LIE GROUPS MICHAELMAS 2009 QUESTION SHEET 3

Connectedness, group topology, Lie correspondence.

- 1. Show that an open subgroup H of a linear group G is also closed.
- 2. Show that the set G_I of all elements in G that can be connected to the idenity by a path is a normal subgroup of G.
- 3. Show that a discrete normal subgroup H in a connected group G is in the center of G.
- 4. Show that exp : $L(SO_n) \to SO_n$ is surjective. [Hint: Every $x \in SO_n$ is conjugate to a block-diagonal matrix with 2×2 blocks given by elements in SO_2 together with a single 1×1 block with entry 1 when n is odd.]

Deduce that SO_n is connected.

5. Let G be a connected linear group. Show that G is abelian if and only if L(G) is abelian (i.e. [X, Y] = 0 for all $X, Y \in L(G)$).

Hence describe all connected abelian linear groups (upto homeomorphisms).

6. Show that $S^1 \times SU_n \to U_n$ given by $(\lambda, A) \to \lambda A$ is a homomorphism of linear groups. Find its image and kernel. Describe the map induced on their Lie algebras. Do the same with det : $U_n \to S^1$.