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ABSTRACT. Using certain Thom spectra appearing in the study of cabordategories, we
show that the odd half of the Miller-Morita-Mumford classas the mappping class group
of a surface with negative Euler characteristic vanish iagral cohomology when restricted
to the handlebody subgroup. This is a special case of a marergletheorem valid in all
dimensions: universal characteristic classes made fromomals in the Pontrjagin classes
(and even powers of the Euler class) vanish when pulled backBDiff (0W) to BDiff (W).

1. INTRODUCTION

LetZy denote a closed oriented surface of gemu$s mapping class group, := mpDiff (2g)
is the group of connected components of its group of oriemtgpreserving diffeomor-
phisms Diff(Zg). Miller, Morita, and Mumford [Mil86, Mor87, Mum83] definedharac-
teristic classes, known as the MMM classese H? (I'g; Z). By the proof of the Mumford
conjecture [MWO07] these classes freely generate the rdtmoteomology ring in degrees
increasing withy:

E!i_r)rgoH*(Fg;Q) ~ Q[K1,K2,...].

The mapping class group of a surface has various interestipgroups, and it is a natural
question to ask how the MMM-classes restrict to these sulpgroHere we will be interested
in the handlebody subgrouty. To define it, fix a handlebody with boundarydW = %.
Hg contains those mapping classesgfthat can be extended across the interiohbf

Theorem A. For g > 2, the odd MMM-classesyi ;1 € H¥+2(I"4; Z) vanish when restricted
to the handlebody subgroupyht I'g.

It is well-known that the analogue of Theorem A holds ratignéor the Torelli group
lg :=ker(lF'g — Aut(H1(24;Z)). This can be proved by index theory, see [Mor87, Mum83].
It remains a significant open problem whether the even kaljgzaes restrict non-trivially to
the Torelli group.

Motivated by these questions, Sakasai [Sak09] has regertiyed a result closely related
to Theorem A by rather different methods. He shows that imblstrange the odd kappa
classes rationally vanish when restricted to the Lagrangiapping class subgroup, :=
Hglg. As our result holds without restriction to the stable rangd integrally, the question
arises whether the same holds alsolfoandL.
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Theorem A is a special case of the more general Theorem B helogh is a statement
about the diffeomorphism groups of manifolds of any dimensi Recall that forg > 2,
the mapping class groupy is homotopy equivalent to the diffeomorphism group [Diff)
[EE6B9], and the handlebody subgroup is homotopy equivatetite diffeomorphism group
of a 3-dimensional handlebody of germifHat76, Hat99]. Thus the discrete mapping class
groups may be replaced by the diffeomorphism groups. The gemeral result is about how
generalizations of the MMM-classes are pulled back in catlogy under the restriction-to-
the-boundary map,

r : BDiff (W) — BDiff (dW),
whereW is a(d + 1)-dimensional manifold with boundagWw = M.

More precisely, lett: E — B be an oriented fibre bundle with closed fibM®f dimension
d, and letT"E — E denote the fibrewise tangent bundle. The generalized MMIgsela (or
universal tangential classes) are defined by taking a maiofrin the Euler clasg and the
Pontrjagin classep; of TE and then forming the pushforward

X(E) := mX(T"E) € H*(B;Z),

whereri : H*(E) — H*~9(B) is the Gysin map oft, also known as the integration over the
fibre map. In particular, one obtains universal charadterdassesX € H*(BDiff (M);Z)

S

by takingE — B to be the universafl-bundle oveBDiff (M). In this notationk; = €+1 for

Theorem B. Suppose W is an oriented manifold with boundary. TH&na H* (BDiff (W); Z)
vanishes whenever the dimension of W is even, or whenevedd @@ X can be written as
a monomial just in the Pontrjagin classes.

It is worth stating an immediate corollary of the above tleeor

Corollary C. Given an oriented bundle E B of closed manifolds, the clasS¢&E) coming
from monomials X in Pontrjagin classes give obstructionst@wise oriented null-bordism
of the bundle.

An analogue of Theorem B for not necessarily orientable fols states that in cohomol-
ogy with Z /27 coefficients*X is trivial for any monomiak in the Stiefel-Whitney classes.

We shall take a geometric approach to the mapping class gthapwas first introduced in
[MTO1]. From this point of view the universal MMM-classesdae interpreted as elements
in the (stable) cohomology of the infinite loop space assedito a certain Thom spectrum
denoted byMTSO(2). More generally, the proof of Theorem B comes out of the theor
of the Thom spectrtITSO(d) (defined below in section 2) and is related to the theory of
“spaces of manifolds” or cobordism categories as in [GMTW®B8n], although we do not
actually rely on their results.

Recall, there is a homotopy fibre sequence of infinite loopepac

(1.1) Q®MTSO(d+1) — QBSQd +1); > Q*MTSO(d).
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A bundle of orientedd-manifolds over a basB has a classifying maB — Q”MTSO(d),

and the generalized MMM-classes are pulled back from usalelasses in the cohomology
of this infinite loop space. A simple calculation in sectio 8hows thad*X = 0 if and only

if either d is odd ord is even andX can be written as a product of Pontrjagin classes (i.e.
using only even powers of the Euler class). The proof of TéeoB consists of observing,
see section 3, that if a bundle @fmanifolds is the fibrewise boundary of a bundl€ df- 1)-
manifolds with boundary then its classifying map factorgoqhomotopy througlRBSQd +

1).;. This factorization trick is motivated by the philosophwtlthe homotopy fibre sequence
(1.1) corresponds to the exact sequence

{closed(d + 1)-manifolds — {(d + 1)-manifolds with boundar}/i {closedd-manifolds}.

Acknowledgements. The first author thanks Oscar Randal-Williams for helpfutdssions.

2. A COFIBRE SEQUENCE OHHOM SPECTRA

We will recall the definition of the fibre sequence (1.1) andchpate the ma@ in coho-
mology.

2.1. Definition of the spectra. Let yy denote the tautological bundle of orientéglanes
overBSQd), and 1etMTSO (d) denote the Thom spectrumih(—yy), of the virtual bundle
—Va. Explicitly, let Gy, denote the Grassmannian of orientkglanes inRA™N, let Yd.n

denote the tautological-plane bundle over it, and I%%n denote the complementanyplane

bundle. The(d + n)t" space of the spectruMTSO(d) is the Thom space
Th(ysn)-

The spac&q , sits insideGq .1 and the restriction of,. ; to Gy » is canonicallyyy,, ® R.
The structure maps of the spectrum are defined by the corigposit

STh(ygn) ~ Th(yd{n OR) ~ Th(y&nH\Gd’n) < Th(yotnﬂ).

2.2. Ahomotopy cofibre sequence of Thom spectraThe suspension spectrdifiBSQd +

1), can be regarded as the Thom spectrum of the trivial bundlardf 0. In explicit terms,
the (d+ 1+ n)™" space is Thyy, 1.0 @ Vi 1) @nd the structure maps are as above. The inclu-
sion

(2.1) Tl'(ydil,n) — Th(Yg41n® Vdil,n)
induces a map of spectra
(2.2) MTSO(d+1) — Z*BSQd+1),.

The cofibre of (2.2) is homotopy equivalentMl SO (d); this can be seen as follows. The
cofibreCy , of the cofibration (2.1) consists of a basepoint togethen wiittriples

(L€ Ggyi1n,ueL~{0},velh).
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As n varies these cofibres form a spectrum that is the homotoplgreodif (2.2). Choose a

diffeomorphism¢ : (0,0) — R; then the map
(Luv) = (LN v d(Jul)

)

induces &2n+ 1)-connected maly, — Th(yd{nﬂ) that is compatible with the spectrum
structure maps. This yields the homotopy cofibre sequenspeitra

(2.3) MTSO(d+1) — $*BSQd+1), > MTSO(d)
and a hence a homotopy fibre sequence of infinite loop spaces

Q®MTSO(d+1) — QBSQd+1), > Q*MTSO(d).

Note that the maﬁ: >*BSAd+1);. — MTSO(d) can be identified with the pre-transfer
for the (d)-sphere bundle associated wih 1.

2.3. Cohomology of Thom spectra and universal tangential classed-or any spectrunk
there is a map _
0" :H*(E) — H*(QyE)
from the spectrum cohomology &fto the reduced cohomology of the basepoint component
Qp E of the associated infinite loop space. This map is inducetiégvaluation map
o. ZnQnEn — En
that takeqt, f) to f(t) fort € S'andf : S' — E,. Thuso commutes with maps of spectra.
Let V be a virtual vector bundle of virtual dimensiond over a spacd3. There is a
Thom classy, in the degree-d cohomology of the associated Thom spectrTim{V ) (with
arbitrary coefficients iV is orientable and witt%/27Z coefficients otherwise) and by the
Thom isomorphism, the spectrum cohomoldd¥(Th(V)) is a freeH*(B)-module of rank
one generated by the Thom classFor the Thom spectrutTSO (d) = Th(—yy) we thus
have
H*(MTSO(d);Z) =2 u-H*(BSQd);Z),
with degu = —d.
Now, let X be a monomial in the Euler classnd the Pontrjagin classes We define the
associatediniversal tangential clasas
X := 0*(uX) € H*(Q3MTSO(d); Z).

Note that by definition all universal tangential classesstable in the sense that they come
from spectrum cohomology. Rationally, these classeX (@ges over a basis for the degree
> d monomials) freely generate the cohomology ringMTSO(d).

Proposition 2.1. Letr= |d/2] and X= p'f ... pl* €8 € H*(BSQd); Z). Consider the image
of X underd* : H*(Q*MTSO(d); Z) — H*(QBSQd + 1) ; Z).

(i.) For d odd,d*X = 0;

(ii.) For d even,5*X = 0 when s is even, and*X = 20*(X /e) when s is odd.
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Proof. Identify the inclusiorBSQd) — BSQd + 1) with the projection
7 S(ya-1) — BSQd +1)

of the unit sphere bundle gf.;. The mapd* : H*(MTSO(d);Z) — H*(BSQd + 1);Z)
can then be identified, via the Thom isomorphism, with theiGysap 5. The image of
the Euler clas® under the Gysin map is the Euler charcteristic of the fiberushiie = 0
whend is odd andrie = 2 whend is even. The Pontrjagin classesB8Qd) = S(yy.1) are
the pullbacks of the Pontrjagin classesB®Qd + 1). The statement now follows from the
formular (rta - B) = a - 1 3. Indeed, ag? = 0 ford odd ande? = Pq,/2 for d even, we may
assume thaga = 0 ors= 1 in the definition ofX, and compute

5*X = 8*0* (UX) = 0" (uX) = o*(TiX) = o™ (p¥... plrr €9),
which gives the desired result. O

To illustrate the above result consider the case wher?. In that case we have
H*(QyMTSO(2);Q) = Q[K1,K2, .. .]
with k; = e/“r\1 of degree £ while

H*(QBSQ3);Q) = Q[p1, p2; - -]
with p = o*p} of degree #. Thend* ki1 = 0 while 6*kz = 2p;.

Remark 2.2: When working ovefZ/2Z (in the orientable as well as non-orientable case) a
similar computation yields that for any monomklin the Stiefel-Whitney classes" maps
X to zero.

3. CLASSIFYING MAPS

We show here thad is the universal restriction-to-the-boundary mapBDiff (W) —
BDiff (dW).

3.1. Bundles of closed manifolds.Pontrjagin-Thom theory allows one to show that the in-
finite loop spac&*”MTSO (d) classifies concordance classes of oriemtetimensionafor-
mal bundleswhich are objects slightly more general than fibre bundfedased oriented
d-manifolds. Such an object over a smooth bBsensists of a smooth proper mapE — B

of codimension-d and a bundle epimorphisdvt: TE — T B (which need not be the differ-
ential of 1) with an orientation oker(dm), cf. [MWO07], [EGO6].

For a bundlet: E — B, the classifying map
an:B— Q*MTSO(d)

is defined concisely as follows. L&'E denote the fibrewise tangent bundle. The classifying
map is the pre-transfer,

pre-trf :B — Q*Th(-T"E)
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followed by the mafQ®Th(—T"E) — Q*Th(—yy) = Q*MTSO(d) induced by the classi-
fying map forT"E. To construct this map;; explicitly, choose a lift ofrrto an embedding

7T:E < B x RI*N

for some sufficiently large, and choose a fibrewise tubular neighborhabd B x RO,
Let N"E denote the fibrewise normal bundlemfWe obtain a map

(3.1) 54+, — Th(NTE)

by identifyingU with the normal bundle and collapsing the complemeht td the basepoint.
Classifying the fibrewise normal bundle gives a map

(3.2) ThNE) — Th(y,q)-
The adjoint of the composition of (3.1) and (3.2) is a niap> Qd+”Th(y¢n) which gives
the classifying mam;; upon composing with the map @”MTSO(d). One can check

that the homotopy class of this map is independent of thecehafi embedding and tubular
neighborhood.

The following propositions follow immediately from the aegption of the classifying map
in terms of the pre-transfer, and are well-known.

Proposition 3.1. The classifying mar; is natural (up to homotopy) with respect to pull-
backs.

Proposition 3.2. Given a bundlet: E — B and a clas¥X € H*(QoMTSO(d); Z) defined by
a monomial X in the Pontrjagin classes and Euler class on @$0

aiX = mX(T"E).

3.2. Bundles of manifolds with boundary. Given a bundlert: E — B, of oriented(d + 1)-
manifolds with boundary, let

Br:B— QBSAd+1);
denote the composition of the transfer, 8f+— QE,, followed by the maQE,; — QBSQd+
1)+ induced by classifyind "E. To construct this maf;; concretely, choose an embedding
rof E into B x R4141 over . A tubular neighborhood of E can then be identified with the
subspace of "E ® NTE = B x RA+1+N consisting of those vectors for which the tangential
component is zero if they sit over the interior of a fibre andrahe boundary the tangential
component is outward pointing normal to the boundary.

Hence collapsing the complementlfand classifying the fibrewise tangent bundle gives
maps N
SHINB, U™ = Th(T"ESN"E) — Th(Yas1n® Yy 1n):
where()™ denotes the one-point compactification. Taking the adffithis composition and
then mapping into the colimit asgoes to infinity gives the desired map
Br:B— QBSAd+1),.

Again, one can check that the homotopy class of this map epeddent of the choices made
in the construction. Analogous to;, 3;; can be interpreted as the classifying map of formal
bundles of(d + 1)-dimensional manifolds with boundary.
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Proposition 3.3. The classifying may;; is natural (up to homotopy) with respect to pull-
backs.

3.3. Restricting to the boundary. The classifying mapa andf3 constructed above for bun-
dles of closed manifolds and manifolds with boundary aremgatible in two ways. First, itis
easy to see that regarding a bundle of closed manifolds asdebaf manifolds with (empty)
boundary is compatible with the m&°MTSO (d) — QBSAd)... More importantly for us,
the fibrewise boundary of a bundle @f + 1)-manifolds is a bundle afi-manifolds and the
classifying maps for these two bundles are compatible ifidh@ving sense.

Proposition 3.4. Given a bundle of orientedd + 1)-manifoldsmt: E — B with fibrewise
boundary bundl@m: 0E — B, the diagram

Bnl \

QBSQd+1); — Q°MTSO(d)

commutes up to homotopy.

Proof. Fix an embeddingt: E — B x R4*" over T and a tubular neighborhodd. Let
U, C U be the subspace sitting over the fibrewise boundagy.ofhe lower composition in
the diagram comes from the adjoint of a map

(3.3) B, — Th(yg 10 @ Vdil,n) — Th(VdL,nJrl)

which collapses the complementdj to the basepoint. The spadg is identified with the
subspace of the vector bundlE™E & N”E)| ;e consisting of vectors for which the tangential
component is outward pointing normal &&. In the fibre over any poinp € JdE there is a
unique point/p which is sent by the map (3.3) to the zero section iﬁy]fnﬂ). Explicitly, the
component of/, that is normal tcE is zero and the tangential component is outward pointing
normal todE and has length equal t~1(0), where¢ : (0,00) — R is the diffeomorphism
used in defining the mad: QBSAd + 1) — Q”MTSO(d). The map

p:prVpeUy C BxRITHN

gives an embedding a¥E into B x R4+1+" over dm. Observe that), is a tubular neigh-
borhood of the embedding, and the composition (3.3) collapses the complemend of
identifies it with the normal bundle @f and classifies this bundle of orientéa+ 1)-planes

in R4+1+". Hence the lower composition in the diagram in the statemf&tfie proposition is

a mapaj, — constructed exactly as,, but with a different choice of embedding and tubular
neighborhood. Since different choices lead to homotopipsntne diagram commutes up to
a homotopy. O

4. PROOFS OF THE THEOREMS

Theorem B follows directly from Proposition 3.4 and Propiosi 2.1. Theorem A is the
special case whaW is a 3-dimensional oriented handlebody of gegus?2.
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