LIE GROUPS MICHAELMAS 2009 QUESTION SHEET 5

Classical Lie groups, Cartan subgroups, Weyl groups, root system.

- 1. Let $T \subset G$ be a maximal torus in a compact matrix group G, and let $Q \subset N_G(T)$ be a connected group in the normaliser of T in G.
 - i. Prove that an automorphism of T induces and automorphism of L(T) and of ker(exp : $L(T) \to T$).
 - ii. By considering the induced action of Q on ker(\exp), prove that the action of Q on T is trivial.
 - iii. Deduce that the Weyl group is a finite discrete group.
- 2. Show that the Weyl group of SU_n is the symmetric group Σ_n and that of Sp_n is $\Sigma_n \ltimes (\mathbb{Z}/2\mathbb{Z})^n \subset \Sigma_{2n}$.

[Hint: Conjugation takes a diagonal matrix to a diagonal matrix with the same eigenvalues.]

- 3. Find the roots of $Sp_n\mathbb{C}$. What is the action of the Weyl group on the roots?
- 4. Let α, β be two roots and let E_{α} , E_{β} be eigenvectors for α and β . Show that
 - (i) if $\alpha + \beta$ is a root, $[E_{\alpha}, E_{\beta}]$ is a non-zero multiple of $E_{\alpha+\beta}$, or
 - (ii) if $\beta = -\alpha$, $[E_{\alpha}, E_{\beta}]$ is an element of L(H), or
 - (iii) $[E_{\alpha}, E_{\beta}]$ is zero.
- 5. Let L be the real subspace of $L(H)^*$ spanned by the coordinate functions $\lambda_1, \ldots, \lambda_n$ where $H = T_{\mathbb{C}} \subset G_{\mathbb{C}}$. Identifying this naturally as (a subspace of) \mathbb{R}^n , L is an innerproduct space. For a root α , define $s_{\alpha}: L \to L$ by $s_{\alpha}(\lambda) = \lambda 2\frac{(\alpha, \lambda)}{(\alpha, \alpha)}\alpha$.
 - i. Show that s_{α} is a reflection along α , i.e. a reflection in the hyperplane $<\alpha>^{\perp}$.
 - ii. In the case of $G_{\mathbb{C}} = SL_n\mathbb{C}$, show that s_{α} is an element in the Weyl group, i.e. there is an element $s \in W$ with $s.\lambda = s_{\alpha}(\lambda)$. Furthermore, show that

the s_{α} generate W.

iii. For the type $A_2, D_1 = A_1 \times A_1$ and $B_2 = C_2$, that is for SU_3, SO_4, SO_5 and Sp_2 , make a sketch of the real plane L with the lines of reflections s_{α} .