LIE GROUPS MICHAELMAS 2009 QUESTION SHEET 1

Exponential map; one parameter subgroups.

- 1. Let $A \in M_n \mathbb{R}$ and λ be the largest eigenvalue of $A^T A$ where A^T is the transpose of A. Prove that $||A|| = \sqrt{\lambda}$. [*Hint:* $A^T A$ is diagonisable].
- 2. Show that the group of orthogonal matrices $O(n) \subset M_n(\mathbb{R})$ is bounded and closed. Deduce that O(n) is a compact group of matrices. Do the same for the unitary group $U_n \subset M_n(\mathbb{C})$.
- 3. Show that exp τX is orthogonal (unitary) for all $\tau \in \mathbb{R}$ if and only if X is skew-symmetric (skew-Hermitian). Recall, X is skew-symmetric if $X^t = -X$ and skew-Hermitian if $\bar{X}^t = -X$.
- 4. Show that for any matrix X,

$$\det(\exp X) = e^{\operatorname{tr} X}.$$

Show that $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ is not the exponential of any real 2×2 matrix.

- 5. A matrix is called semisimple if it is diagonisable over \mathbb{C} . Show:
 - (i) $\exp X$ is semisimple if X is;
 - (ii) if a is an invertible semisimple matrix then there exists a semisimple matrix X so that $a = \exp X$, and no two distinct eigenvalues of X differ by a multiple of $2\pi i$.
- 6. Let $A, B \in M_n(\mathbb{R})$. Find a solution $\alpha : \mathbb{R} \to M_n(\mathbb{R})$ for the differential equation

$$\alpha'(t) = A\alpha(t)$$
 and $\alpha(0) = B$

Prove that your solution is unique.