mapping class group are likely to be trivial in homology. Indeed,

in [ST] we show that many algebraically and geometrically defined homomorphisms

from the braid group to the mapping class group are homologically trivial, and hence

so will the composition to AutFn.

2. Translation into homotopy.

Juxtaposition of braids and disjoint union of sets respectively induce natural

monoidal structures on the disjoint union of the classifying spaces
∐

n≥0
Bβn and

∐

n≥0
BΣn. Their group completions can be identified respectively as

Z×Bβ+
∞ ' Ω2S2

Z×BΣ+
∞ ' Ω∞S∞.
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Here “+” denotes Quillen’s plus construction with respect to the maximal perfect

subgroup of the fundamental group; ΩnSn is the space of based maps from the

n-sphere to itself and Ω∞S∞ := limn→∞ ΩnSn. Recently, Galatius [G] was able to

prove an analogue of the these results for the automorphism groups of free group:

Z×BAutF+
∞ ' Ω∞S∞.

Furthermore, the inclusion Σn → AutFn induces up to homotopy the identity map

of Ω∞S∞, cf. also [H]. It is also well-known, cf. [CLM], [S], that the surjec-

tion βn → Σn induces on group completions up to homotopy the inclusion map

Ω2S2 → Ω∞S∞. As the plus construction does not change the homology of the

space Theorem 2 is therefore equivalent to the following.

Theorem 3. On group completions φ induces up to homotopy the natural inclusion

map Ω2S2 → Ω∞S∞.

Proof of Theorem 1. Rationally the homology of Σn and Ω∞S∞ is trivial, and

hence φ∗ is trivial on rational homology. Recall, F. Cohen in [CLM] describes the

homology of the braid group with Z/pZ coefficients for every prime p in terms of

a one-dimensional generator x1 ∈ H1(β∞; Z/pZ) and powers of homology oper-

ation applied to x1. Maps of double loop spaces commute with these homology

operations. Hence, by Theorem 3, φ∗ commutes with them so that its image is

determined by its value on x1. But

H1(Aut∞; Z) = H1(Σ∞; Z) = Z/2Z,

and hence it follows that φ∗ is zero in all positive dimensions for all odd p. The

class x1 ∈ H1(β∞; Z) = π1Ω
2S2 = Z corresponds to the Hopf map S3 → S2 which

maps under the inclusion map Ω2S2 → Ω∞S∞ to the non-zero element in the first

homology. It is also well-known that the homology operations act freely on the

homology of Ω∞S∞, so that for p = 2 the map φ∗ is an injection.
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3. Proof of Theorem 3.

From the definition of φ(σi) it is clear that φ acts on the abelianisation of Fn by

permutation of the generators. Hence, we have the following commutative diagram

of groups:

βn
φ

−−−−→ AutFn

π





y

L





y

Σn −−−−→ GLnZ.

For a based topological space X, let HE(X) denote the topological monoid of its

based homotopy equivalences. Consider the following commutative diagram:

AutFn
π0←−−−− HE(

∨

n S1)

L





y





y

GLnZ
π0←−−−− limkHE(

∨

n Sk).

The horizontal arrows π0 are defined by taking connected components, and the top

one is well-known to be a homotopy equivalence. Furthermore, Σn acts naturally

on
∨

n Sk by permutation of the summands in the wedge product. Hence the

map Σn → GLn(Z) lifts to HE(
∨

n Sk). Thus on classifying spaces we yield the

commutative diagram:

Bβn
φ

−−−−→ BAutFn

π





y





y

BΣn −−−−→ B limkHE(
∨

n Sk)

The union over all n ≥ 0 for each of the four spaces in the above diagram is a monoid,

and all maps commute with the monoidal product. After group completion, we thus

have:

Z×Bβ+
∞

φ
−−−−→ Z×BAutF+

∞

π





y





y

Z×BΣ+
∞ −−−−→ Z×B limkHE(

∨

∞ Sk)+.

The space in the bottom right corner is Waldhausen’s K-theory of a point, A(∗),

and the bottom horizontal map is split by his trace map tr : A(∗) → Ω∞S∞, cf.

[W]. By Galatius’ result [G] quoted above,

Z×BAutF+
∞ −→ A(∗)

tr
−→ Ω∞S∞
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is a homotopy equivalence. Our final commutative diagram implies Theorem 3 (and

Theorem 1) immediately:

Z×Bβ+
∞

φ
−−−−→ Z×AutF+

∞

π





y

'





y

Z×BΣ+
∞

'
−−−−→ Ω∞S∞.

Remark 3: The injection φ defines a braided monoidal structure on the monoid
∐

n≥0
BAutFn in the sense of [F], cf. also [SW]. Hence it induces a map of double

loop spaces on group completions. Any double loop map from Ω2S2 is determined

by its image on S0. However, apriori, it is not clear whether the induced double

loop space structure on the group completion of
∐

n≥0
BAutFn is homotopic to

the usual one on Ω∞S∞. This does therefore not lead to an alternative proof of

Theorem 3. On the other hand, Theorem 3 implies that the two double loop space

structures on Ω∞S∞ are indeed homotopic.
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