LIE GROUPS MICHAELMAS 2009 QUESTION SHEET 2

Lie algebras of linear groups.

- 1. Fix $c \in \operatorname{GL}_n(\mathbb{F})$ and let $G := \{a \in \operatorname{GL}_n\mathbb{F} | ca = ac\}$. Check that G is a group and describe its Lie algebra L(G). Find G explicitly when c is a diagonal matrix with entries all distinct. In this case, for both $\mathbb{F} = \mathbb{R}$ and \mathbb{C} , determine the kernel and image of the exponential map.
- 2. Let $\phi: G \to H$ be a differential homomorphism of linear groups. Show that for all $X \in L(G)$,

$$\phi(\exp X) = \exp\left(\frac{d}{dt}\phi(\exp tX)|_{t=0}\right).$$

[Hint: Show that $\phi(\exp(tX))$ satisfies the differential equation of exp.] Give an interpretation of this identity in terms of the 'bigger picture'.

- 3. Determine the Lie algebra L(G) and its dimension where G is in turn the special orthogonal group SO_n , the orthogonal group O_n , the unitary group U_n , the special unitary group SU_n , the special real linear group $SL_n(\mathbb{R})$, the special complex linear group $SL_n(\mathbb{C})$, and the group of real upper triangular non-sigular $n \times n$ matrices.
- 4. Let $\{E_1, E_2, E_3\}$ be the basis for $L(SO_3)$ given by the three matrices below, and let $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . Define $\phi : L(SO_3) \to \mathbb{R}^3$ by $\phi(E_i) = e_i$. Show ϕ is an isomorphism of Lie algebras where the bracket in \mathbb{R}^3 is given by the vector cross product. Determine all Lie subalgebras of $L(SO_3)$.

$$E_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \ E_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \ E_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

5. Let $G \subset \operatorname{GL}_n(\mathbb{C})$ be a matrix group and assume its Lie algebra L(G) is a complex vector subspace of $M_n(\mathbb{C})$. Prove that L(G) is a complex Lie subalgebra.