LIE GROUPS MICHAELMAS 2007 QUESTION SHEET 4

Ad and ad, classical groups and their Lie algebras

- 1. (This problem gives another approach to Example 6.2.) Consider the adjoint representation Ad of SU_2 on its Lie algebra $L(SU_2) \simeq \mathbb{R}^3$.
 - i. Prove that exp $(diag(\theta i, -\theta i))$ acts on \mathbb{R}^3 by rotation through an angle 2θ around the axis $(0, 0, 1)^t$.
 - ii. Prove that every $X \in L(SU_2)$ is of the form $c \operatorname{diag}(\theta i, -\theta i) c^{-1}$ for some c in SU_2 .
 - iii. Deduce Ad (exp X) acts on \mathbb{R}^3 by rotation through an angle of 2θ around the axis $(\text{Ad } c)(0,0,1)^t$.
 - iv. Use this to prove that Ad : $SU_2 \rightarrow SO_3$ is surjective and has kernel $\{I, -I\}$.
- 2. Show that the center of \mathbb{H} is $\mathbb{R} = <1>$ the real vector space spanned by 1.

Show that $SU_2 = Sp_1$.

Show that $L(Sp_1) = \langle i, j, k \rangle$. Describe Ad for Sp_1 .

- 3. Polar decomposition. Let P be the set of all positive definite symmetric (resp. Hermitian) matrices, i.e. all symmetric (resp. Hermitian) matrices $a \in GL_n$ such that $(x, ax) \geq 0$ for all $x \neq 0$. Prove that $P \times O_n \to GL_n \mathbb{R}$ (resp. $P \times U_n \to GL_n \mathbb{C}$) given by $(p, a) \mapsto pa$ is a bijection. [Hint: if $a \in GL_n \mathbb{R}$ then $aa^t \in P$; so $aa^t = b^2$ for some $b \in P$ and $b^{-1}a \in O_n$.]
- 4. Let $s, t \in \mathbb{R}$ and X = X(t) be a matrix valued function. Consider

$$Y(s,t) = \exp(-sX)\frac{d}{dt} \exp sX.$$

- i. Show that $\frac{d}{ds}Y(s,t) = \exp(\operatorname{ad}(-sX))\frac{d}{dt}X;$
- ii. Hence show that

$$Y(1,t) = \int_0^1 \frac{d}{ds} Y(s,t) \, ds = \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)!} (\text{ad } X)^k \, \frac{d}{dt} X;$$

- iii. Use this to compute $\frac{d}{dt} \exp X$.
- iv Find the derivative of $\exp(A + tB)$ at $\exp A$.
- 5. Prove that the real form of $L(SO_n)$ is $L(SO_n\mathbb{C})$.