Lie Groups

Michaelmas 2009
Question Sheet 4

Ad and ad, classical groups and their Lie algebras

1. (This problem gives another approach to Example 6.2.) Consider the adjoint representation Ad of $S U_{2}$ on its Lie algebra $L\left(S U_{2}\right) \simeq \mathbb{R}^{3}$.
i. Prove that $\exp (\operatorname{diag}(\theta i,-\theta i))$ acts on \mathbb{R}^{3} by rotation through an angle 2θ around some axis.
ii. Prove that every $X \in L\left(S U_{2}\right)$ is of the form $c \operatorname{diag}(\theta i,-\theta i) c^{-1}$ for some c in $S U_{2}$.
iii. Deduce $\operatorname{Ad}(\exp X)$ acts on \mathbb{R}^{3} by rotation through an angle of 2θ around the axis $(\operatorname{Ad} c)(0,0,1)^{t}$.
iv. Use this to prove that $\mathrm{Ad}: S U_{2} \rightarrow S O_{3}$ is surjective and has kernel $\{I,-I\}$.
2. Show that the center of \mathbb{H} is $\mathbb{R}=<1>$ the real vector space spanned by 1 . Show that $S U_{2}=S p_{1}$. Show that $L\left(S p_{1}\right)=<i, j, k>$. Describe Ad for $S p_{1}$.
3. Polar decomposition. Let P be the set of all positive definite symmetric (resp. Hermitian) matrices, i.e. all symmetric (resp. Hermitian) matrices $a \in G L_{n}$ such that $(x, a x) \geq 0$ for all $x \neq 0$. Prove that $P \times O_{n} \rightarrow G L_{n} \mathbb{R}$ (resp. $P \times U_{n} \rightarrow G L_{n} \mathbb{C}$) given by $(p, a) \mapsto p a$ is a bijection. [Hint: if $a \in G L_{n} \mathbb{R}$ then $a a^{t} \in P$; so $a a^{t}=b^{2}$ for some $b \in P$ and $b^{-1} a \in O_{n}$.]
4. Let $s, t \in \mathbb{R}$ and $X=X(t)$ be a matrix valued function. Consider

$$
Y(s, t)=\exp (-s X) \frac{d}{d t} \exp s X
$$

i. Show that $\frac{d}{d s} Y(s, t)=\exp (\operatorname{ad}(-s X)) \frac{d}{d t} X$;
ii. Hence show that

$$
Y(1, t)=\int_{0}^{1} \frac{d}{d s} Y(s, t) d s=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)!}(\operatorname{ad} X)^{k} \frac{d}{d t} X
$$

iii. Use this to compute $\frac{d}{d t} \exp X$.
iv Find the derivative of $\exp (A+t B)$ at $\exp A$.

