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1. Introduction

The origins of cohomology theory are found in topology and algebra at the beginning
of the last century but since then it has become a tool of nearly every branch of
mathematics. It’s a way of life! Naturally, this article can only give a glimpse at
the rich subject. We take here the point of view of algebraic topology and discuss
only the cohomology of spaces.

Cohomology reflects the global properties of a manifold, or more generally of a
topological space. It has two crucial properties: it only depends on the homotopy
type of the space and is determined by local data. The latter property makes it in
general computable.

To illustrate the interplay between the local and global structure, consider the Euler
characteristic of a compact manifold; as will be explained below, cohomology is a
refinement of the Euler characteristic. For simplicity, assume that the manifold M
is a surface and that we have chosen a way of dividing the surface into triangles.
The Euler characteristic is then defined to be

χ(M) = F − E + V

where F denotes the number of faces, E the number of edges, and V the number
of vertices in the triangulation. Remarkably, this number does not depend on the
triangulation. Yet, this simple, easy to compute number can already distinguish
the different types of closed, oriented surfaces: for the sphere we have χ = 2, the
torus χ = 0, and in general for any surface Mg of genus g

χ(Mg) = 2 − 2g.

The Euler characteristic also tells us something about the geometry and analysis
of the manifold. For example, the total curvature of a surface is equal to its Euler
characteristic. This is the Gauss-Bonnet Theorem and an analogous result holds
in higher dimensions. Another striking result is the Poincaré-Hopf Theorem which
equates the Euler characteristic with the total index of a vector field and thus gives
strong restrictions on what kind of vector fields can exist on a manifold. This in-
terplay between global analysis and topology has been one of the most exciting and
fruitful research areas and is most powerfully expressed in the celebrated Atiyah-
Singer Index Theorem which determines the analytic index of the Dirac operator
on a spin manifold in terms of cohomology classes.

2. Chain complexes and Homology

There are several different geometric definitions of the cohomology of a topological
space. All share some basic algebraic structure which we will explain first.
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A chain complex (C∗, ∂∗)

(2.1) . . . Ci+1
∂i+1

−→ Ci
∂i−→ Ci−1 . . .

∂1−→ C0

is a collection of vector spaces (or R-modules more generally) Ci, i ≥ 0, and linear
maps (R-module maps) ∂i : Ci → Ci−1 with the property that for all i

(2.2) ∂i ◦ ∂i+1 = 0.

The scalar fields one tends to consider are the rationals Q, reals R, complex numbers
C, or a primary field Zp, while the most important ring R is the ring of integers
Z though we will also consider localisations such as Z[ 1p ] which has the effect of

suppressing any p-primary torsion information.

Of particular interest are the elements in Ci that are mapped to zero by ∂i, the
i-dimensional cycles, and those that are in the image of ∂i+1, the i-dimensional
boundaries. Because of (2.2), every boundary is a cycle, and we may define the
quotient vector space (R-module), the i-dimensional homology,

(2.3) Hi(C∗; ∂∗) :=
ker ∂i

im ∂i+1
.

(C∗, ∂∗) is exact if all its cycles are boundaries. Homology thus measures to what
extent the sequence (2.1) fails to be exact.

2.1. Simplicial homology: A triangulation of a surface gives rise to its simplicial
chain complex: C2, C1, C0 are the free abelian groups generated by the set of faces,
edges and vertices respectively; Ci = {0} for i ≥ 3. The map ∂2 assigns to a triangle
the sum of its edges; ∂1 maps an edge to the sum of its endpoints. If we are working
with Z2 coefficients, this defines for us a chain complex as (2.2) is clearly satisfied;
in general one needs to keep track of the orientations of the triangles and edges and
take sums with appropriate signs, cf. (2.6) below. An easy calculation shows that
for an oriented, closed surface Mg of genus g we have
(2.4)
H0(Mg; Z) = Z, H1(Mg; Z) = Z2g, H2(Mg; Z) = Z, and Hi(Mg; Z) = 0 for i ≥ 3.

Note that the Euler characteristic can be recovered as the alternating sum of the
rank of the homology groups:

(2.5) χ(M) =
dim M
∑

i=0

(−1)i rk Hi(M ; Z).

Every smooth manifold M has a triangulation, so that its simplicial homology can
be defined just as above. More generally, simplicial homology can be defined for
any simplicial space, i.e. a space that is built up out of points, edges, triangles,
tetrahedra, etc. Formula (2.5) remains valid for any compact manifold or simplicial
space.

2.2. Singular homology: Let X be any topological space, and let △n be the
oriented n-simplex [v0, . . . , vn] spanned by the standard basis vectors vi in Rn+1.
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The set of singular n-chains Sn(X) is the free abelian group on the set of continuous
maps σ : △n −→ X. The boundary of σ is defined by the alternating sum of the
restriction of σ to the faces of the △n:

(2.6) ∂n(σ) :=

n
∑

i=0

(−1)−iσ|
[v0,...,

∧

vi,...,vn]
.

One easily checks that the boundary of a boundary is zero, and hence (S∗(X), ∂∗)
defines a chain complex, and its homology is by definition the singular homology
H∗(X; Z) of X. For any simplicial space, the inclusion of the simplicial chains into
the singular chains induces an isomorphism of homology groups. In particular, this
implies that the simplicial homology of a manifold, and hence its Euler characteristic
do not depend on its triangulation.

If in the definition of simplicial and singular homology we take free R-modules
(where R may also be a field) instead of free abelian groups, we then define the
homology H∗(X;R) of X with coefficients in R. The Universal Coefficient Theorem
describes the homology with arbitrary coefficients in terms of the homology with
integer coefficients. In particular, if R is a field of characteristic zero,

dim Hn(X;R) = rk Hn(X; Z).

2.3. Basic properties of singular homology: While simplicial homology (and
the more efficient cellular homology which we will not discuss) is easier to compute
and easier to understand geometrically, singular homology lends itself more easily
to theoretical treatment.

(i) Homotopy Invariance: Any continuous map f : X → Y induces a map on
homology f∗ : H∗(X;R) → H∗(Y ;R) which only depends on the homotopy class of
f .

In particular, a homotopy equivalence f : X → Y induces an isomorphism in
homology. So, for example, the inclusion of the circle S1 into the punctured plane
C\{0} is a homotopy equivalence, and thus

Hi(C\{0};R) ≃ Hi(S
1;R) =

Z for i = 0, 1
0 for i ≥ 2.

For the point space we have H0(pt;R) = R. Define reduced homology H̃∗(X;R) :=
ker (H∗(X;R) → H∗(pt;R)).

(ii) Dimension Axiom: H̃i(pt;R) = 0 for all i.

More generally, it follows immediately from the definition of simplicial homology
that the homology of any n-dimensional manifold is zero in dimensions larger than
n.

We mentioned in the introduction that homology depends only on local data, and
this makes it in general computable. This is made precise by the
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(iii) Mayer-Vietoris Theorem: Let X = A ∪B be the union of two open subspaces.
Then the following sequence is exact

. . . −→Hn(A ∩ B;R) −→ Hn(A;R) ⊕ Hn(B;R) −→ Hn(X;R)
∂

−→

Hn−1(A ∩ B;R) −→ . . . −→ H0(X;R) → 0.

On the level of chains, the first map is induced by the diagonal inclusion, while the
second map takes the difference between the first and second summands. Finally,
∂ takes a cycle c = a + b in the chains of X that can be expressed as the sum of a
chain a in A and b in B to ∂c := ∂na = −∂nb. For example, consider two cones, A
and B, on a space X and identify them at the base X to define the suspension ΣX
of X. Then ΣX = A ∪ B with A,B ≃ pt and A ∩ B ≃ X. The boundary map ∂ is
then an isomorphism:

(2.7) H̃n(X;R) ≃ Hn+1(ΣX;R) for all n ≥ 0.

From this one can easily compute the homolgoy of a sphere. First note that

H̃0(X; Z) = Zk−1

where k is the number of connected components in X. Also, Sn ≃ ΣSn−1 ≃ · · · ≃
ΣnS0. Thus, by (2.7),

(2.8) Hn(Sn; Z) ≃ Z and H̃∗(S
n; Z) = 0 for ∗ 6= n.

If Y is a subspace of X, relative homology groups H∗(X,Y ;R) can be defined as
the homology of the quotient complex S∗(X)/S∗(Y ). When Y has a good neigh-
bourhood in X (i.e. is a neighbourhood deformation retract in X) then, by the
Excision Theorem,

H∗(X,Y ;R) ≃ H̃∗(X/Y ;R)

where X/Y denotes the quotient space of X with Y identified to a point. There is
a long exact sequence

. . . −→Hn(Y ;R) −→ Hn(X;R) −→ Hn(X,Y ;R)
∂

−→

Hn−1(Y ;R) −→ . . . −→ H0(X,Y ;R) −→ 0.

This and the Mayer-Vietoris sequence give two ways of breaking up the problem of
computing the homology of a space into computing the homology of related spaces.
An iteration of this process leads to the powerful tool of spectral sequences.

2.4. Relation to homotopy groups: Let π1(X,x0) denote the fundamental
group of X relative to the base point x0. These are the based homotopy classes of
based maps from a circle to X.

(2. 9) If X is connected, then H1(X; Z) is the abelianization of π1(X,x0).

Indeed, every map from a (triangulated) sphere to X defines a cycle and hence gives
rise to a homology class. This gives us the Hurewicz map h : π∗(X;x0) → H∗(X; Z).
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In general there is no good despription of its image. However, if X is k-connected
with k ≥ 1 then h induces an isomorphism in dimension k + 1 and an epimorphism
in dimension k + 2.

Though (2.9) indicates that homology cannot distinguish between all homotopy
types, the fundamental group is in a sense the only obstruction to this. A simple
form of the Whitehead Theorem states:

(2.10) If a map f : X → Y between two simplicial complexes with trivial fundamen-
tal groups induces an isomorphism on all homology groups, then it is a homotopy
equivalence.

Warning: This does not imply that two simply connected spaces with isomorphic
homology groups are homotopic! The existence of the map f inducing this isomor-
phism is crucial and counter examples can easily be constructed.

3. Dual chain complexes and cohomology

The process of dualizing itself cannot be expected to yield any new information.
Nevertheless, the cohomology of a space, which is obtained by dualizing its simpli-
cail chain complex, carries important additional structure: it possesses a product,
and moreover, when the coefficients are a primary field, it is an algebra over the
rich Steenrod algebra. As with homology we start with the algebraic set up.

Every chain complex (C∗, ∂∗) gives rise to a dual chain complex (C∗, ∂∗) where
Ci = hom R(Ci, R) is the dual R-module of Ci; because of (2.2), the composition
of two dual boundary morphisms ∂i+1 : Ci → Ci+1 is trivial. Hence we may define
the i-th dimensional cohomology group as

(3.1) Hi(C∗, ∂∗) :=
ker ∂i+1

im ∂i
.

Evaluation (σ, φ) 7→ φ(σ) descends to a dual pairing

Hn(C∗, ∂∗) ⊗R Hn(C∗, ∂∗) −→ R,

and when R is a field, this identifies the cohomology groups as the duals of the
homology groups. More generally, the Universal Coefficient Theorem relates the
two. A simple version states: let (C∗, ∂∗) be a chain complex of free abelian groups
(such as the simplicial or singular chain complexes) with finitely generated homol-
ogy groups. Then

(3.2) Hi(C∗, ∂∗) ≃ Hfree
i (C∗, ∂∗) ⊕ Htor

i−1(C∗, ∂),

where Htor
∗ denotes the torsion subgroup of H∗ and Hfree

∗ denotes the quotient
group H∗/Htor

∗ .

3.1. Singular cohomology: The dual S∗(X) of the singular chain complex of a
space X carries a natural pairing, the cup product, ∪ : Sp(X)⊗Sq(X) → Sp+q(X)
defined by

(φ1 ∪ φ2)(σ) := φ1(σ|[v0,...,vp]) φ2(σ|[vp,...,vp+q ]).
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This descends to a multiplication on cohomology groups and makes H∗(X;R) :=
⊕

n≥0 Hn(X;R) into an associative, graded commutative ring: u∪v = (−1)deg u deg vv∪
u.

The Künneth Theorem gives some geometric intuition for the cup product. A
simple version states: for spaces X and Y with H∗(Y ;R) a finitely generated free
R-module, the cup product defines an isomorphism of graded rings

H∗(X;R) ⊗R H∗(Y ;R) −→ H∗(X × Y ;R).

For example, for a sphere, all products are trivial for dimension reasons. Hence,

(3.3) H∗(Sn; Z) =

∗
∧

(x)

is an exterior algebra on one generator x of degree n. On the other hand, the
cohomology of the n-dimensional torus Tn is an exterior algebra on n degree one
generators,

(3.4) H∗(Tn; Z) =

∗
∧

(x1, . . . , xn).

The dual pairing can be generalised to the slant or cap product

∩ : Hn(X;R) ⊗R Hi(X;R) −→ Hn−i(X;R)

defined on the chain level by the formula (σ, φ) 7→ φ(σ|[v0,...,vi]) σ|[vi,...,vn].

3.2. Steenrod algebra: The cup product on the chain level is homotopy com-
mutative, but not commutative. Steenrod used this defect to define operations

Sqi : Hn(X; Z2) −→ Hn+i(X; Z2)

for all i ≥ 0 which refine the cup squaring operation: when n = i, then Sqn(x) =
x ∪ x. These are natural group homomorphisms which commute with suspension.
Furthermore, they satisfy the Cartan and Adem Relations

Sqn(x ∪ y) =
∑

i+j=n

Sqi(x) ∪ Sqj(y)

SqiSqj =

[i/2]
∑

k=0

(

j − k − 1
i − 2k

)

Sqi+j−kSqk for i ≤ 2j.

The mod-2 Steenrod algebra A is then the free Z2-algebra generated by the Steenrod
squares Sqi, i ≥ 0, subject only to the Adem relations. With the help of Adem’s
relations Serre and Cartan found a Z2-basis for A:

{SqI := Sqi1 . . . Sqin | ij ≥ 2ij+1 for all j }
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The Steenrod algebra is also a Hopf algebra with a commutative comultipilication
△ : A → A⊗A induced by

△(Sqn) :=
∑

i+j=n

Sqi ⊗ Sqj .

The Cartan relation then implies that the mod-2 cohomology of a space is compat-
ible with the comultiplcation, i.e. H∗(X; Z2) is an algebra over the Hopf algebra
A.

There are odd primary analogues of the Steenrod algebra based on the reduced p-th
power operations

P i : Hn(X; Zp) −→ Hn+2i(p−1)(X; Zp)

with similar properties to A.

One of the most striking applications of the Steenrod algebra can be found in the
work of Adams on the vector fields on spheres problem: for each n find the greatest
number k, denoted K(n), such that there is a k-field on the (n − 1)-sphere Sn−1.
Recall that a k-field is an ordered set of k pointwise linear independent tangent
vector fields. If we write n in the form n = 24a+b(2s + 1) with 0 ≤ b < 4, Adams
proved that K(n) = 2b + 8a − 1. In particular, when n is odd, K(n) = 0. We give
an outline of the proof for this special case in the next section.

• The failure of associativity of the cup product at the chain level gives rise to
secondary operations, the so called Massey products.

4. Cohomology of smooth manifolds

A smooth manifold M of dimension n can be triangulated by smooth simplices
σ : △n → M . If M is compact, oriented, without boundary, the sum of these
simplices define a homology cycle [M ], the fundamental class of M . The most
remarkable property of the cohomology of manifolds is that they satisfy Poincaré
Duality: taking cap product with [M ] defines an isomorphism:

(4.1) D := [M ]∩ : Hk(M ; Z)
≃
−→ Hn−k(M ; Z) for all k.

In particular, for connected manifolds, Hn(M ; Z) ≃ Z, and every map f : M ′ → M
between oriented, compact closed manifolds of the same dimension has a degree:
the integer deg (f) such that f∗ in dimension n is multiplication by deg (f). For
smooth maps, the degree is the number of points in the inverse image of a generic
point p ∈ M counted with signs:

deg (f) =
∑

p′∈f−1(p)

sign(p′)

where sign (p′) is +1 or −1 depending on whether f is orientation preserving or
reversing in a neighbourhood of p′. For example, a complex polynomial of degree
d defines a map of the two dimensional sphere to itself of degree d: a generic point
has n points in its inverse image and the map it locally orientation preserving. On
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the other hand, a map of Sn−1 induced by a reflection of Rn reverses orientation
and has degree −1. Thus, as degrees multiply on composing maps, the anti-podal
map x 7→ −x has degree (−1)n. As an application we prove:

Every tangent vector field on an even dimensional sphere Sn−1 has a zero.

Proof: Assume v(x) is a vector field which is non-zero for all x ∈ Sn−1. Then x
is perpendicular to v(x), and after rescaling, we may assume that v(x) has length
one. The function F (x, t) = cos(t)x + sin(t)v(x) is then a well-defined homotopy
from the identity map (t = 0) to the antipodal map (t = π). But this is impossible
as homotopic maps induce the same map in (co)homology but we have already seen
that the degree of the idendity map is 1 while the degree of the antipodal map is
(−1)n = −1 when n is odd.

• It is well-known that two self-maps of a sphere of any dimension are homotopic
if and only if they have the same degree, i.e. πn(Sn) ≃ Z for n ≥ 1.

• When M is not orientable, [M ] still defines a cycle in homology with Z2-coefficients,
and ∩[M ] defines an isomorphism between the cohomology and homology with Z2

coefficients.

• As [M ] represents a homology class, so does every other closed (orientable) sub-
manifold of M . It is however not the case that every homology class can be repre-
sented by a submanifold or linear combinations of such.

Cohomology is a contravariant functor. Poincaré duality however allows us to de-
fine, for any f : M ′ → M between oriented, compact, closed manifolds of arbitrary
dimensions, a transfer or Umkehr map,

f ! := D−1f∗D
′ : H∗(M ′; Z) −→ H∗−c(M ; Z)

which lowers the degree by c = dim M ′ − dim M . It satisfies the formula

f !(f∗(x) ∪ y) = x ∪ f !(y)

for all x ∈ H∗(M ; Z) and y ∈ H∗(M ′; Z). When f is a covering map then f ! can
be defined on the chain level by

f !(x)(σ) := x(
∑

f(σ̃)=σ

σ̃)

where x ∈ C∗(M ′) and σ ∈ C∗(M).

4.1. De Rham cohomology: If x1, . . . , xn are the local coordinates of Rn, define
an algebra Ω∗ to be the algebra generated by symbols dx1, . . . , dxn subject to the
relations dxidxj = −dxjdxi for all i, j. We say dxi1 . . . dxiq

has degree q. The
differential forms on Rn are the algebra

Ω∗(Rn) := {C∞ functions on Rn} ⊗R Ω∗.

The algebra Ω∗(Rn) =
⊕n

q=0 Ωq(Rn) is naturally graded by degree. There is a

differential operator d : Ωq(Rn) → Ωq+1(Rn) defined by

(i) if f ∈ Ω0(Rn), then df =
∑

(∂f/∂xi) dxi

(ii) if ω =
∑

fIdxI , then dω =
∑

dfIdxI .
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I stands here for a multi-index. For example in R3 the differential assigns to 0-forms
(= functions) the gradient, to 1-forms the curl, and to 2-forms the divergence. An
easy exercise shows that d2 = 0 and the q-th de Rahm cohomology of Rn is the
vector space

Hq
deR(Rn) =

ker d : Ωq(Rn) −→ Ωq+1(Rn)

im d : Ωq−1(Rn) → Ωq(Rn)
.

More generally, the de Rham complex Ω∗(M) and the cohomology H∗
deR(M) for

any smooth manifold M can be defined.

Let σ be a smooth, singular, real (q + 1)-chain on M , and let ω ∈ Ωq(M). Stokes
Theorem then says

∫

∂σ

ω =

∫

σ

dω,

and therefore integration defines a pairing between the q-th singular homology and
the q-th de Rahm cohomology of M . This pairing is exact and thus de Rahm
cohomology is isomorphic to singular cohomology with real coefficients:

H∗
deR(M) ≃ (H∗(M ; R))∗ ≃ H∗(M ; R).

Let Ω∗
c(M) denote the subcomplex of compactly supported forms and H∗

c (M) its
cohomology. Integration with respect to the first i coordinates defines a map

Ω∗
c(R

n) −→ Ω∗−i
c (Rn−i)

which induces an isomorphism in cohomology; note in particular Hn
c (Rn) = R.

More generally, when E → M is an i-dimensional orientable, real vector bundle
over a compact, orientable manifold M , integration over the fiber gives the Thom
Isomorphism:

H∗
c (E) ≃ H∗−i

c (M) ≃ H∗−i
deR(M),

while for orientable fiber bundles F → M ′ f
→ M with compact, orientable fiber F ,

integration over the fiber provides another definition of the transfer map

f ! : H∗
deR(M ′) −→ H∗−i

deR(M).

4.2. Hodge decomposition: Let M be a compact oriented Riemannian manifold
of dimension n. The Hodge star operator, ∗, associates to every q-form a (n − q)-
form. For Rn and any orthonormal basis {e1, . . . , en}, it is defined by setting

∗(e1 ∧ · · · ∧ eq) := ±ep+1 ∧ · · · ∧ en

where one takes + if the orientation defined by {e1, . . . , en} is the same as the usual
one, and − otherwise. Using local coordinate charts this definition can be extended
to any M . Clearly, ∗ depends on the chosen metric and orientation of M . If M is
compact, we may define an inner product on the q-forms by

(ω, ω′) :=

∫

M

ω ∧ ∗ω′.



10

With respect to this inner product ∗ is an isometry. Define the co-differential via

δ := (−1)np+n+1 ∗ d∗ : Ωq(M) −→ Ωq−1(M),

and the Laplace-Beltrami operator via

△ := δd + dδ.

The co-differential satisfies δ2 = 0 and is the adjoint of the differential. Indeed, for
q-forms ω and (q + 1)-forms ω′:

(4.2) (dω, ω′) = (ω, δω′).

It follows easily that △ is self-adjoint, and furthermore,

(4.3) △ω = 0 if and only if dω = 0 and δω = 0.

A form ω satisfying △ω = 0 is called harmonic. Let Hq denote the subspace of all
harmonic q-forms. It is not hard to prove the Hodge Decomposition Theorem :

Ωq = Hq ⊕ im d ⊕ im δ.

Furthermore, by adjointness (4.2), a form ω is closed only if it is orthogonal to
im δ. On calculating the de Rham cohomology we can also ignore the summand
im d and find that:

Each de Rham cohomology class on a compact oriented Riemannian manifold M
contains a unique harmonic representative, i.e. Hq

deR(M) ≃ Hq.

Warning: This isomorphism is an isomorphism of vector spaces and in general does
not extend to an isomorphism of algebras.

5. Examples

We list the cohomology of some important examples.

Projective spaces: Let RPn be real projective space of dimension n. Then

H∗(RPn; Z2) = Z2[x]/(xn+1)

is a stunted polynomial ring on one generator x of degree one.
Similarly, let CPn and HPn denote complex and quaternionic projective space of
real dimensions 2n and 4n respectively. Then

H∗(CPn; Z) = Z[y]/(yn+1) and H∗(HPn; Z) = Z[z]/(zn+1)

are stunted polynomial rings with deg (y) = 2 and deg (z) = 4.

Lie groups: Let G be a compact, connected Lie group of rank l, i.e. the dimension
of the maximal torus of G is l. Then

H∗(G, Q) ≃
∗

∧

Q

[a2d1−1, a2d2−1, . . . , a2dl−1],
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where |ai| = i and d1, . . . , dl are the fundamental degrees of G which are known for
all G. Often this structure lifts to the integral cohomology. In particular we have:

H∗
free(SO(2k + 1); Z)) ≃

∗
∧

Z

[a3, a7, . . . , a4k−1]

H∗
free(SO(2k); Z)) ≃

∗
∧

Z

[a1, a7, . . . , a4k−5, a2k−1]

H∗(U(k); Z) ≃
∗

∧

Z

[a1, a3, . . . , a2k−1]

Classifying spaces: For any group G there exists a classifying space BG, well-
defined up to homotopy. Classifying spaces are of central interest to geometers and
topologists for the set of isomorphism classes of principal G-bundles over a space X
is in one-to-one correspondence with the set of homotopy classes of maps from X to
BG. In particular, every cohomology class c ∈ H∗(BG;R) defines a characteristic
class of principle G-bundles E over X: if E corresponds to the map fE : X → BG
then c(E) := f∗

E(c).

BG can be constructed as the space of G-orbits of a contractible space EG on which
G acts freely. Thus for example

BZ = R/Z ≃ S1

BZ2 = ( lim
n→∞

Sn)/Z2 ≃ RP∞

BS1 = ( lim
n→∞

S2n+1)/S1 ≃ CP∞

and more generally, infinite Grassmannian manifolds are classifying spaces for linear
groups. When G is a compact connected Lie group,

H∗(BG; Q) ≃ Q[x2d1
, . . . , x2dl

]

with di as above and |xi| = i. In particular,

H∗(BSO(2k + 1); Z[1/2]) ≃ Z[1/2][p1, p2, . . . , pk]

H∗(BSO(2k); Z[1/2]) ≃ Z[1/2][p1, p2, . . . , pk−1, ek]

H∗(BU(k); Z) ≃ Z[c1, c2, . . . , ck]

where the Pontryagin, Euler, and Chern classes have degree |pi| = 4i, |ek| = 2k,
and |ci| = 2i respectively.

Moduli spaces: Let Mn
g be the space of Riemann surfaces of genus g with n ordered,

marked points. There are naturally defined classes κi and e1, . . . , en of degree 2i
and 2 respectively. By Harer-Ivanov stability and the recent proof of the Mumford
conjecture [Madsen-Weiss, preprint 2004], there is an isomorphism up to degree
∗ < 3g

2 of the rational cohomology of Mn
g with

Q[κ1, κ2, . . . ] ⊗ Q[e1, . . . , en].
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The rational cohomology vanishes in degrees ∗ > 4g−5 if n = 0, and ∗ > 4g−4+n
if n > 0. Though the stable part of the cohomology is now well understood, the
structure of the unstable part, as proposed by Farber [Aspects of Mathematics,
E33, Viehweg 1999], remains conjectural.

6. Generalised cohomology theories

The three basic properties 2.3 (i), (ii), (iii), appropriately dualized, hold of course
also for cohomology. Furthermore, they (essentially) determine (co)homology uniquely
as a functor from the category of simplicial spaces and continuous functions to the
category of abelian groups. If we drop the dimension axiom (ii), we are left with
homotopy invariance (i), and the Mayer-Vietoris sequence (iii). Abelian group val-
ued functors satisfying (i) and (iii) are so called generalised (co)homology theories.
K-theory and cobordism theory are two well-known examples but there are many
more.

6.1. K-theory: The geometric objects representing elements in complex K-theory
K0(X) are isomorphism classes of complex vector bundles E over X. Vector bundles
E,E′ can be added to form a new bundle E ⊕ E′ over X, and K0(X) is just the
group completion of the arising monoid. Thus for example for the point space we
have K0(pt) = Z. Tensor product of vector bundles E⊗E′ induces a multiplication
on K-theory making K∗(X) into a graded commutative ring.

In many ways K-theory is easier than cohomology. In particular, the groups are
2-periodic: all even degree groups are isomorphic to the reduced K-theory group
K̃0(X) := coker (K0(pt) = Z → K0(X)), and all odd degree groups are isomorphic

to K−1(X) := K̃0(ΣX).

The theory of characteristic classes gives a close relation between the two coho-
mology theories. The Chern character map, a rational polynomial in the Chern
classes,

ch : K0(X) ⊗Z Q −→ Heven(X; Q) := ⊕k≥0H
2k(X; Q),

is an isomorphism of rings. Thus the K-theory and cohomology of a space carry the
same rational information. But they may have different torsion parts. This became
an issue in string theory when D-brane charges which had formerly been thought of
as differential forms (and hence cohomology classes) were later reinterpreted more
naturally as K-theory classes by Witten [J. Higher Energy Phys. 1998, no.12].

• There are real and quarternionic K-theory groups which are 8-periodic.

6.2. Cobordism theory: The geometric objects representing an element in the
oriented cobordism group Ωn

SO(X) are pairs (M,f) where M is a smooth, orientable
n-dimensional manifold and f : M → X is a continuous map. Two pairs (M,f) and
(M ′, f ′) represent the same cobordism class if there exists a pair (W,F ) where W is
a n+1-dimensional, smooth, oriented manifold with boundary ∂W = M∪−M ′ such
that F restricts to f and f ′ on the boundary ∂W . Disjoint union and Cartesian
product of manifolds define an addition and multiplication so that Ω∗

SO(X) is a
graded, commutative ring.

• Similarly, unoriented, complex, or spin cobordism groups can be defined.
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6.3. Elliptic cohomology: Quillen proved that complex cobordism theory is
universal for all complex oriented cohomology theories, that is those cohomology
theories that allow a theory of Chern classes. In a complex oriented theory the
first Chern class of the tensor product of two line bundles can be expressed in
terms of the first Chern class of each of them via a two variable power series:
c1(E⊗E′) = F (c1(E), c1(E

′)). F defines a formal group law and Quillen’s theorem
[Bull. Amer. Math. Soc. vol. 75 (1969)] asserts that the one arising from complex
cobordism theory is the universal one.

Vice versa, given a formal group law one may try to construct a complex oriented
cohomology theory from it. In particular, an elliptic curve gives rise to a formal
group law and an elliptic cohomology theory. Hopkins et al. have described and
studied an inverse limit of these elliptic theories, which they call the theory of
topological modular forms, tmf, as the theory is closely related to modular forms.
In particular there is a natural map from the groups tmf 2n(pt) to the group of
modular forms of weight n over Z. After inverting a certain element (related to the
discriminant), the theory becomes periodic with period 242 = 576.

Witten [Springer Lecture Notes in Mathematics, vol. 1326 (1998)] showed that
the purely theoretically constructed elliptic cohomology theories should play an
important role in string theory: the index of the Dirac operator on the free loop
space of a spin manifold should be interpreted as an element of it. But unlike
for ordinary cohomology, K-theory, and cobordism theory we do not (yet) know
a good geometric object representing elements in this theory without which its
use for geometry and analysis remains limited. Segal speculated some 20 years
ago that conformal field theories should define such geometric objects. However,
though progress in this direction has been made, the search for a good geometric
interpretation of elliptic cohomology (and tmf) remains an active and important
research area.

6.4. Infinite loop spaces: Brown’s representability theorem implies that for each
(reduced) generalised cohomology theory h∗ we can find a sequence of spaces E∗

such that hn(X) is the set of homotopy classes [X,En] from the space X to En for
all n. Recall that the Mayer-Vietoris sequence implies that hn(X) ≃ hn+1(ΣX).
The suspension functor Σ is adjoint to the based loop space functor Ω which takes
a space X to the space of based maps from the circle to X. Hence,

hn(X) = [X,En] = [ΣX,En+1] = [X, ΩEn+1],

and it follows that every generalised cohomology theory is represented by an infinite
loop space

E0 ≃ ΩE1 ≃ · · · ≃ ΩnEn ≃ . . . .

Vice versa, any such infinite loop space gives rise to a generalised cohomology
theory.

One may think of infinite loop spaces as the abelian groups up to homotopy in
the strongest sense. Indeed, ordinary cohomology with integer coefficients is repre-
sented by

Z ≃ ΩS1 ≃ Ω2CP∞ ≃ · · · ≃ ΩnK(n, Z) . . . ,
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where by definition the Eilenberg-Maclane space K(n, Z) has trivial homotopy
groups for all dimensions not equal n and πnK(n, Z) = Z. Complex K-theory
is represented by

Z × BU ≃ Ω(U) ≃ Ω2(BU) ≃ Ω3(U) ≃ . . . .

The first equivalence is Bott’s celebrated Periodicity Theorem. Finally, oriented
cobordism theory is represented by

Ω∞MSO := lim
n→∞

ΩnTh(γn)

where γn → BSOn is the universal n-dimensional vector space over the Grassman-
nian manifold of oriented n-planes in R∞, and Th(γn) denotes its Thom space.

A good source of infinite loop spaces are symmetric monoidal categories. Indeed
every infinite loop space can be constructed from such a category: the symmetric
monoidal structure gives corresponds the homotopy abelian group structure. For
example, the category of finite dimensional, complex vector spaces and their iso-
morphisms gives rise to Z×BU . To give another example, in quantum field theory
one considers the (d + 1)-dimensional cobordism category with objects the com-
pact, oriented d-dimensional manifolds and their (d + 1)-dimensional cobordisms
as morphisms. Disjoint union of manifolds makes this category into a symmetric
monoidal category. The associated infinite loop space and hence generalised coho-
mology theory has recently been identified as a (d+1)-dimensional slice of oriented
cobordism theory [Galatius-Madsen-Tillmann-Weiss, preprint 2005].

See also

Characteristic classes. K-theory. Spectral sequences. Moduli spaces.

Intersection theory. Index theorems. Equivariant cohomology and the

Cartan model.
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