Lie Groups

Michaelmas 2009
Question Sheet 2

Lie algebras of linear groups.

1. Fix $c \in \mathrm{GL}_{n}(\mathbb{F})$ and let $G:=\left\{a \in \mathrm{GL}_{n} \mathbb{F} \mid c a=a c\right\}$. Check that G is a group and describe its Lie algebra $L(G)$. Find G explicidly when c is a diagonal matrix with entries all distinct. In this case, for both $\mathbb{F}=\mathbb{R}$ and \mathbb{C}, determine the kernel and image of the exponential map.
2. Let $\phi: G \rightarrow H$ be a differential homomorphism of linear groups. Show that for all $X \in L(G)$,

$$
\phi(\exp X)=\exp \left(\left.\frac{d}{d t} \phi(\exp t X)\right|_{t=0}\right) .
$$

[Hint: Show that $\phi(\exp (t X))$ satisfies the differential equation of \exp.] Give an interpretation of this identity in terms of the 'bigger picture'.
3. Determine the Lie algebra $L(G)$ and its dimension where G is in turn the special orthogonal group $S O_{n}$, the orthogonal group O_{n}, the unitary group U_{n}, the special unitary group $S U_{n}$, the special real linear group $S L_{n}(\mathbb{R})$, the special complex linear group $S L_{n}(\mathbb{C})$, and the group of real upper triangular non-sigular $n \times n$ matrices.
4. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be the basis for $L\left(S O_{3}\right)$ given by the three matrices below, and let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{R}^{3}. Define $\phi: L\left(S O_{3}\right) \rightarrow \mathbb{R}^{3}$ by $\phi\left(E_{i}\right)=e_{i}$. Show ϕ is an isomorphism of Lie algebras where the bracket in \mathbb{R}^{3} is given by the vector cross product. Determine all Lie subalgebras of $L\left(\mathrm{SO}_{3}\right)$.

$$
E_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

5. Let $G \subset \mathrm{GL}_{n}(\mathbb{C})$ be a matrix group and assume its Lie algebra $L(G)$ is a complex vector subspace of $M_{n}(\mathbb{C})$. Prove that $L(G)$ is a complex Lie subalgebra.
