LIE GROUPS MICHAELMAS 2009 QUESTION SHEET 6

Representations and characters.

- 1. Let G be a compact abelian linear group, and (V, ρ) be an irreducible complex representation. Prove that $\rho(G) \subset S^1 \subset Aut(V)$. What can be said when (V, ρ) is an irreducible real representation?
- 2. Prove that the functional defined for real valued functions f on S^1 by

$$\int_{S^1} f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) d\theta$$

is the bi-invariant normalized integral for S^1 .

3. Let V and W be two finite dimensional vector spaces. Show that $\alpha: V^* \otimes W \to \text{Hom } (V, W)$ defined by $\alpha(v^* \otimes w)(v) := v^*(v)w$ defines a linear isomorphism; here V^* denotes the dual of V. Now let V = W. Prove that

$$tr(\alpha(v^* \otimes v)) = v^*(v).$$

- 4. Let $\alpha: V \to V$ and $\beta: W \to W$ be linear transformations with matrix representations (a_{ij}) and (b_{ij}) respectively. Find a matrix representation for $\alpha \otimes \beta$. Prove that $tr(\alpha \otimes \beta) = tr(\alpha)tr(\beta)$. Assume now that V and W are representations of a linear group G. Deduce that $\chi_{V \otimes W} = \chi_V \chi_W$.
- 5. Let G be a compact linear group and (V, π) and (W, ρ) be two irreducible unitary representations. By considering the G-map associated to $T = E_{jl}$, prove that

i . If
$$\pi \nsim \rho$$
 then $\int_G \pi_{ij}(g) \overline{\rho_{kl}(g)} = 0$.

ii. If
$$\pi = \rho$$
 then $\int_G \pi_{ij}(g) \overline{\rho_{kl}(g)} = \frac{1}{\dim V} \delta_{ik} \delta_{jl}$.

6. Let the standard maximal torus T of SO_{2n} act on the complexified Lie algebra

$$L(SO_{2n}) \otimes \mathbb{C} \simeq L(SO_{2n}\mathbb{C})$$

via the adjoint action Ad . Find its decompositions into irreducible T-representations. Describe the associated character. What can you say about the character of Ad for the whole group SO_{2n} ? [You may assume here that the roots of $SO_{2n}\mathbb{C}$ are $\pm(\lambda_j\pm\lambda_k)$ for j< k, and that the associated eigenvectors are $E_{jk}-E_{n+k,n+j}, E_{j,n+k}-E_{k,n+j}$ and $E_{n+j,k}-E_{n+k,j}$.]