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The central topic of this book is time-dependent partial differential equa-
tions (PDEs). Even when we come to discuss elliptic PDEs, which are not
time-dependent, we shall find that some of the best numerical methods are
iterations that behave very much as if there were a time variable. That is why
elliptic equations come at the end of the book rather than the beginning.

Ordinary differential equations (ODEs) embody one of the two essential
ingredients of this central topic: variation in time, but not in space. Because
the state at any moment is determined by a finite set of numbers, ODEs are
far easier to solve and far more fully understood than PDEs. In fact, an ODE
usually has to be nonlinear before its behavior becomes very interesting—
which is not the case at all for a PDE.

The solution of ODEs by discrete methods is one of the oldest and most
successful areas of numerical computation. A dramatic example of the need
for such computations is the problem of predicting the motions of planets or
other bodies in space. The governing differential equations have been known
since Newton, and for the case of only two bodies, such as a sun and a planet,
Newton showed how to solve them exactly. In the three centuries since then,
however, no one has ever found an exact solution for the case of three or more
bodies.* Yet the numerical calculation of such orbits is almost effortless by
modern standards, and is a routine component of the control of spacecraft.

The most important families of numerical methods for ODEs are

¢ linear multistep methods,
* Runge-Kutta methods.

This chapter presents the essential features of linear multistep methods, with
emphasis on the fundamental ideas of accuracy, stability, and convergence. An
important distinction is made between “classical” stability and “eigenvalue
stability”. All of these notions will prove indispensable when we move on to
discuss PDEs in Chapter 3. Though we do not describe Runge-Kutta methods
except briefly in §1.8, most of the analytical ideas described here apply with
minor changes to Runge-Kutta methods too.

*In fact there are theorems to the effect that such an exact solution can never be found. This
unpredictability of many-body motions is connected with the phenomenon of chaos.
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1.1. Initial value problems

An ordinary differential equation, or ODE, is an equation of the form

ug(t) = Fu(t), ), (L.11)

where t is the time variable, u is a real or complex scalar or vector function
of t (u(t)eCN, N>1), and f is a function that takes values in C¥.* We
also say that (1.1.1) is a system of ODEs of dimension N. The sym-
bol u, denotes du/dt, and if N > 1, it should be interpreted componentwise:
(u®,.. . utHT = (ugl),...,u,EN))T. Similarly, u;, denotes d?u/dt?, and so on.
Where clarity permits, we shall leave out the arguments in equations like
(1.1.1), which then becomes simply u; = f.

The study of ODEs goes back to Newton and Leibniz in the 1670’s, and
like so much of mathematics, it owes a great deal also to the work of Euler in
the 18th century. Systems of ODEs were first considered by Lagrange in the
1750s, but the use of vector notation did not become standard until around
1890.

If f(u,t) = a(t)u+ B(t) for some functions «(t) and [(t), the ODE is
linear, and if 3(t) =0 it is linear and homogeneous. (In the vector case «(t)
is an N x N matrix and f(t) is an N-vector.) Otherwise it is nonlinear. If
f(u,t) is independent of ¢, the ODE is autonomous. If f(u,t) is independent
of u, the ODE reduces to an indefinite integral.

To make (1.1.1) into a fully specified problem, we shall provide initial
data at t =0 and look for solutions on some interval ¢t € [0,7], T > 0. The
choice of ¢ =0 as a starting point introduces no loss of generality, since any
other ¢, could be treated by the change of variables ¢’ =t —t,.

Initial Value Problem. Given f as described above, T' >0, and ug € (CN,
find a differentiable function u(t) defined for t € [0,T] such that

(a) u(0) =uq,

(b) us(t) = f(u(t),t) forall te|0,T]. (1.1.2)

*CN is the space of complex column vectors of length N. In practical ODE problems the variables
are usually real, so that for many purposes we could write R" instead. When we come to Fourier
analysis of linear partial differential equations, however, the use of complex variables will be very
convenient.
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Numerical methods for solving ODE initial-value problems are the subject of
this chapter. We shall not discuss boundary-value problems, in which various
components of u are specified at two or more distinct points of time; see Keller
(1978) and Ascher, et al. (1988).

EXAMPLE 1.1.1. The scalar initial-value problem u;, = Au, u(0) = a has the solution
u(t) = ae!*, which decays to 0 as t — oo provided that A <0, or Re A <0 if A is complex.
This ODE is linear, homogeneous, and autonomous.

EXAMPLE 1.1.2. The example above becomes a vector initial-value problem if u and
a are N-vectors and A is an N x N matrix. The solution can still be written u(t) = et“a,
if e*4 now denotes the N x N matrix defined by applying the usual Taylor series for the
exponential to the matrix tA. For generic initial vectors a, this solution u(t) decays to the
zero vector as t — 00, i.e. lims o [Ju(t)|| =0, if and only if each eigenvalue A of A satisfies

Re) <0.

EXAMPLE 1.1.3. The scalar initial-value problem u, =wucost, u(0) =1 has the solution
u(t) = ™. One can derive this by separation of variables by integrating the equation
du/u = costdt.

EXAMPLE 1.1.4. The nonlinear initial-value problem u, = u+u?, u(0) = 1 has the solution
u(t) =1/(2e~t —1), which is valid until the solution becomes infinite at ¢ =log2 ~ 0.693.
This ODE is an example of a Bernoulli differential equation. One can derive the solution by
the substitution w(t) =1/u(t), which leads to the linear initial-value problem w, = —1—w,
w(0) = 1, with solution w(t) =2e*—1.

EXAMPLE 1.1.5. The Lorenz equations, with the most familiar choice of parameters,
can be written

u; = —10u+ 10w, v, = 28u —v —uw, wt:—%uw-uv.

This is the classical example of a nonlinear system of ODEs whose solutions are chaotic.
The solution cannot be written in closed form.

Equation (1.1.1) is an ODE of first order, for it contains only a first
derivative with respect to . Many ODEs that occur in practice are of sec-
ond order or higher, so the form we have chosen may seem unduly restrictive.
However, any higher-order ODE can be reduced to an equivalent system of
first-order ODEs in a mechanical fashion by introducing additional variables
representing lower-order terms. The following example illustrates this reduc-
tion.

EXAMPLE 1.1.6. Suppose that a mass m at the end of a massless spring of length
y experiences a force F = —K(y—y*), where K is the spring constant and y* is the rest
position (Hooke’s Law). By Newton’s First Law, the motion is governed by the autonomous
equation

Ky—y*), y(0)=a, ,(0)=b

ytt:_E(
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for some a and b, a scalar second-order initial-value problem. Now let u be the 2-vector
with v =y, v = y;- Then the equation can be rewritten as the first-order system

ugl) — u(z), u
K

UEQ) = ——(u(l) —y"), u® (0) =b.
m

It should be clear from this example, and Exercise 1.1.1 below, how to
reduce an arbitrary collection of higher-order equations to a first-order system.
More formal treatments of this process can be found in the references.

Throughout the fields of ordinary and partial differential equations—and
their numerical analysis—there are a variety of procedures in which one prob-
lem is reduced to another. We shall see inhomogeneous terms reduced to
initial data, initial data reduced to boundary values, and so on. But this re-
duction of higher-order ODEs to first-order systems is unusual in that it is not
just a convenient theoretical device, but highly practical. In fact, most of the
general-purpose ODE software currently available assumes that the equation is
written as a first-order system. One pays some price in efficiency for this, but
it is usually not too great. For PDEs, on the other hand, such reductions are
less often practical, and indeed there is less general-purpose software available
of any kind.

It may seem obvious that (1.1.2) should have a unique solution for all
t > 0; after all, the equation tells us exactly how u changes at each instant.
But in fact, solutions can fail to exist or fail to be unique, and an example of
nonexistence for ¢ >log2 appeared already in Example 1.1.4 (see also Exercises
1.1.4 and 1.1.5). To ensure existence and uniqueness, we must make some
assumptions concerning f. The standard assumption is that f is continuous
with respect to ¢ and satisfies a (uniform) Lipschitz condition with respect
to u. This means that there exists a constant L > 0 such that for all u,v € cN
and t € (0,77,

1/ () = f (0, 0)]| < Lfju—w]], (1.1.3)

where |- || denotes some norm on the set of N-vectors. (For N =1, i.e. a scalar
system of equations, ||-|| is usually just the absolute value |-|. For N > 2, the
most important examples of norms are ||-||;, ||+ ||5, and |- ||, and the reader
should make sure that he or she is familiar with these examples. See Appendix
B for a review of norms.) A sufficient condition for Lipschitz continuity is that
the partial derivative of f(u,t) with respect to u exists and is bounded in norm
by L for all ue CY and t € [0,T].

The following result goes back to Cauchy in 1824.
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EXISTENCE AND UNIQUENESS FOR THE INITIAL VALUE PROBLEM

Theorem 1.1. Let f(u,t) be continuous with respect to t and uniformly
Lipschitz continuous with respect to u for t € [0,T]. Then there exists a
unique differentiable function u(t) that satisfies the initial-value problem
(1.1.2).

The standard proof of Theorem 1.1 nowadays, which can be found in many
books on ODEs, is based on a construction called the method of successive
approximations or the Picard iteration. This construction can be realized as
a numerical method, but not one of the form we shall discuss in this book.
Following Cauchy’s original idea, however, a more elementary proof can also
be based on more standard numerical methods, such as Euler’s formula, which
is mentioned in the next section. See Henrici (1962) or Hairer, Norsett &
Wanner (1987).

Theorem 1.1 can be strengthened by allowing f to be Lipschitz continuous
not for all u, but for u confined to an open subset D of CV. Unique solutions
then still exist on the interval [0,7"], where T" is either the first point at which
the solution hits the boundary of D, or T', whichever is smaller.

EXERCISES

> 1.1.1. Reduction to first-order system. Consider the system of ODEs
_ 220 t
Uppy = Uy + Uy, vt =u” +sin(v) +e'u,v,

with initial data
u(O):ut(O):utt(O):vt(O)ZO, v(0)=1.

Reduce this initial-value problem to a first-order system in the standard form (1.1.2).

> 1.1.2. The planets. M planets (or suns, or spacecraft) orbit about each other in three
space dimensions according to Newton’s laws of gravitation and acceleration. What are
the dimension and order of the corresponding system of ODEs— (a) When written in their
most natural form? (b) When reduced to a first-order system? (This problem is intended
to be straightforward; do not attempt clever tricks such as reduction to center-of-mass
coordinates.)

> 1.1.3. Existence and uniqueness. Apply Theorem 1.1 to show existence and uniqueness of
the solutions we have given for the following initial-value problems, stating explicitly your
choices of suitable Lipschitz constants L:
(a) Example 1.1.1.
(b) Example 1.1.3.
(c) Example 1.1.4. First, by considering u, = u+u? itself, explain why Theorem 1.1 does
not guarantee existence or uniqueness for all ¢ > 0. Next, by considering the transformed
equation w, = —1—w), show that Theorem 1.1 does guarantee existence and uniqueness



1.1. INITIAL VALUE PROBLEMS TREFETHEN 1994 - 14

until such time as v may become infinite. Exactly how does the proof of the theorem
fail at that point?
(d) Example 1.1.2.

> 1.1.4. Nonexistence and nonuniqueness. Consider the scalar initial-value problem
u, =u, u(0)=uy >0

for some constant a > 0.
(a) For which « does Theorem 1.1 guarantee existence and uniqueness of solutions for all
t>07
(b) For a =2 and uy =1, no solution for all ¢ > 0 exists. Verify this informally by finding an
explicit solution that blows up to infinity in a finite time. (Of course such an example
by itself does not constitute a proof of nonexistence.)
(c) For a= % and uy =0, there is more than one solution. Find one of them, an “obvious”
one. Then find another “obvious” one. Now construct an infinite family of distinct
solutions.

> 1.1.5. Continuity with respect tot. Theorem 1.1 requires continuity with respect to ¢ as well
as Lipschitz continuity with respect to u. Show that this assumption cannot be dispensed
with by finding an initial-value problem, independent of T', in which f is uniformly Lipschitz
continuous with respect to u but discontinuous with respect to ¢, and for which no solution
exists on any interval [0,7'] with T'> 0. (Hint: consider the degenerate case in which f(u,t)
is independent of u.)
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1.2. Linear multistep formulas

Most numerical methods in every field are based on discretization. For the solution
of ordinary differential equations, one of the most powerful discretization strategies goes by
the name of linear multistep methods.

Suppose we are given an initial-value problem (1.1.2) that satisfies the hypotheses of
Theorem 1.1 on some interval [0,77]. Then it has a unique solution u(t) on that interval,
but the solution can rarely be found analytically. Let k >0 be a real number, the time
step, and let t,,%;,... be defined by ¢, =nk. Our goal is to construct a sequence of values
v0,w!, ... such that

v u(t,), n>0. (1.2.1)

(The superscripts are not exponents! —we are leaving room for subscripts to accommodate
spatial discretization in later chapters.) We also sometimes write v(t,,) instead of v™. Let
f™ be the abbreviation

fr=r"t,). (1.2.2)
A linear multistep method is a formula for calculating each new value v™*! from some of
the previous values v°,...,v™ and f9,..., f*.* Equation (1.2.11) below will make this more

precise.

We shall take the attitude, standard in this field, that the aim in solving an initial-
value problem numerically is to achieve a prescribed accuracy with the use of as few function
evaluations f(v™,t,) as possible. In other words, obtaining function values is assumed to be
so expensive that all subsequent manipulations—all “overhead” operations—are essentially
free. For easy problems this assumption may be unrealistic, but it is the harder problems
that matter more. For hard problems values of f may be very expensive to determine,
particularly if they are obtained by solving an inner algebraic or differential equation.

Linear multistep methods are designed to minimize function evaluations by using the
approximate values v™ and f™ repeatedly.

The simplest linear multistep method is a one-step method: the Euler formula, defined
by

VT =" k1 (1.2.3)

The motivation for this formula is linear extrapolation, as suggested in Figure 1.2.1a. If
vY is given (presumably set equal to the initial value uy), it is a straightforward matter to
apply (1.2.3) to compute successive values v',v2,.... Euler’s method is an example of an
explicit one-step formula.

A related linear multistep method is the backward Euler (or implicit Euler) for-

mula, also a one-step formula, defined by
v =" (1.2.4)

The switch from f* to f"*' is a big one, for it makes the backward Euler formula im-
plicit. According to (1.2.2), f™** is an abbreviation for f(v"*!,¢,, ). Therefore, it would

*In general, v" and f™ are vectors in (CN, but it is safe to think of them as scalars; the extension to
systems of equations is easy.
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~

n tn+1 tnf 1 tn

n+1

(a) Euler (b) midpoint

Figure 1.2.1. One step of the Euler and midpoint formulas. The solid curves
represent not the exact solution to the initial-value problem, but the exact solu-

tion to the problem u, = f, u(t,,) =v™.

appear that v"! cannot be determined from (1.2.4) unless it is already known! In fact, to
implement an implicit formula, one must employ an iteration of some kind to solve for the
unknown v"*!, and this involves extra work, not to mention the questions of existence and
uniqueness.* But as we shall see, the advantage of (1.2.4) is that in some situations it may
be stable when (1.2.3) is catastrophically unstable. Throughout the numerical solution of
differential equations, there is a tradeoff between explicit methods, which tend to be easier
to implement, and implicit ones, which tend to be more stable. Typically this tradeoff takes
the form that an explicit method requires less work per time step, while an implicit method
is able to take larger and hence fewer time steps without sacrificing accuracy to unstable
oscillations.*
An example of a more accurate linear multistep formula is the trapezoid rule,

k
"t = "+ §(f"+f"+1), (1.2.5)
also an implicit one-step formula. Another is the midpoint rule,
"t = " 2k f (1.2.6)

an explicit two-step formula (Figure 1.2.1b). The fact that (1.2.6) involves multiple time
levels raises a new difficulty. We can set v° = v, but to compute v! with this formula, where

*In so-called predictor-corrector methods, not discussed in this book, the iteration is terminated
before convergence, giving a class of methods intermediate between explicit and implicit.

*But don’t listen to people who talk about “conservation of difficulty” as if there were never any
clear winners! We shall see that sometimes explicit methods are vastly more efficient than implicit
ones (large non-stiff systems of ODEs), and sometimes it is the reverse (small stiff systems).
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shall we get v=? Or if we want to begin by computing v?, where shall we get v*? This
initialization problem is a general one for linear multistep formulas, and it can be addressed
in several ways. One is to calculate the missing values numerically by some simpler formula
such as Euler’s method—possibly applied several times with a smaller value of k to avoid
loss of accuracy. Another is to handle the initialization process by Runge-Kutta methods,
to be discussed in Section 1.9.

In Chapter 3 we shall see that the formulas (1.2.3)—(1.2.6) have important analogs for
partial differential equautions.Jr For the easier problems of ordinary differential equations,
however, they are too primitive for most purposes. Instead one usually turns to more
complicated and more accurate formulas, such as the fourth-order Adams-Bashforth
formula,

k
v = 3 (55" —59f" " +37 "2 —9f"?), (1.2.7)
an explicit four-step formula, or the fourth-order Adams-Moulton formula,
k
L = v”—i-ﬂ (9f" L +19f" =5 f 1+ f772), (1.2.8)
an implicit three-step formula. Another implicit three-step formula is the third-order

backwards differentiation formula,

"t = %v” —

[

11)n_1+%’l)n_2+16—1kfn+1; (129)

=
=

whose advantageous stability properties will be discussed in Section 1.8.

EXAMPLE 1.2.1. Let us perform an experiment to compare some of these methods. The
initial-value problem will be

U, =, te0,2], wu(0)=1, (1.2.10)
whose solution is simply u(t) = e!. Figure 1.2.2 compares the exact solution with the nu-
merical solutions obtained by the Euler and midpoint formulas with £=0.2 and k£ =0.1.
(For simplicity, we took v' equal to the exact value u(t;) to start the midpoint formula.)
A solution with the fourth-order Adams-Bashforth formula was also calculated, but is in-
distinguishable from the exact solution in the plot. Notice that the midpoint formula does
much better than the Euler formula, and that cutting k£ in half improves both. To make
this precise, Table 1.2.1 compares the various errors u(2) —v(2). The final column of ratios
suggests that the errors for the three formulas have magnitudes ©(k), ©(k?), and O(k*) as
k — 0. The latter figure accounts for the name “fourth-order;” see the next section.

Up to this point we have listed a few formulas, some with rather compli-
cated coefficients, and shown that they work at least for one problem. Fortu-
nately, the subject of linear multistep methods has a great deal more order in
it than this. A number of questions suggest themselves:

» What is the general form of a linear multistep method?

1_Euler, Backward Euler, Crank-Nicolson, and Leap Frog.
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8r 8r

0 1 2 0 1 2
(a) k=0.2 (b) k=0.1

Figure 1.2.2. Solution of (1.2.10) by the Euler (%) and midpoint (o) formulas.

k=02 k=01 k=005 ratio (k=0.1to k=.05)

Euler 1.19732  0.66156  0.34907  1.90
Midpoint 0.09055  0.02382  0.00607  3.92
AB4 0.00422  0.00038  0.00003  12.7

Table 1.2.1. Errors u(2) —v(2) for the experiment of Figure 1.2.2.

» Can appropriate coefficients be derived in a systematic way?
* How accurate are these methods?
» Can anything go wrong?

In the following pages we shall see that these questions have very interesting
answers.

We can take care of the first one right away by defining the general linear
multistep formula:
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An s-step linear multistep formula is a formula
S i S i
Sap™ = kY g (1.2.11)
j=0 j=0

for some constants {c,;} and {f;} with a, =1 and either o # 0 or 3 #0.
If 3,=0 the formula is explicit, and if 5, #0 it is implicit.

Readers familiar with electrical engineering may notice that (1.2.11) looks
like the definition of a recursive or ITR digital filter (Oppenheim & Schafer,
1989). Linear multistep formulas can indeed be thought of in this way, and
many of the issues to be described here also come up in digital signal process-
ing, such as the problem of stability and the idea of testing for it by looking for
zeros of a polynomial in the unit disk of the complex plane. A linear multistep
formula is not quite a digital filter of the usual kind, however. In one respect
it is more general, since the function f depends on u and t rather than on ¢
alone. In another respect it is more narrow, since the coefficients are chosen
so that the formula has the effect of integration. Digital filters are designed
to accomplish a much wider variety of tasks, such as high-pass or low-pass
filtering (= smoothing), differentiation, or channel equalization.

What about the word “linear”? Do linear multistep formulas apply only
to linear differential equations? Certainly not. Equation (1.2.11) is called
linear because the quantities v™ and f" are related linearly; f may very well
be a nonlinear function of v and t. Some authors refer simply to “multistep
formulas” to avoid this potential source of confusion.

EXERCISES

> 1.2.1. What are s, {a;}, and {;} for formulas (1.2.7)-(1.2.9)?

> 1.2.2. Linear multistep formula for a system of equations. One of the footnotes above
claimed that the extension of linear multistep methods to systems of equations is easy.
Verify this by writing down exactly what the 2 x 2 system of Example 1.1.5 becomes when
it is approximated by the midpoint rule (1.2.6).

> 1.2.3. Exact answers for low-degree polynomials. If L is a nonnegative integer, the initial-

value problem

L
i1

uy (1)

has the unique solution u(t) = (t+1)L. Suppose we calculate an approximation v(2) by a
linear multistep formula, using exact values where necessary for the initialization.
(a) For which L does (1.2.3) reproduce the exact solution?  (b) (1.2.6)?  (c) (1.2.7)?

> 1.2.4. Extrapolation methods.

@),  u(0)=1
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(a) The values V, = v(2) = u(2) computed by Euler’s method in Figure 1.2.2 are Vp1 =
6.72750 and V.o ~6.19174. Use a calculator to compute the analogous value Vj 4.
(b) It can be shown that these quantities V}, satisfy

Vi = u(2)+Cik+Cok® +O(k?)

for some constants C;, C, as k— 0. In the process known as Richardson extrapola-
tion, one constructs the higher-order estimates

Vi =Vi+ (Ve — V) = u(2)+O(K)

and
V! = V,C'+%(V,C'—V2'k) = u(2)+0(k:3).

Apply these formulas to compute V', for this problem. How accurate is it? This is
an example of an extrapolation method for solving an ordinary differential equation
(Gragg 1965; Bulirsch & Stoer 1966). The analogous method for calculating integrals
is known as Romberg integration (Davis & Rabinowitz 1975).
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1.3. Accuracy and consistency

In this section we define the consistency and order of accuracy of a linear multistep for-
mula, as well as the associated characteristic polynomials p(z) and o(z), and show how these
definitions can be applied to derive accurate formulas by a method of undetermined coeffi-
cients. We also show that linear multistep formulas are connected with the approximation
of the function logz by the rational function p(z)/o(z) at z=1.

With {«;} and {;} as in (1.2.11), the characteristic polynomials (or generating
polynomials) for the linear multistep formula are defined by

p(z):Zajzj, U(Z):Zﬁjzj. (1.3.1)

The polynomial p has degree exactly s, and o has degree s if the formula is implicit or < s
if it is explicit. Specifying p and o is obviously equivalent to specifying the linear multistep
formula by its coefficients. We shall see that p and ¢ are convenient for analyzing accuracy
and indispensable for analyzing stability.

EXAMPLE 1.3.1. Here are the characteristic polynomials for the first four formulas of
the last section:

Euler (1.2.3): s=1, p(z)=z-1, o(z)=1.
Backward Euler (1.24): s=1, p(z)=2z—-1, o(z)==.
Trapezoid (1.2.5): s=1, p(z)=2-1, o(z)=3(z+1)
Midpoint (1.2.6): s=2, p(z)=22-1, o(z)=2z.

Now let Z denote a time shift operator that acts both on discrete

functions according to
Zy" ="t (1.3.2)

and on continuous functions according to
Zu(t) =u(t+k). (1.3.3)

(In principle we should write [Zv]™ and [Zu](t), but expressions like Zv" and
even Z(v") are irresistibly convenient.) The powers of Z have the obvious
meanings, e.g., Z2v" =v"*% and Z7tu(t) = u(t —k).

Equation (1.2.11) can be rewritten compactly in terms of Z, p, and o:

p(Z2)w" —ko(Z)f™" = 0. (1.3.4)

When a linear multistep formula is applied to solve an ODE, this equation is
satisfied exactly since it is the definition of the numerical approximation {v"}.
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If the linear multistep formula is a good one, the analogous equation ought
to be nearly satisfied when {v™} and {f"} are replaced by discretizations of
any well-behaved function u(t) and its derivative u,(¢). With this in mind, let
us define the linear multistep difference operator L, acting on the set of
continuously differentiable functions u(t), by

L=p(Z)-kDo(Z), (1.3.5)
where D is the time differentiation operator, that is,
Lu(t,) = p(Z)u(t,) —ko(Z)uy(t,)

> > 1.3.6
= 3= jultugy) ~k 3 Byt lins) (130
=0 =0

If the linear multistep formula is accurate, Lu(t,) ought to be small, and we
make this precise as follows. Let a function u(¢) and its derivative w,(t) be
expanded formally in Taylor series about ¢,,,

u(tyys) = ulty) +5kuy(t,) + 5 (k) uy (t,) + . (1.3.7)

Uty ) = g (1) + Gy (1) + 5 (k) gy () + - (1.3.8)
Inserting these formulas in (1.3.6) gives the formal local discretization
error (or formal local truncation error) for the linear multistep formula,

Lu(t,) = Cyult,)+Crku,(t,) + CokPuy(t,) + -, (1.3.9)
where

Co = ag+---+ay,

Cy = (o +2a9+- - +sa,) = (By+++ -+ 55),

Cy = jlar+das - +s5tas) = (Bi+20+ -+ 55,)

S m S -m—1

Cm :Jgof’”_' j_ghﬁj- (1.3.10)

We now define:

A linear multistep formula has order of accuracy p if
Lu(t,) = Ok ask—0,

ie, if Cy=Cy=---=C,=0 but C,, 11 #0. The error constant is Cp_;.
The formula is consistent if Cy = C; =0, i.e., if it has order of accuracy
p>1.
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EXAMPLE 1.3.1, CONTINUED. First let us analyze the local accuracy of the Euler
formula in a lowbrow fashion that is equivalent to the definition above: we suppose that
v0,... 0™ are exactly equal to u(ty),...,u(t,), and ask how close v ** will then be to u(t,,,)-

If v™ =u(t,) exactly, then by definition,
" = 0" k1 = ulty,) +ku(t,),

while the Taylor series (1.3.7) gives

2

Ult2) = wtn) Rt (6) 4 (8, 4 OK).

Subtraction gives
u(tygq)—v = ?utt(tn) +O(k3)

as the formal local discretization error of the Euler formula.

Now let us restate the argument in terms of the operator £. By combining (1.3.6)
and (1.3.7), or by calculating Cy, =C, =0, C, =%, C5 = £ from the values oy =—1, a; =1,
By =1, 3, =01n (1.3.10), we obtain

‘Cu’(tn) = u(tn—i-l) _U’(tn) - kut (tn)
k2 k3

= ?Utt(tn)+guttt(tn)+”'- (1.3.11)

Thus again we see that the order of accuracy is 1, and evidently the error constant is %

Similarly, the trapezoid rule (1.2.5) has

Lulty) = ulta) = ult,) — 5 (ulfs) + (1)
_ K (t,) K (£,)+- - (1.3.12)
= T Uett\tn) T 5 Uttt (ln ) -9

with order of accuracy 2 and error constant —%, and the midpoint rule (1.2.6) has

Lu(t,) = 5k uyy(t,) + 5k g (t,) + o (1.3.13)

with order of accuracy 2 and error constant %

The idea behind the definition of order of accuracy is as follows. Equation
(1.3.9) suggests that if a linear multistep formula is applied to a problem with a
sufficiently smooth solution u(t), an error of approximately C’kapH%(tn)
= O(kPT!) will be introduced locally at step n.* This error is known as the
local discretization (or truncation) error at step n for the given initial-
value problem (as opposed to the formal local discretization error, which is a

* As usual, the limit associated with the Big-O symbol (k — 0) is omitted here because it is obvious.
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formal expression that does not depend on the initial-value problem). Since
there are T/k = O (k™) steps in the interval [0,7], these local errors can be
expected to add up to a global error O(kP). We shall make this argument
more precise in Section 1.6.

With hindsight, it is obvious by symmetry that the trapezoid and mid-
point formulas had to have even orders of accuracy. Notice that in (1.2.6), the
terms involving v™*/ are antisymmetric about t,, and those involving frti
are symmetric. In (1.3.13) the effect of these symmetries is disguised, because
t,_q was shifted to ¢,, for simplicity of the formulas in passing from (1.2.6) to
(1.2.11) and (1.3.4). However, if we had expressed Lu(t,) as a Taylor series
about 7, instead, we would have obtained

Lu(t,) = %k3uttt(tn+1) + 6_10k5uttttt(tn+1) +0(k"),

with all the even-order derivatives in the series vanishing due to symmetry.
Now it can be shown that to leading order, it doesn’t matter what point one
expands Lu(t,) about: Cy, .. .,Cp4q are independent of this point, though the
subsequent coefficients C},5,C) 1 3,... are not. Thus the vanishing of the even-
order terms above is a valid explanation of the second-order accuracy of the
midpoint formula. For the trapezoid rule (1.2.5), we can make an analogous
argument involving an expansion of Lu(t,) about #, /5.

As a rule, symmetry arguments do not go very far in the analysis of
discrete methods for ODEs, since most of the formulas used in practice are of
high order and fairly complicated. They go somewhat further with the simpler
formulas used for PDEs.

The definition of order of accuracy suggests a method of undetermined
coefficients for deriving linear multistep formulas: having decided somehow
which o and ﬁj are permitted to be nonzero, simply adjust these parameters
to make p as large as possible. If there are ¢ parameters, not counting the
fixed value oy =1, then the equations (1.3.10) with 0 <m <g—1 constitute a
q X q linear system of equations. If this system is nonsingular, as it usually is,
it must have a unique solution that defines a linear multistep formula of order
at least p=¢q—1. See Exercise 1.3.1.

The method of undetermined coefficients can also be described in another,
equivalent way that was hinted at in Exercise 1.2.3. It can be shown that any
consistent linear multistep formula computes the solution to an initial-value
problem exactly in the special case when that solution is a polynomial p(¢)
of degree L, provided that L is small enough. The order of accuracy p is the
largest such L (see Exercise 1.3.6). To derive a linear multistep formula for a
particular choice of available parameters o and ﬂj, one can choose the param-
eters in such a way as to make the formula exact when applied to polynomials
of as high a degree as possible.
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At this point it may appear to the reader that the construction of linear
multistep formulas is a rather uninteresting matter. Given s > (0, why not sim-
ply pick ay,...,a,_1 and fy,..., 3, so as to achieve order of accuracy 2s? The
answer is that for s > 2, the resulting formulas are unstable and consequently
useless (see Exercise 1.5.4). In fact, as we shall see in Section 1.5, a famous
theorem of Dahlquist asserts that a stable s-step linear multistep formula can
have order of accuracy at most s+2. Consequently, nothing can be gained by
permitting all 2s+1 coefficients in an s-step formula to be nonzero. Instead,
the linear multistep formulas used in practice usually have most of the v or
most of the (. equal to zero. In the next section we shall describe several
important families of this kind.

And there is another reason why the construction of linear multistep for-
mulas is interesting. It can be made exceedingly slick! We shall now describe
how the formulas above can be analyzed more compactly, and the question of
order of accuracy reduced to a question of rational approximation, by manip-
ulation of formal power series.

Taking j =1 in (1.3.7) gives the identity

u(tn—f-l) = u(tn) + kut (tn) + %k2utt(tn) +eee
Since u(t, 1) = Zu(t,), here is another way to express the same fact:
Z = 1+ (kD) + 4 (kD)?+ & (kD)3 +--- = P (1.3.14)

Like (1.3.7), this formula is to be interpreted as a formal identity; the idea
is to use it as a tool for manipulation of terms of series without making any
claims about convergence. Inserting (1.3.14) in (1.3.5) and comparing with
(1.3.9) gives

L = p(e*P) = kDo (eFP) = Cy+Cy (kD) + Co(kD)? +---. (1.3.15)

In other words, the coefficients C; of (1.3.9) are nothing else than the Taylor

series coefficients of the function p(e*?) — kDo (e*P) with respect to the argu-
ment kD. If we let K be an abbreviation for kD, this equation becomes even
simpler:

L = p(e®) —ko(e®) = Cy+Cir+Cor® +---. (1.3.16)

With the aid of a symbolic algebra system such as Macsyma, Maple, or Mathe-
matica, it is a trivial matter to make use of (1.3.16) to compute the coefficients
C’j for a linear multistep formula if the parameters o and Bj are given. See
Exercise 1.3.7.

By definition, a linear multistep formula has order of accuracy p if and
only if the the term between the equal signs in (1.3.16) is ©(kP*1) as k — 0.
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Since o(e”) is an analytic function of x, if it is nonzero at x =0 we can divide
through to conclude that the linear multistep formula has order of accuracy p
if and only if

The following theorem restates this conclusion in terms of the variable z =¢e”.

LINEAR MULTISTEP FORMULAS AND RATIONAL APPROXIMATION

Theorem 1.2. A linear multistep formula with o(1) # 0 has order of
accuracy p if and only if

@ ogz 1)p+t
o(z) ~ oeetOE=1T (1.3.18)

= [e-1) =512+ 5(-12 -] +O((z - 1)PH)

as z— 1. It is consistent if and only if

p(1)=0 and  p(1)=0(1). (1.3.19)

Proof. To get from (1.3.17) to the first equality of (1.3.18), we make the
change of variables z = e®, k =log z, noting that ©(kP*1) as k — 0 has the same
meaning as O((z—1)?T!) as z — 1 since ¢ =1 and d(e")/dk #0 at £k =0. The
second equality of (1.3.18) is just the usual Taylor series for logz.

To prove (1.3.19), let (1.3.18) be written in the form

p(z) = 0(2)(z = 1) +0((z=1)*) + O((= = 1)P*1),

or by expanding p(z) and o(z) about z=1,

p(1)+(z=1)p'(1) = (z=Do(1) +O((z = 1)*) +O((z— 1)P*).  (1.3.20)

Matching successive powers of z —1, we obtain p(1) =0<p >0 and p >
1=/p(1)=0(1) = p#0. Thus (1.3.19) is equivalent to p > 1, which is the
definition of consistency. |

In Theorem 1.2 the ODE context of a linear multistep formula has van-
ished entirely, leaving a problem in the mathematical field known as approxi-
mation theory. Questions of approximation underlie most discrete methods
for differential equations, both ordinary and partial.
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EXAMPLE 1.3.2. The trapezoid rule (1.2.5) has p(z) =z—1 and o(z) = 3(z+1). Since
p(1)=0and p'(1) =1=0(1), the formula is consistent. Comparing (1.3.18) with the expan-
sion 5
~1 1 1 (2-1
e S BIPN WP S G CES )
o(z)  3(z+1) 1+3(2-1) 2 4

confirms that the trapezoid rule has order 2 and error constant —11—2.

This approach to linear multistep formulas by rational approximation is
closely related to the methods of generating functions described in several
of the references. It is also the basis of the method of analysis by order stars
described later in this chapter. For ordinary differential equations with special
structure, such as highly oscillatory behavior, it is sometimes advantageous to
approximate log z at one or more points other than z = 1; this is the idea behind
the frequency-fitted or mode-dependent formulas discussed by Gautschi
(1961), Liniger and Willoughby (1967), Kuo and Levy (1990), and others. See
Exercise 1.3.3.

EXERCISES

> 1.3.1. Show by the method of undetermined coefficients that
V" = a4 50T k(42 (1.3.21)

is the most accurate 2-step explicit linear multistep formula, with order of accuracy p = 3.
In Section 1.5 we shall see that (1.3.21) is unstable and hence useless in practice.

> 1.3.2. Consider the third-order backwards differentiation formula (1.2.9).
(a) What are p(z) and o(2)?
(b) Apply Theorem 1.2 to verify consistency.
(c) Apply Theorem 1.2 to verify that the order of accuracy is 3.

> 1.3.3. Optimal formulas with finite step size. The concept of order of accuracy is based
on the limit & — 0, but one can also devise formulas on the assumption of a finite step size
k> 0. For example, an Euler-like formula might be defined by

"t = vy (k)kf" (1.3.22)

for some function (k) with y(k) — 1 as k— 0.
(a) What choice of y(k) makes (1.3.22) exact when applied to the equation u, =u?
(b) ODEs of practical interest contain various time scales, so it is not really appropriate
to consider just u, =u. Suppose the goal is to approximate all problems u, = au with
a € [0,1] as accurately as possible. State a definition of “as accurately as possible”
based on the L norm of the error over a single time step, and determine the resulting
function (k).
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» 1.3.4. Numerical experiments. Consider the scalar initial-value problem
u, (t) = e D) for  te]0,3], u(0)=0.

In this problem you will test four numerical methods: (i) Euler, (ii) Midpoint, (iii) Fourth-
order Adams-Bashforth, and (iv) Fourth-order Runge-Kutta, defined by

a:=kf(v",t,),

b:=kf(v"+a/2,t,+k/2),

c:=kf(v"+b/2,t,+k/2), (1.3.23)
d:=kf(v" +c, t,+k),

"= 0" + L (a+2b+2c+d)

(a) Write a computer program to implement (1.3.23) in high precision arithmetic (16 digits
or more). Run it with k=1/2,1/4,... until you are confident that you have a computed
value v(3) accurate to at least 6 digits. This will serve as your “exact solution.” Make
a computer plot or a sketch of v(t). Store appropriate values from your Runge-Kutta
computations for use as starting values for the multistep formulas (ii) and (iii).

(b) Modify your program so that it computes v(3) by each of the methods (i)—(iv) for the
sequence of time steps k=1/2,1/4,...,1/256. Make a table listing v(3) and v(3) —u(3)
for each method and each k.

(c) Draw a plot on a log-log scale of four curves representing |v(3) —u(3)] as a function of
the number of evaluations of f, for each of the four methods. (Make sure you calculate
each f™ only once, and count the number of function evaluations for the Runge-Kutta
formula rather than the number of time steps.)

(d) What are the approximate slopes of the lines in (c), and why? (If you can’t explain
them, there may be a bug in your program—very likely in the specification of initial
conditions.) Which of the four methods is most efficient?

(e) If you are programming in Matlab, solve this same problem with the programs ode23
and ode45 with eight or ten different error tolerances. Measure how many time steps
are required for each run and how much accuracy is achieved in the value u(3), and add
these new results to your plot of (c). What are the observed orders of accuracy of these
adaptive codes? How do they compare in efficiency with your non-adaptive methods
(i)—(iv)?

> 1.3.5. Statistical effects? It was stated above that if local errors of magnitude O(kP*!) are
made at each of @(k~1) steps, then the global error will have magnitude O(k?). However,
one might argue that more likely, the local errors will behave like random numbers of
order O(kP*!), and will accumulate in a square-root fashion according to the principles of
a random walk, giving a smaller global error O(kP*/2). Experiments show that for most
problems, including those of Example 1.2.1 and Exercise 1.3.4, this optimistic prediction is
invalid. What is the fallacy in the random walk argument? Be specific, citing an equation
in the text to support your answer.

> 1.3.6. Prove the lemma alluded to on p. 23: An s-step linear multistep formula has order of
accuracy p if and only if, when applied to an ordinary differential equation u, = q(t), it gives
exact results whenever q is a polynomial of degree < p, but not whenever q is a polynomial
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of degree p+1. (Assume arbitrary continuous initial data u, and exact numerical initial
data vg,...,v5" 1)

> 1.3.7. If you have access to a symbolic computation system, carry out the suggestion on
p. 26: write a short program which, given the parameters a; and j3; for a linear multistep
formula, computes the coefficients C,,C,,.... Use your program to verify the results of
Exercises 1.3.1 and 1.3.2, and then explore other linear multistep formulas that interest

you.
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1.4. Derivation of linear multistep formulas

The oldest linear multistep formulas are the Adams formulas,
5 .
"t gl = kZﬂjf”ﬂ, (1.4.1)
7=0

which date to the work of J. C. Adams* as early as 1855. In the notation of (1.2.11) we
have o, =1, o,y =—1, and oy =+ =a,_, =0, and the first characteristic polynomial
is p(z) = 2° —2°"L. For each s> 1, the s-step Adams-Bashforth and Adams-Moulton
formulas are the optimal explicit and implicit formulas of this form, respectively. “Optimal”
means that the available coefficients {ﬂ]} are chosen to maximize the order of accuracy, and
in both Adams cases, this choice turns out to be unique.

We have already seen the 1-step Adams-Bashforth and Adams-Moulton formulas: they
are Euler’s formula (1.2.3) and the trapezoid formula (1.2.5), respectively. The fourth-order
Adams-Bashforth and Adams-Moulton formulas, with s =4 and s = 3, respectively, were
listed above as (1.2.7) and (1.2.8). The coefficients of these and other formulas are listed in
Tables 1.4.1-1.4.3 on the next page. The “stencils” of various families of linear multistep
formulas are summarized in Figure 1.4.1, which should be self-explanatory.

To calculate the coefficients of Adams formulas, there is a simpler and more enlight-
ening alternative to the method of undetermined coefficients mentioned in the last section.
Think of the values f",...,f"*=1 (A-B) or f",...,f""* (A-M) as discrete samples of a
continuous function f(t) = f(u(t),t) that we want to integrate,

tots tots
utn) —ultyes) = [ wlide= [ pede
tn+s—1 tn+s—l
as illustrated in Figure 1.4.2a. (Of course f7,...,f""* will themselves be inexact due to

earlier errors in the computation, but we ignore this for the moment.) Let ¢(¢) be the unique
polynomial of degree at most s —1 (A-B) or s (A-M) that interpolates these data, and set

tnJrs
s sl o / q(t)dt. (1.4.2)
t

n+s—1

Since the integral is a linear function of the data {f"*7}, with coefficients that can be
computed once and for all, (1.4.2) implicitly defines a linear multistep formula of the Adams
type (1.4.1).

EXAMPLE 1.4.1. Let us derive the coefficients of the 2nd-order Adams-Bashforth for-
mula, which are listed in Table 1.4.1. In this case the data to be interpolated are f™ and

*the same Adams who first predicted the existence of the planet Neptune
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Adams- Adams- Generalized Backwards
Bashforth Moulton Nystrom Milne-Simpson  Differentiation
Q; /Bj Q; 5]' a; fBj @ ﬂj @ ﬂ]’ J
Z i o) o) ¢) n-+s
! S R T U T e
n+s—2
[¢] [¢] o] [¢] [¢] n

Figure 1.4.1. Stencils of various families of linear multistep formulas.

number
of steps s order p B Bs1 Beo Bez  Beu
1 1 0 1 (EULER)
2 2 0 N
3 3 0 s B >
i i o g -B & -3

Table 1.4.1. Coefficients {3;} of Adams-Bashforth formulas.

number
of steps s order p Bs  Bsrw Bea Besz  Bea

1 1 1 (BACKWARD EULER)

1 2 % % (TRAPEZOID)
5 8 _1

2 3 12 12 12
9 19 5 1

3 4 21 U Tu; 2

4 5 251 646 _ 264 06 19
720 720 720 720 720

Table 1.4.2. Coefficients {§;} of Adams-Moulton formulas.

number

of steps s order p o Qg1 Oy 9 Qg 3 Qg y B
1 1 1 —1 (BACKWARD EULER) 1

2 Lo
18 9 2 6

3 3 L =1 T i 11

48 36 16 3 12

4 4 1 =5 % > 35 %

Table 1.4.3. Coefficients {c;} and §; of backwards differentiation formulas.
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S, and the interpolant is the linear polynomial ¢(t) = f*** —k~+(f" ! — f™) (¢, —1).
Therefore (1.4.2) becomes

+2 +1
’Un ’Un
t

nt1

toio
= kg ) [ b - 0
t

n+1

=k = ) (g — t)] dt

= kBT ) (- 1R

_ % n+1 _ 1 n
= 2kf 2kf . (1.4.3)
f" Un—l—s
()
£ n+s—1 q(t
q(t) f fn+s o
tn—f-s—l tn—f-s t"+5
(a) Adams (b) backwards differentiation

Figure 1.4.2. Derivation of Adams and backwards differentiation
formulas via polynomial interpolation.

More generally, the coefficients of the interpolating polynomial ¢ can be
determined with the aid of the Newton interpolation formula. To begin
with, consider the problem of interpolating a discrete function {y™} in the

points 0,...,v by a polynomial ¢(¢) of degree at most v. Let A and V denote
the forward and backward difference operators,

A=Z-1, V=1-z714 (1.4.4)
where 1 represents the identity operator. For example,
Ayn — yn+1 _yn AZyn — yn+2_2yn+1+yn‘
Also, let (;‘) denote the binomial coefficient “a choose j”,

(a) _ala—1)(a=2)---(a—j+1) (1.4.5)

J 7! ’




1.4. DERIVATION OF LINEAR MULTISTEP FORMULAS TREFETHEN 1994 - 33

defined for integers j > 0 and arbitrary a € C. The following is a standard result
that can be found in many books of numerical analysis and approximation
theory:

NEWTON INTERPOLATION FORMULA

Theorem 1.3. The polynomial

alt) = l1+ <i>A+ (;) A2yt (Z) A”] 0 (1.4.6)

is the unique polynomial of degree at most v that interpolates the data
Y0, ...,y in the points 0,...,v.

Proof. First of all, from (1.4.5) it is clear that (;) is a monomial of degree
7, and since (1.4.6) describes a linear combination of such terms with 0 < j <v,
q(t) is evidently a polynomial of degree at most v.

We need to show that ¢(t¢) interpolates 40 ..., y". To this end, note that
Z =1+A, and therefore

7' = (1+4) = 1+<{>A+<g>A2+---++<§>N

for any integer j >0 (the binomial formula). If 0 < j <v we may equally well
extend the series to term v,

71 = 1+<]>A+<]>A2+---+<‘7>A”,
1 2 v

since (731) =0 for m >j. By taking t=j in (1.4.6), this identity implies that
q(j) = Z7y" for 0 < j <v. In other words, () interpolates the data as required.

Finally, uniqueness of the interpolating polynomial is easy to prove. If
¢, (t) and ¢y(t) are two polynomials of degree < v that interpolate the data,
then ¢; — ¢, is polynomial of degree < v that vanishes at the interpolation
points, which implies ¢; — ¢, = 0 identically since a nonzero polynomial of
degree <wv can have at most v zeros.

We want to apply Theorem 1.3 to the derivation of Adams-Bashforth
formulas. To do this, we need a version of the theorem that is normalized
differently and considerably uglier, though equivalent. Let the points 0,...,v
be replaced by the points %y,...,t_,. Then from Theorem 1.3, or by a proof
from scratch, one can readily show that the polynomial

q(t) = [1— <_tl/k>v+ <_7;/k> V2 (1) <_t/k> V”] g0 (147)

v
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is the unique polynomial of degree at most v that interpolates the data y™,...,

y? in the points t_,,...,tg. Note that among other changes, A has been
replaced by V.

Now let us replace y by f, v by s—1,and ¢t by t—¢,, . |, hencet_,,... %,
by ¢, tups—1- Equation (1.4.7) then becomes

o(t) = ll_ ((tn+s_1—t)/k>v - (_1)3_1<(tn+s_1—t)/k> VH] e

1 s—1
(1.4.8)
Inserting this expression in (1.4.2) gives
s—1 .
,Un—l—s - ,Un+5—1 — k Z v \vJ fn—l—s—l,
j=0
where
ko Je, oy J 0\ J
The first few values 7; are
_, 3 19087
Yo= 1 73_87 76_604807
1 251 5257
S = =— 1.4.
Nn=y M= 7200 7T 17280° (1.4.9)
5 95 1070017
TR 757 988 78 = 3628800

The following theorem summarizes this derivation and some related facts:
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ADAMS-BASHFORTH FORMULAS

Theorem 1.4. For any s > 1, the s-step Adams-Bashforth formula has
order of accuracy s, and is given by

—T

] )d’r. (1.4.10)

s—1 . S|
Y D DEAA LY N GV (
7=0

For j >0, the coefficients 7, satisfy the recurrence relation

1 1 1
,Yj+§fyj_1+§fyj_2+...+!mfyo = 1. (1.4.11)

Proof. We have already shown above that the coefficients (1.4.10) corre-
spond to the linear multistep formula based on polynomial interpolation. To
prove the theorem, we must show three things more: that the order of accu-
racy is as high as possible, so that these are indeed Adams-Bashforth formulas;
that the order of accuracy is s; and that (1.4.11) holds.

The first claim follows from the lemma stated in Exercise 1.3.6. If f(u,t)
is a polynomial in ¢ of degree < s, then ¢(¢) = f(u,t) in our derivation above, so
the formula (1.4.2) gives exact results and its order of accuracy is accordingly
> 5. On the other hand any other linear multistep formula with different
coefficients would fail to integrate ¢ exactly, since polynomial interpolants are
unique, and accordingly would have order of accuracy <s. Thus (1.4.10) is
indeed the Adams-Bashforth formula.

The second claim can also be based on Exercise 1.3.6. If the s-step Adams-
Bashforth formula had order of accuracy > s, it would be exact for any problem
u; = q(t) with ¢(t) equal to a polynomial of degree s+1. But there are nonzero
polynomials of this degree that interpolate the values f0=--.= f¥ =0, from
which we can readily derive counterexamples in the form of initial-value prob-
lems with v(t,, 1) =0 but u(t,, ) #0.

Finally, for a derivation of (1.4.11), the reader is referred to Henrici (1962)
or Hairer, Norsett & Wanner (1987). g

EXAMPLE 1.4.1, CONTINUED. To rederive the 2nd-order Adams-Bashforth formula
directly from (1.4.10), we calculate

,Un+2 — ,Un+1 +k7’)/0fn+1 _+_k;,)/1 (fn+1 _fn) — Un—i—l +k7 (%fn—i—l _ %fn) .

EXAMPLE 1.4.2. To obtain the third-order Adams-Bashforth formula, we increment n
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to n+1 in the formula above and then add one more term kv, V2 f"*2 to get
Un+3 — Un+2 -I-k‘ (%fn+2 _ %fnJrl) + 15—2k7 (fn+2 _ 2fn+1 +fn)
— Un+2+k (%fn-ﬂ _ %fn-i—l +15—2fn) ,
which confirms the result listed in Table 1.4.1.

For Adams-Moulton formulas the derivation is entirely analogous. We
have

s

n+s n+s—1 __ * | pn+s

" —w =k v; VI,
Jj=0

(( e )/k)dt (1) /_01 (—;)dﬂ

and the first few values 7} are

where

* (_1)] bnts
TR /t

n+s—1

1 863
Q| = ¥ _OP9

1 19 275
s 1 s _ 19 x4l 1.4.12
="y LY, 7T T o102 ( )
s L s__ 3 «_ 33953
27Ty 75T 160 78T T 3628800

Notice that these numbers are smaller than before, an observation which is
related to the fact that Adams-Moulton formulas generally have smaller error
constants than the corresponding Adams-Bashforth formulas.

The analog of Theorem 1.4 is as follows:

ADAMS-MOULTON FORMULAS

Theorem 1.5. For any s >0, the s-step Adams-Moulton formula* has
order of accuracy s+1, and is given by

i . .0/
VTS = ML B Y VI g = (_1)1/ 1 ( jT> dr, (1.4.13)
Jj=0 B
For j > 1, the coefficients v satisty the recurrence relation

1
71+ 73 1+ 73 9+ + 70 = 0. (1.4.14)

*The “0-step Adams-Moulton formula” of this theorem actually has s =1, as indicated in Table 1.4.2,
because of the nonzero coefficient «.
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Proof. Analogous to the proof of Theorem 1.4. g

Both sets of coefficients {v,} and {7;} can readily be converted into coef-
ficients {§3;} of our standard representation (1.2.11), and the results for s <4
are listed above in Tables 1.4.1 and 1.4.2.

Besides Adams formulas, the most important family of linear multistep
formulas dates to Curtiss and Hirschfelder in 1952, and is also associated with
the name of C. W. Gear. The s-step backwards differentiation formula
is the optimal implicit linear multistep formula with Gy =---=§,_;=0. (An
example was given in (1.2.9).) Unlike the Adams formulas, the backwards dif-
ferentiation formulas allocate the free parameters to the {aj} rather than the
{B;}. These formulas are “maximally implicit” in the sense that the function
f enters the calculation only at the level n+1. For this reason they are the
hardest to implement of all linear multistep formulas, but as we shall see in
§61.7-1.8, they are also the most stable.

To derive the coefficients of backwards differentiation formulas, one can
again make use of polynomial interpolation. Now, however, the data are sam-
ples of v rather than of f, as suggested in Figure 1.4.2b. Let ¢ be the unique
polynomial of degree < s that interpolates v™,...,v""%. The number v"*% is
unknown, but it is natural to define it implicitly by imposing the condition

Gi(tnys) = free. (1.4.15)

Like the integral in (1.4.2), the derivative in (1.4.15) represents a linear func-
tion of the data, with coefficients that can be computed once and for all, and
so this equation constitutes an implicit definition of a linear multistep formula.
The coefficients for s <4 were listed above in Table 1.4.3.

To convert this prescription into numerical coefficients, one can again
apply the Newton interpolation formula (see Exercise 1.4.2). However, the
proof below is a slicker one based on rational approximation and Theorem 1.2.

BACKWARDS DIFFERENTIATION FORMULAS

Theorem 1.6. For any s > 1, the s-step backwards differentiation formula
has order of accuracy s, and is given by

S .
> Lgipnts — kfrrs. (1.4.16)
j=17

(Note that (1.4.16) is not quite in the standard form (1.2.11); it must be
normalized by dividing by the coefficient of v™5.)
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Proof. Let p(z) and o(z) = 2® be the characteristic polynomials corre-
sponding to the s-step backwards differentiation formula. (Again we have
normalized differently from usual.) By Theorem 1.2, since logz = —logz~1,

the order of accuracy is p if and only if

pi:) = —logz 14+ 0((z—1)Pth

that is,
p(z) = 2° [(1—2_1)+%(1—2_1)2+%(1—z_l)3+---] +O((z—1)Pth),

By definition, p(z) is a polynomial of degree at most s with p(0) # 0; equiv-
alently, it is z® times a polynomial in z~! of degree exactly s. Since p(z)
maximizes the order of accuracy among all such polynomials, the last formula
makes it clear that we must have

ple) = 2 [(1=2) 4t s (1271

with order of accuracy s. This is precisely (1.4.16). g

These three families of linear multistep formulas—Adams-Bashforth, Ad-
ams-Moulton, and backwards differentiation—are the most important for prac-
tical computations. Other families, however, have also been developed over the
years. The s-step Nystrom formula is the optimal explicit linear multistep
formula with p(z) = 2°— 272, that is, a, = 1, a,_o = —1, and a; = 0 otherwise.
The s-step generalized Milne-Simpson formula is the optimal implicit lin-
ear multistep formula of the same type. Coefficients for these formulas can be
obtained by the same process described in Figure 1.4.2a, except that now ¢(¢)
is integrated from ¢, ,, 5 to ¢, . Like the Adams and backwards differenti-
ation formulas, the s-step Nystrom and generalized Milne-Simpson formulas
have exactly the order of accuracy one would expect from the number of free
parameters (s and s+ 1, respectively), with one exception: the generalized
Milne-Simpson formula with s =2 has order 4, not 3. This formula is known
as the Simpson formula for ordinary differential equations:

VR = g LR AT ), (1.4.17)
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EXERCISES

> 1.4.1. Second-order backwards differentiation formula. Derive the coefficients of the 2-step
backwards differentiation formula in Table 1.4.3:
(a) By the method of undetermined coefficients;
(b) By Theorem 1.2, making use of the expansion z? = (2 —1)2+2(z—1) +1;
(c) By interpolation, making use of Theorem 1.3.

> 1.4.2. Backwards differentiation formulas. Derive (1.4.16) from Theorem 1.3.

> 1.4.3. Third-order Nystrém formula. Determine the coefficients of the third-order Nystrém
formula by interpolation, making use of Theorem 1.3.

> 1.4.4. Quadrature formulas. What happens to linear multistep formulas when the function
f(u,t) is independent of u? To be specific, what happens to Simpson’s formula (1.4.17)?
Comment on the effect of various strategies for initializing the point v! in an integration of
such a problem by Simpson’s formula.
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1.5. Stability

It is time to introduce one of the central themes of this book: stability. Before 1950, the
word stability rarely if ever appeared in papers on numerical methods, but by 1960, at which
time computers were widely distributed, its importance had become universally recognized.*
Problems of stability affect almost every numerical method for solving differential equations,
and they must be confronted head-on.

For both ordinary and partial differential equations, there are two main stability ques-
tions that have proved important over the years:

Stability:} If ¢ > 0 is held fixed, do the computed values v(t) remain bounded as k — 07

Eigenvalue stability: If k£ > 0 is held fixed, do the computed values v(t) remain
bounded as t — c0?

These two questions are related, but distinct, and each has important applications. We shall
consider the first in this and the following section, and the second in §§1.7,1.8.

The motivation for all discussions of stability is the most fundamental question one
could ask about a numerical method: will it give the right answer? Of course one can never
expect exact results, so a reasonable way to make the question precise for the initial-value
problem (1.1.2) is to ask: if ¢ >0 is a fixed number, and the computation is performed with
various step sizes k> 0 in exact arithmetic, will v(¢) converge to u(t) as k—07

A natural conjecture might be that for any consistent linear multistep formula, the
answer must be yes. After all, as pointed out in §1.3, such a method commits local errors of
size O(kPT!) with p> 1, and there are a total of ©(k~!) time steps. But a simple argument
shows that this conjecture is false. Consider a linear multistep formula based purely on
extrapolation of previous values {v™}, such as

"2 = 2"t g, (1.5.1)

This is a first-order formula with p(z) = (2 —1)? and 0(z) =0, and in fact we can construct
extrapolation formulas of arbitrary order of accuracy by taking p(z) = (z—1)%. Yet such a
formula cannot possibly converge to the correct solution, for it uses no information from the
differential equation!*

Thus local accuracy cannot be sufficient for convergence. The surprising fact is that
accuracy plus an additional condition of stability is sufficient, and necessary too. In fact this
is a rather general principle of numerical analysis, first formulated precisely by Dahlquist for
ordinary differential equations and by Lax and Richtmyer for partial differential equations,
both in the 1950’s. Strang (1985) calls it the “fundamental theorem of numerical analysis.”

*See G. Dahlquist, “33 years of numerical instability,” BIT 25 (1985), 188-204.

tStability is also known as “zero-stability” or sometimes “D-stability” for ODEs, and “Lax stability”
or “Lax-Richtmyer stability” for PDEs. Eigenvalue stability is also known as “weak stability” or
“absolute stability” for ODEs, and “time-stability,” “practical stability” or “P-stability” for PDEs.
The reason for the word “eigenvalue” will become apparent in §§1.7,1.8.

*Where exactly did the argument suggesting global errors O(k”) break down? Try to pinpoint it
yourself; the answer is in the next section.
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Theorem 1.10 in the next section gives a precise statement for the case of linear multistep
formulas, and for partial differential equations, see Theorem 4.1.
We begin with a numerical experiment.

EXAMPLE 1.5.1. In the spirit of Example 1.2.1, suppose we solve the initial-value
problem
Uy =u, t€[0,1], u(0)=1 (1.5.2)

by three different 2-step explicit methods: the extrapolation formula (1.5.1), the second-
order Adams-Bashforth formula (1.4.3), and the “optimal” 2-step formula (1.3.21). Again we
take exact quantities e™* where needed for starting values. Figure 1.5.1 shows the computed
functions v(¢) for k=0.2 and 0.1. In the first plot, both of the higher-order formulas appear
to be performing satisfactorily. In the second, however, large oscillations have begun to
develop in the solution based on (1.3.21). Obviously (1.3.21) is useless for this problem.

Table 1.5.1 makes this behavior quantitative by listing the computed results v(1) for k =
0.2,0.1,0.05,0.025. As k decreases, the solution based on (1.5.1) converges to an incorrect
solution, namely the function ¢+ 1, and the solution based on (1.3.21) diverges explosively.
Notice that none of the numbers are preceded by a *. In this example the instability has
been excited by discretization errors, not rounding errors.

Figure 1.5.2 gives a fuller picture of what is going on in this example by plotting the
error |v(1)—e| as a function of k (on a log scale, with smaller values of k to the right) for the
same three linear multistep formulas as well as the fourth-order Adams-Bashforth formula
(1.2.7). The two Adams-Bashforth formulas exhibit clean second-order and fourth-order
convergence, as one would expect, showing in the plot as lines of slope approximately —2 and
—4, respectively. The extrapolation formula (1.5.1) exhibits zeroth-order convergence—in
other words divergence, with the error approaching the constant e —2. The formula (1.3.21)
diverges explosively.

It is not difficult to see what has gone wrong with (1.3.21). For simplicity, assume k
is negligible. Then (1.3.21) becomes

V"2 4" T 5" = 0, (1.5.3)

a second-order recurrence relation for {v"}. It is easy to verify that both v™ =1 and
v™ = (—=5)" are solutions of (1.5.3). (Caution: the n in v™ is a superscript, but the n in
(=5)™ is an exponent.) Since an arbitrary solution to (1.5.3) is determined by two initial
values v° and v', it follows that any solution can be written in the form

o™ = a(1)"+b(-5)" (1.5.4)

for some constants a and b. What has happened in our experiment is that b has ended up
nonzero—there is some energy in the mode (—5)", and an explosion has taken place. In
fact, if the computation with & =0.025 is carried out to one more time step, v™ takes the
value 4.60 x 10'?, which is —4.93 ~ —5 times the final quantity listed in the table. So the
assumption that k& was negligible was not too bad.

Although Example 1.5.1 is very simple, it exhibits the essential mechanism
of instability in the numerical solution of ordinary differential equations by
linear multistep formulas: a recurrence relation that admits an exponentially
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1 x (1.5.1)
0AB2
¥ (1.3.21)
0 T 1 ¢ 0 T ij
0 0.5 1 0 0.5 1
(a) k=0.2 (b) k=0.1

Figure 1.5.1. Solution of (1.5.2) by three explicit two-step linear multistep for-
mulas. The high-order formula (1.3.21) looks good at first, but becomes unstable
when the time step is halved.

k=0.2 k=0.1 k=0.05 k=0.025
Extrapolation (1.5.1)  2.10701 2.05171 2.02542 2.01260
2nd-order A-B (1.4.4)  2.68771 2.70881 2.71568 2.71760
“optimal” (1.3.21) 273433 —0.12720  —1.62x10° —9.34x 108

Table 1.5.1. Computed values v(1) & e for the initial-value problem (1.5.2).

(1.3.21)
1010
1071 102 L
1 f ,
— o (1.5.1)
| AB2
AB4
10—10 1

Figure 1.5.2. Error |v(1) —e| as a function of time step k for the solution of
(1.5.2) by four explicit linear multistep formulas.
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growing solution 2" for some |z| > 1. Such a solution is sometimes known
as a parasitic solution of the numerical method, since it is introduced by
the discretization rather than the ordinary differential equation itself. It is a
general principle that if such a mode exists, it will almost always be excited by
either discretization or rounding errors, or by errors in the initial conditions. Of
course in principle, the coefficient b in (1.5.4) might turn out to be identically
zero, but in practice this possibility can usually be ignored. Even if b were zero
at t =0, it would soon become nonzero due to variable coefficients, nonlinearity,
or rounding errors, and the z" growth would then take over sooner or later.*

The analysis of Example 1.5.1 can be generalized as follows. Given any
linear multistep formula, consider the associated recurrence relation

S
p(Z)" = Zajvnﬂ = (1.5.5)
j=0

obtained from (1.3.4) with £ =0. We define:

A linear multistep formula is stable if all solutions {v"} of the recurrence
relation (1.5.5) are bounded as n— co.

This means that for any function {v™} that satisfies (1.5.5), there exists a con-
stant M > 0 such that |[v"| < M for all n>0. We shall refer to the recurrence
relation itself as stable, as well as the linear multistep formula.

There is an elementary criterion for determining stability of a linear mul-
tistep formula, based on the characteristic polynomial p.

ROOT CONDITION FOR STABILITY

Theorem 1.7. A linear multistep formula is stable if and only if all the
roots of p(z) satisfy |z| <1, and any root with |z| =1 is simple.

A “simple” root is a root of multiplicity 1.

First proof. To prove this theorem, we need to investigate all possible
solutions {v"}, n >0, of the recurrence relation (1.5.5). Since any such solu-
tion is determined by its initial values ©°,...,v5~1 the set of all of them is a

* A general observation is that when any linear process admits an exponentially growing solution in
theory, that growth will almost invariably appear in practice. Only in nonlinear situations can the
existence of exponentially growing modes fail to make itself felt. A somewhat far-flung example
comes from numerical linear algebra. In the solution of an N x N matrix problems by Gaussian
elimination with partial pivoting—a highly nonlinear process—an explosion of rounding errors at
the rate 2V 1 can occur in principle, but almost never does in practice (Trefethen & Schreiber,
“Average-case stability of Gaussian elimination,” SIAM J. Matrix Anal. Applics., 1990).
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vector space of dimension s. Therefore if we can find s linearly independent
solutions v™, these will form a basis of the space of all possible solutions, and
the recurrence relation will be stable if and only if each of the basis solutions
is bounded as n — oo.

It is easy to verify that if z is any root of p(z), then

vt =2" (1.5.6)

is one solution of (1.5.5). (Again, on the left n is a superscript and on the
right it is an exponent. If z=0 we define 2 =1.) If p has s distinct roots,
then these functions constitute a basis. Since each function (1.5.6) is bounded
if and only if |z| <1, this proves the theorem in the case of distinct roots.

On the other hand suppose that p(z) has a root z of multiplicity m > 2.
Then it can readily be verified that each of the functions

" =nz", vr=n2" L, Wt=pmTln (1.5.7)
is an additional solution of (1.5.5), and clearly they are all linearly independent
since degree-(m — 1) polynomial interpolants in m points are unique, to say
nothing of oo points! (If z =0, we replace n/2" by the function that takes the
value 1 at n=j and 0 elsewhere.) These functions are bounded if and only if
|z] <1, and this finishes the proof of the theorem in the general case.

Alternative proof based on linear algebra. The proof above is simple and
complete, but there is another way of looking at Theorem 1.7 that involves a
technique of general importance. Let us rewrite the s-step recurrence relation
as a 1-step matrix operation on vectors v of length s:

L 0 1 ™
o2 0 1 ot
= S . (1.5.8)
0 1
n+s n+s—1
v —& T T v
That is,
vt = Av", (1.5.9)
or after n steps,
v = A", (1.5.10)

where A" denotes the nth power of the matrix A. This is a discrete analog of
the reduction of higher-order ODEs to first-order systems described in §1.1.
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The scalar sequence {v"} will be bounded as n — oo if and only if the vector
sequence {v"} is bounded, and {v"} will in turn be bounded if and only if the
elements of A™ are bounded. Thus we have reduced stability to a problem of
growth or boundedness of the powers of a matrix.

A matrix A of the form (1.5.8) is known as a companion matrix, and
one can verify that det(zl — A) = p(z) for any z, where p(z) is defined by
(1.3.1) as usual.* In other words, the characteristic polynomial of the matrix
A is the same as the characteristic polynomial of the linear multistep formula.
Therefore the set of eigenvalues of A is the same as the set of roots of p,
and these eigenvalues determine how the powers A™ behave asymptotically
as n — 00. To make the connection precise one can look at the similarity
transformation that brings A into Jordan canonical form,

A=8JS~ 1

Here S is an s x s nonsingular matrix, and J is an s x s matrix consisting of all
zeros except for a set of Jordan blocks J; along the diagonal with the form

.1
leil O

O z; 1

where z; is one of the eigenvalues of A. Every matrix has a Jordan canonical
form, and for matrices in general, each eigenvalue may appear in several Jordan
blocks. For a companion matrix, however, there is exactly one Jordan block for
each eigenvalue, with dimension equal to the multiplicity m, of that eigenvalue.
(Proof: zI — A has rank > s—1 for any z, since its upper-right (s—1) x (s—1)
block is obviously nonsingular. Such a matrix is called nonderogatory.) Now
the powers of A are

A" = (SJS7Y . (8JS7H = suns

so their growth or boundedness is determined by the growth or boundedness

* Omne way to verify it is to look for eigenvectors of the form (1,z,...,2°")7, where z is the eigenvalue.
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of the powers J", which can be written down explicitly:

n n\ n—1 n n+1l—-m;
“ (1)21 (mi—l)zi
n\_ n—1
i (1)Zz
n __
JP =
n n\_ n—1
O < (1)'2@
-

If |2;| <1, these elements approach 0 as n— oco. If |z;| > 1, they approach co.
If |z;| =1, they are bounded in the case of a 1x 1 block, but unbounded if

The reader should study Theorem 1.7 and both of its proofs until he or she
is quite comfortable with them. These tricks for analyzing recurrence relations
come up so often that they are worth remembering.

EXAMPLE 1.5.2. Let us test the stability of various linear multistep formulas considered
up to this point. Any Adams-Bashforth or Adams-Moulton formula has p(z) = z° — z°~1,
with roots {1,0,...,0}, so these methods are stable. The Nystrom and generalized Milne-
Simpson formulas have p(z) = 2% — 252, with roots {1,—1,0,...,0}, so they are stable too.
The scheme (1.3.21) that caused trouble in Example 1.5.1 has p(z) = 2% +42 —5, with roots
{1,—5}, so it is certainly unstable. As for the less dramatically unsuccessful formula (1.5.1),
it has p(z) =22 —2z+1=(2—1)?, with a multiple root {1,1}, so it counts as unstable too
since it admits the growing solution v™ =n. The higher-order extrapolation formula defined
by p(z) = (2 —1)%, () =0 admits the additional solutions n?,n?,...,n*"!, making for an
instability more pronounced but still algebraic rather than exponential.

Note that by Theorem 1.2, any consistent linear multistep formula has a
root of p(z) at z=1, and if the formula is stable, then Theorem 1.7 ensures
that this root is simple. It is called the principal root of p, for it is the
one that tracks the differential equation. The additional consistency condition
P/ (1) =0(1) of Theorem 1.2 amounts to the condition that if z is perturbed
away from 1, the principal root behaves correctly to leading order.

In §1.3 an analogy was mentioned between linear multistep formulas and
recursive digital filters. In digital signal processing, one demands |z| <1 for
stability; why then does Theorem 1.7 contain the weaker condition |z| <17
The answer is that unlike the usual filters, an ODE integrator must remember
the past: even for values of ¢ where f is zero, u is in general nonzero. If all
roots z satisfied |z| <1, the influence of the past would die away exponentially.
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Theorem 1.7 leaves us in a remarkable situation, summarized in Figure
1.5.3. By Theorem 1.2, consistency is the condition that p(z)/c(z) matches
log z to at least second order at z=1. By Theorem 1.7, stability is the con-
dition that all roots of p(z) lie in |z| <1, with simple roots only permitted
on |z| =1. Thus the two crucial properties of linear multistep formulas have
been reduced completely to algebraic questions concerning a rational function.
The proofs of many results in the theory of linear multistep formulas, such as
Theorems 1.8 and 1.9 below, consist of arguments of pure complex analysis of
rational functions, having nothing superficially to do with ordinary differential
equations.

STABILITY: zeros of p(z) in unit disk, simple if on unit circle

ORDER OF ACCURACY p:

plz) =logz+0O((z—1)P*t1)

Ve o(z)

CONSISTENCY: p > 1

Figure 1.5.3. Stability, consistency, and order of accuracy as alge-
braic conditions on the rational function p(z)/o(z).

The following theorem summarizes the stability of the standard families
of linear multistep formula that we have discussed.

STABILITY OF STANDARD LINEAR MULTISTEP FORMULAS

Theorem 1.8. The s-step Adams-Bashforth, Adams-Moulton, Nystrém,
and generalized Milne-Simpson formulas are stable for all s > 1. The s-step
backwards differentiation formulas are stable for 1 < s <6, but unstable for
s>T.

Proof. The results for the first four families of linear multistep formulas
follow easily from Theorem 1.7, as described in Example 1.5.2. The analy-
sis of backwards differentiation formulas is a more complicated matter, since
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the polynomials p(z) are no longer trivial. Instability for s > 7 was recog-
nized numerically in the 1950’s (Mitchell and Craggs, 1953), but not proved
mathematically until 1971 (Cryer, 1972). An elegant short proof of instability
for s > 12 was devised by Hairer and Wanner in 1983 and can be found on
pp- 328-331 of (Hairer, Norsett & Wanner, 1987). g

To close this section we shall present an important result that is known as
the first Dahlquist stability barrier. In §1.3 we mentioned that an s-step
linear multistep formula can have order 2s; why not simply use that high-
order formula and forget special classes like Adams and Nystrom methods?
Dahlquist’s famous theorem confirms that the answer is an impassable barrier
of stability.

FIRST DAHLQUIST STABILITY BARRIER

Theorem 1.9. The order of accuracy p of a stable s-step linear multistep
formula satisfies

s+2 if s is even,
p<<Ks+1 ifsisodd, (1.5.11)
s if the formula is explicit.

Proof. Various proofs of Theorem 1.9 have been published, beginning with
the original one by Dahlquist in 1956. More recent proofs have been based on
the beautiful idea of “order stars” introduced by Wanner, Hairer, and Ngrsett
(BIT, 1978). The following argument is adapted from “A proof of the first
Dahlquist barrier by order stars,” by A. Iserles and S. P. Ngrsett, BIT, 1984.
Though fundamentally correct, it is somewhat casual about geometric details;
for a more detailed treatment see that paper or the book Order Stars by the
same authors.

Let p(z) and o(z) be the characteristic polynomials corresponding to a
stable s-step linear multistep formula of order of accuracy p. The key idea is
to look at level lines of the function we have been dealing with since (1.3.18),

_ r(2)

This function is analytic throughout the complex plane except near zeros of
o(z), provided one introduces a branch cut going to the point z=0. (Alter-
natively, one can work with e#(?) and eliminate the need for a branch cut.)
In particular, ¢(z) is analytic at z=1. (If o(1) =0, p(z) and o(z) have a

—log 2. (1.5.12)
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Figure 1.5.4. Order star defined by (1.5.14) for the 5th-order Adams-
Bashforth formula. The zeros of p(z) (at z=0) are marked by o and
the zeros of o(z) are marked by *. The 6-fold daisy at z =1 reflects
the order of accuracy 5 of this formula. If there were a bounded,
shaded “finger” that did not intersect the unit disk (dashed), the
formula would be unstable.

common factor z—1 and the linear multistep formula is not in simplest form.)
By Theorem 1.2, its behavior near there is

o(z) = C(z—1)PTL+O((z —1)P1?) (1.5.13)

for C'=C),;1/0(1) #0. Now let A, the order star for the linear multistep
formula, be the set defined by

A={z€C: Rep(z)>0}. (1.5.14)

In other words, it is the inverse image of the right half-plane under . Figure
1.5.4 shows the order star for the 5th-order Adams-Bashforth formula.

The power of order stars comes from their ability to couple local and
global properties of a function by way of geometric arguments. The global
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property that concerns us is stability: the zeros of p(z) must lie in the unit
disk. The local property that concerns us is order of accuracy: from (1.5.13)
it follows that near z =1, A must look like a daisy with p+1 evenly spaced
petals—or “fingers”, as they are sometimes called. In Figure 1.5.4 the number
of fingers is 6.

Since the linear multistep formula is stable, all the zeros of p(z) must lie
in A (or possibly on its boundary in the case of a zero with |z| =1). This
follows from (1.5.12) and (1.5.14) since the zeros have to satisfy |z| <1, hence
Relogz <0. [At this point some reasoning by the argument principle of com-
plex analysis is needed, which will be filled in later.] The conclusion is this:
any bounded finger of A (i.e., not extending to oo) must contain one of the
zeros of p(z). Consequence: for stability, every bounded finger has to intersect
the unit disk.

To finish the argument, let us now assume that the linear multistep for-
mula is explicit; similar arguments apply in the implicit case (Exercise 1.5.7).
Our goal is then to prove p <s. To do this we shall count zeros of Rep(z) on
the unit circle |z| =1. Let M be this number of zeros, counted with multiplic-
ity; obviously M must be even. How big can M be? Note first that

2Rep(z) = Z((z)) n g(_z; _ P(Z)Uaz)z;p_;)a(z)

on the unit circle |z| =1, since Relogz =0 there. Since the linear multistep
formula is explicit, o(z) has degree <s—1, so the numerator is a polynomial
of degree <2s—1, which implies that M, being even, satisfies

M <2s—2. (1.5.15)

Now, how many zeros are implied by order of accuracy p? First, there is a zero
of multiplicity p+1 at z=1. In addition, there is a zero wherever the boundary
of A crosses the unit circle—in Figure 1.5.4, four such zeros altogether. To
count these, we note that (p+1)/2 fingers of A begin at z =1 outside the
unit circle. One of these may be unbounded and go to infinity, but the other
(p—1)/2 must intersect the unit disk and cross the unit circle on the way. Two
of those may cross the unit circle just once (one each in the upper and lower
half-planes), but all the remaining (p—5)/2 fingers are trapped inside those
fingers and must cross the unit circle twice. All told, we count

M > p+1+2+42(p—5)/2 = 2p—2. (1.5.16)

Combining (1.5.15) and (1.5.16) gives p < s, as required.
Similar arguments apply if the linear multistep formula is implicit.



1.5. STABILITY TREFETHEN 1994 - 51

The restrictions of Theorem 1.9 are tight! In effect, they show, half of the
available parameters in a linear multistep formula are wasted.

Theorems 1.3, 1.8, and 1.9 imply that the Adams-Bashforth and Nystrom
formulas are all optimal in the sense that they attain the bound p = s for sta-
ble explicit formulas, and the Adams-Moulton and generalized Milne-Simpson
formulas of odd step number s are also optimal, with p =s-+1. Simpson’s
rule, with p=s+2, is an example of an optimal implicit formula with even
step number. It can be shown that for any optimal implicit formula with even
step number s, the roots of p(z) all lie on the unit circle |z| =1 (Henrici, 1962,
p. 232). Thus the stability of these formulas is always of a borderline kind.

EXERCISES

> 1.5.1. Backwards differentiation formulas. Show that the following backwards differentia-
tion formulas from Table 1.4.3 are stable: (a) s=2, (b) s=3.

> 1.5.2. Prove:
(a) Any consistent 1-step linear multistep formula is stable.
(b) Any consistent linear multistep formula with p(z) =0(z) is unstable.

> 1.5.3. Consider the s-step explicit linear multistep formula of optimal order of accuracy of
the form v"*% =" +k:2;;(1) Bifrt.
(a) For which s is it stable?
(b) Derive the coefficients for the case s =2.
(c) Likewise for s =3.

> 1.5.4. Padé approximation. The type (u,v) Padé approximant to log z at z =1 is defined
as the unique rational function p(z)/o(z) of type (u,v) (i.e., with numerator of degree < pu
and denominator of degree <v) that satisfies

(2)

z

)

=log 24+ O((z — 1) +v+) as z— 1. (1.5.17)

Q
—~

By Theorem 1.2, taking u=v = s gives the maximally accurate implicit s-step formula, with
order of accuracy at least p=2s, and taking u=s, v =s—1 gives the maximally accurate
explicit s-step formula, with order of accuracy at least p=2s—1.

Without performing any calculations, but appealing only to the uniqueness of Padé approx-
imants and to theorems stated in this text, determine whether each of the following Padé
schemes is stable or unstable, and what it is called if we have given a name for it. In each
case, state exactly what theorems you have used.

(a) s =1, explicit. (b) s=1, implicit.
(c) s=2, explicit. (d) s =2, implicit.
(e) s=3, explicit. (f) s =3, implicit.

(g) If you have access to a symbolic calculator such as Macsyma, Maple, or Mathematica,
use it to calculate the coefficients of the linear multistep formulas (a)—(f), and confirm
that the names you have identified above are correct.
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> 1.5.5. Linear combinations of linear multistep formulas. In Example 1.3.1 we showed that

the trapezoid formula has error constant —% and the midpoint formula has error constant

1

3

(a) Devise a linear combination of these two formulas that has order of accuracy higher
than 2. What is the order of accuracy?

(b) Show that the formula of (a) is stable.

(c) In general, is a convex linear combination of two stable linear multistep formulas always
stable? (A convex linear combination has the form a x formula, +(1—a) x formula, with
0<a<1.) Prove it or give a counterexample.

» 1.5.6. Order stars. Write a program to generate order star plots like that of Figure 1.5.4.
This may be reasonably easy in a higher-level language like Matlab. Plot order stars for the
following linear multistep formulas, among others:

(a) 4th-order Adams-Bashforth;

(b) 4th-order Adams-Moulton;

(c) 4th-order backwards differentiation;
(d) the unstable formula (1.3.21).

> 1.5.7.  The proof of Theorem 1.9 in the text covered only the case of an explicit linear
multistep formula. Show what modifications are necessary for the implicit case.
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1.6. Convergence and the Dahlquist
equivalence theorem

Up to this point we have talked about accuracy, consistency, and stability, but we have
yet to establish that a linear multistep formula with these admirable properties will actually
work. After one more definition we shall be able to remedy that. To set the stage, let us
return to the footnote on p. 41. If a linear multistep formula has local accuracy O(kPT1),
how can it fail to have global accuracy O(k?)? The answer has nothing to do with the fact
that f may be nonlinear, for we have assumed that f is Lipschitz continuous, and that is
enough to keep the behavior of small perturbations essentially linear, so long as they remain
small.

The flaw in the O(k?) argument is as follows. Even though a discretization error may
be small when it is first introduced, from that point on it may grow—often exponentially.
The global error at step n consists of the superposition not simply of the local errors at
all previous steps, but of what these local errors have become at step n. Consistency is the
condition that the local errors are small at the time that they are introduced, provided that
the function being dealt with is smooth. The additional condition of stability is needed to
make sure that they do not become bigger as the calculation proceeds.

The purpose of this section is to describe the ideas related to the Dahlquist Equivalence
Theorem that have been built to describe these phenomena. The rigorous statement of the
argument above appears in the proof of Theorem 1.10, below. If f is linear, the argument
becomes simpler; see Exercise 1.6.3.

To begin we must define the notion of convergence. The standard definition requires
the linear multistep formula to be applicable not just to a particular initial-value problem,
but to an arbitrary initial-value problem with Lipschitz continuous data f. It must also
work for any starting values v%,...,v°~! that satisfy the consistency condition*

[[v" —ug||=0(1) as k—0, 0<n<s—1. (1.6.1)
Equivalent statements of the same condition would be
lim ||o™ —ug|| =0, limo™ = wy, or v" = uy+o(l)

as k—0 for 0<n <s—1 (see Exercise a.3(b)).

A linear multistep formula is convergent if, for all initial-value problems (1.1.2) satisfy-
ing the conditions of Theorem 1.1 on an interval [0,T], and all starting values v°,... ,v**
satisfying (1.6.1), the solution v™ satisfies

[[v(t) —u(t)]| = o(1) as k—0 (1.6.2)

uniformly for all t € [0,T].

*The choice of the norm ||-|| doesn’t matter, since all norms on a finite-dimensional space are
equivalent. For a scalar ODE the norm can be replaced by the absolute value.
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(“Uniformly” means that ||v(¢) —u(t)|| is bounded by a fixed function ¢(k) =0(1) as k— 0,
independent of ¢.) To put it in words, a convergent linear multistep formula is one that
is guaranteed to get the right answer in the limit & — 0, for each ¢ in a bounded interval
[0,T] —assuming there are no rounding errors.

Some remarks on this definition are in order. First, (1.6.2) is a statement about the
limit k£ — 0 for each fized value of t. Since v(t) is defined only on a discrete grid, this means
that k is implicitly restricted to values t/n in this limit process. However, it is possible to
loosen this restriction by requiring only ¢, —t as k— 0.

Second, to be convergent a linear multistep formula must work for all well-posed
initial-value problems, not just one. This may seem an unnaturally strict requirement, but
it is not. A formula that worked for only a restricted class of initial-value problems—for
example, those with sufficiently smooth coefficients—would be a fragile object, sensitive to
perturbations.

Third, v™ refers to the exact solution of the linear multistep formula; rounding errors
are not accounted for in the definition of convergence. This is a reasonable simplification
because discretization errors and errors in the starting values are included, via (1.6.1), and
the stability phenomena that govern these various sources of error are nearly the same.
Alternatively, the theory can be broadened to include rounding errors explicitly.

Finally, note that condition (1.6.1) is quite weak, requiring only o(1) accuracy of start-
ing values, or O(k) if the errors happen to follow an integral power of k. This is in contrast
to the O(k?) accuracy required at subsequent time steps by the definition of consistency.
The reason for this discrepancy is simple enough: starting errors are introduced only at s
time steps, while subsequent errors are introduced ©(k~!) times. Therefore one can get
away with one order lower accuracy in starting values than in the time integration. For
partial differential equations we shall find that analogously, one can usually get away with
one order lower accuracy in discretizing boundary conditions.

We come now to a remarkable result that might be called the fundamental theorem
of linear multistep formulas. Like much of the material in this and the last section, it first
appeared in a classic paper by Germund Dahlquist in 1956.*

DAHLQUIST EQUIVALENCE THEOREM

Theorem 1.10. A linear multistep formula is convergent if and only if it is consistent
and stable.

Before proving this theorem, let us pause for a moment to consider what it says. It
seems obvious that a linear multistep formula that admits unstable solutions is unlikely to
be useful, but it is not so obvious that instability is the only thing that can go wrong. For
example, clearly the extrapolation formula (1.5.1) of Example 1.5.1 must be useless, since it
ignores {f"}, but why should that have anything to do with instability? Yet Theorem 1.10
asserts that any useless consistent formula must be unstable! And indeed, we have verified
this prediction for (1.5.1) in Example 1.5.2.

*G. Dahlquist, “Convergence and stability in the numerical integration of ordinary differential equa-
tions,” Math. Scand. 4 (1956), 33-53. There are important earlier references in this area, too,
notably an influential article by Richard von Mises in 1930, who proved convergence of Adams
methods. The classic reference in book form on this material is P. Henrici, Discrete Variable Meth-
ods in Ordinary Differential Equations, Wiley, 1962. A modern classic is the two-volume series by
Hairer, Ngrsett and Wanner.
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An indication of the power of Theorem 1.10 is that here, as in all of the developments of
this chapter, the initial-value problems under consideration may be linear or nonlinear. For
partial differential equations we shall see that the best known analog of Theorem 1.10—the
Lax Equivalence Theorem—requires linearity.

Proof. Theorem 1.10 is not mathematically deep; the art is in the definitions. To prove
it we shall establish three implications:

(a) convergent = stable;

(b) convergent = consistent;

(c) consistent + stable = convergent.

In outline, (a) and (b) are proved by applying the linear multistep formula to particular
initial-value problems (1.1.2), and (c) is proved by verifying that so long as one has stability,
local errors cannot add up too much.

(a) Convergent = stable. If the linear multistep formula is convergent, then (1.6.2)
must hold in particular for the initial-value problem u, =0, u(0) =0, whose solution is
u(t) =0. Now suppose the formula is unstable. Then by the proof of Theorem 1.7, it admits
a particular solution V" = 2z™ with |z| > 1, or V" =nz" with |z| = 1. In either case, suppose
the starting values for the time integration are taken as

v =VEV",  0<n<s-—1, (1.6.3)

where k is as always the time step. Then the computed solution for all n will be precisely
VEV™. But whereas the factor vk ensures that the starting values approach u, =0 as
k— 0, as required by (1.6.1), |v/kV"| approaches oo for any t =nk >0. Thus (1.6.2) does
not hold, and the formula is not convergent.

(b) Convergent = consistent. To prove consistency, by Theorem 1.2, we must show
p(1)=0and p'(1) =0 (1). For the first, consider the particular initial-value problem wu, =0,
u(0) = 1, whose solution is u(t) =1, and the particular initial values v° =-.. =v*~1 =1.
Since f(u,t) =0, the linear multistep formula reduces to (1.5.5), and convergence implies
that the solutions to this recurrence relation for the given initial data satisfy v(1) — 1 as
k — 0. Since v™ does not depend on k, this is the same as saying v — 1 as n — oo for fixed
k>0, and by (1.5.5), this implies p(1) =0.

To show p'(1) = o(1), consider the particular initial-value problem u, =1, u(0) =0,
with exact solution u(t) =t . Since f(u,t) =1, the linear multistep formula (1.3.4) reduces
to p(Z)v" =ko(1). Now since p(Z) is a polynomial of degree s with p(1) =0, it has a finite
Taylor expansion

p(Z) = P )Z 1)+ 2" ()(Z =174+ + (1) (Z 1)

Let us apply p(Z) to the particular function V" =kno(1)/p'(1) =t,,0(1)/p'(1). Since V"™ is
linear in n, all but the first term in the series are 0, and we get p(Z)V"™ = p'(1)(Z-1)V™,
which reduces to ko(1). In other words, V" is a solution to the linear multistep formula if
the prescribed initial values are v =V™ for 0 <n <s—1. Obviously this solution satisfies
condition (1.6.1) for the given initial data u(0) =0. For the linear multistep formula to be
convergent, it follows that V" must satisfy (1.6.2), and thus we must have (1) =p'(1), as
claimed.

(c) Consistent + stable = convergent. [This part of the proof is not yet written; see
the references, such as pp. 342-345 of Hairer, Ngrsett, & Wanner (1987). Following work of
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Butcher (1966) and Skeel (1976), it is now standard to carry out the proof by first reducing
the linear multistep formula to a one-step recursion, as in (1.5.8). The underlying idea is
backward error analysis—i.e., one shows that the numerical method for a fixed time step
computes the exact solution to a problem with a slightly perturbed function f(u,t).] |

Besides convergence, it is desirable to know something about the accuracy of solutions
computed with linear multistep formulas. To ensure pth-order accuracy, condition (1.6.1)
may be strengthened as follows:

[[o™ —u(t,)||=O(kP) as k—0, 0<n<s—1. (1.6.4)
The following theorem confirms that for a stable linear multistep formula applied to an

initial-value problem with sufficiently smooth coefficients, the local errors add up as ex-
pected:

GLOBAL p™_ORDER ACCURACY

Theorem 1.11. Consider an initial-value problem (1.1.2) that satisfies the conditions
of Theorem 1.1 on an interval [0,T], and in addition, assume that f(u,t) is p times
continuously differentiable with respect to uw and t. Let an approximate solution be
computed by a convergent linear multistep formula of order of accuracy > p with starting
values satistying (1.6.4). Then this solution satisfies

o(t) —u(t)| = O(k?)  as k—0, (1.6.5)

uniformly for all t € [0,T].

EXERCISES

> 1.6.1. Which of the following linear multistep formulas are convergent? Are the noncon-
vergent, ones inconsistent, or unstable, or both?
(a) v T2 =Lyt 4 Lyn 4 2k fr
(b) v+ =,
(c) v™H = v FR(fHE + frE2 4 fr,
(d) v+ = 4 LR(Tf 2 2 ),
(e) vt = F (" — o™t o 4 TR(fH 4 Af T A f ),
(f) v™"F3 = —pF2 p oyt pn 4 2k (f T2 4 frtl),

> 1.6.2. Borderline cases.

(a) Consider the unstable extrapolation formula (1.5.1). What is the order of magnitude
(power of k) of the errors introduced locally at each step? What is the order of mag-
nitude factor by which these are amplified after ©(k~!) time steps? Verify that this
factor is large enough to cause nonconvergence.

(b) What are the corresponding numbers for the s-step generalization with p(z) = (z —1)*,
o(z)=07
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(c) On the other hand, devise another unstable linear multistep formula in which the local
discretization errors are of a high enough order of accuracy relative to the unstable
amplification factors that they will not cause nonconvergence.

(d) Why does the example of (c) not contradict Theorem 1.10?7 Why is it appropriate to
consider this example unstable?

> 1.6.3. Convergence for scalar linear initial-value problems. Prove as briefly and elegantly
as you can that stability and consistency imply convergence, for the special case in which «
is scalar and the function f(u,t) is scalar and linear.
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1.7. Stability regions

The results of the last two sections concerned the behavior of linear multistep formulas
in the limit £ — 0. But for the important class of stiff ODEs, which involve widely varying
time scales, it is impractical to take & small enough for those results to apply. Analysis of
behavior for finite k£ becomes indispensable. In Chapter 4 we shall see that consideration of
finite & is also essential for the analysis of discretizations of partial differential equations.

Stiffness is a subtle idea, and our discussion of it will be deferred to the next section.
Here, we shall simply consider the problem of finite k& analysis of linear multistep formulas.
The key idea that emerges is the idea of a stability region.

EXAMPLE 1.7.1. Let us begin by looking again at the unstable third-order formula
(1.3.21). In Example 1.5.1 we applied this formula to the initial-value problem u, = u,
u(0) =1 with time step k= 0.025 and observed the oscillatory instability shown in Figure
1.5.1(b). From one time step to the next, the solution grew by a factor about —4.93, and
to explain this we looked at the recurrence relation

p(Z)v™ = v 44" — 5" = 0. (1.7.1)

The zeros of p(z) are 1 and —5, corresponding to solutions v™ =1 and v" = (—5)" to (1.7.1),
and the second of these solutions explains the factor —4.93 at least approximately.

For this scalar, linear example, we can do much better by retaining the terms f**7 in
the analysis. The function f is simply f(u) =wu, and thus an exact rather than approximate
model of the calculation is the recurrence relation

p(Z2)w" —ko(Z2)f" = (p(Z2) —ko(Z))v" =0, (1.7.2)
that is,
(Z2 +(4—4Kk)Z — (5+2k))v"™ = "2 + (4 —4k)v" T — (54 2k)v™ = 0.
Setting k& =0.025 gives the zeros
z; ~1.025315, 2y R —4.925315.

And now we have a virtually exact explanation of the ratio ~ —4.93 of Exercise 1.5.1—
accurate, as it happens, to about 20 digits of accuracy (see Exercise 1.7.5).

For an arbitrary ODE, f is not just a multiple of u, and finite £ analysis
is not so simple as in the example just considered. We want to take the terms
B; f™*7 into consideration, but we certainly don’t want to carry out a separate
analysis for each function f. Instead, let us assume that f(u,t)=au for some
constant a € C. In other words, we consider the linear model equation

Up = Q. (1.7.3)
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In the next section we shall see that a nonlinear system of ODEs can be reduced
to a set of problems of the form (1.7.3) by linearization, freezing of coefficients,
and diagonalization.

If a linear multistep formula (1.2.11) is applied to the model equation
(1.7.3), it reduces to the recurrence relation

S S
n+j _ 1. n+j _
Z ;v k Z Biv =0,
J=0 J=0

or equivalently
p(2)—ko(2)]v" = 0, (1.7.4)

where we have defined

k= ak. (1.7.5)
Now let 7, (z) be the stability polynomial

S

mw(2) = p(2) —ko(z) = ;)(aj—%ﬁj)zj, (1.7.6)
=

whose coefficients depend on the parameter k. Then the solutions to (1.7.4)
are related to the zeros of 7; exactly as the solutions to (1.5.5) were related
to the zeros of p(z). In analogy to the developments of §1.5, we define:

A linear multistep formula is absolutely stable* for a particular value

k = ak if all solutions {v"} of the recurrence relation (1.7.4) are bounded
as n — oo.

Just as in Theorem 1.7, it is easy to characterize those linear multistep formulas
that are absolutely stable:

ROOT CONDITION FOR ABSOLUTE STABILITY

Theorem 1.12. A linear multistep formula is absolutely stable for a par-
ticular value k = ak if and only if all the zeros of m;(z) satisty |2| <1, and
any zero with |z| =1 is simple.

What is different here from what we did in §1.5 is that everything depends
on k. For some k a linear multistep formula will be absolutely stable, and for
others it will be absolutely unstable. Here now is the key definition:

*Other terms are “weakly stable” and “time-stable.”
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The stability region S of a linear multistep formula is the set of all k € C
for which the formula is absolutely stable.

Note that according to this definition, a linear multistep formula is stable if
and only if the point 0 belongs to its stability region.

Let us now derive the four most familiar examples of stability regions,
illustrated in Figure 1.7.1.

EXAMPLE 1.7.2. For the Euler formula (1.2.3), (1.7.6) becomes

m:(2) = (z—=1)—k = 2= (1+k), (1.7.7)

with zero 1+k. Therefore S is the set of k € C with |1+k| < 1, that is, the disk |[k—(—1)| < 1.
Figure 1.7.1a plots this region.

EXAMPLE 1.7.3. For the backward Euler formula (1.2.4), the stability polynomial is

i (2) = (z—1)—kz = (1-k)z—1, (1.7.8)

with zero (1—k)~". S is the set of k€ C with |[1—k|~! <1, that is, the exterior of the disk
|k —1] > 1. See Figure 1.7.1b.

EXAMPLE 1.7.4. For the trapezoid formula (1.2.5), we have
T (2) = (2—1)—3k(z+1) = (1—3k)z— (1+1k) (1.7.9)

with zero (1+3k)/(1—3k)=(2+k)/(2—Fk). S is the set of points in C that are no farther
from —2 than from 2—i.e., Rez <0, the left half-plane. See Figure 1.7.1c.

EXAMPLE 1.7.5. The midpoint formula (1.2.6) has

mi(2) = 2 =2kz -1, (1.7.10)
which has two zeros z satisfying
1 -
z——=2k. (1.7.11)
z

Obviously there is always one zero with |z;| <1 and another with |z,| > 1, so for absolute
stability, we must have |z;| =|2z5| =1 —both zeros on the unit circle, which will occur if
and only if k lies in the closed complex interval [—i,i]. The two extreme values k= +i give
double zeros z; = z, = +i, so we conclude that S is the open complex interval (—i,i), as
shown in Figure 1.7.1d.




1.7. STABILITY REGIONS TREFETHEN 1994 - 61

i a

(a) Euler (b) Backward Euler

(c) Trapezoid (d) Midpoint

Figure 1.7.1. Stability regions (shaded) for four linear multistep
formulas. In case (d) the stability region is the open complex interval

(—i,17).

As mentioned on p. 17, the four linear multistep formulas just considered
are the bases of four important classes of finite difference formulas for partial
differential equations: Euler, backward Euler, trapezoid, and leap frog. We
shall refer often to Figure 1.7.1 in examining the stability properties of these
finite difference formulas.

The boundaries of the stability regions for various Adams-Bashforth, Ad-
ams-Moulton, and backwards differentiation formulas are plotted in Figures
1.7.2-1.7.4. Note that the scales in these three figures are very different—
the Adams-Moulton stability regions are much larger than those for Adams-
Bashforth. Note also that for all of the higher-order Adams formulas, the
stability regions are bounded, whereas for the backwards differentiation for-
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mulas they are unbounded. As will be explained in the next section, this is
why backwards differentiation formulas are important.

How does one compute stability regions like these? One approach would
be to calculate the zeros of m; for a large number of values of k€ C and draw
a contour plot, but there is a simpler and more accurate method. By (1.7.6),
if 2 is a zero of 77 (z) for some k and o(z) #0, then

(1.7.12)

(cf. (1.3.19)). To determine the boundary of the stability region, first calculate
the curve of values k corresponding to z = €' with # € [0,27]. This root locus
curve has the property that at each point £ on the curve, one zero of T just
touches the unit circle. It follows that the boundary of S is a subset of the root
locus curve—only a subset, in general, because the other zeros of 7 might lie
either in the disk or outside. By the principle of the argument of complex
analysis, one can determine which components are which by checking just one
value & in each loop enclosed by the root locus curve. See Exercise 1.7.3.

EXERCISES

> 1.7.1. Prove that for the unstable linear multistep formula (1.3.21), the stability region S
is the empty set.

> 1.7.2. Find exact formulas for the boundaries of S for (a) the second-order Adams-Bashforth
formula, (b) the third-order backwards differentiation formula.

> 1.7.3. Write a computer program to plot root locus curves. In a high-level language like

Matlab, it is most convenient to define a variable V=1—2""1, where z is a vector of 200 or

so points on the unit circle, and then work directly with formulas such as (1.4.10), (1.4.13),
(1.4.16) rather than with the coefficients «; and £3;.

(a) Reproduce Figure 1.7.2, and then generate the root locus curve for p=4. What is S?

(Be careful.)
(b) Reproduce Figure 1.7.4, and then generate the root locus curve for p="7. What is S7
(c) Plot the root locus curve for (1.3.21). Label each component by the number of zeros of

m; outside the unit disk, and explain how this pictures relates to Exercise 1.7.1.

k
> 1.7.4. What is the maximum time step k for which the third-order Adams-Bashforth
formula is absolutely stable when applied to (i) u, = —u, (ii) u, =iu?
(a) First, estimate the time step limits with the aid of Figure 1.7.2 and a ruler.
(b) Now derive the exact answers. For (ii) this is hard, but it can be done.

> 1.7.5. Explain the remark about 20-digit accuracy at the end of Example 1.7.1. Approxi-
mately where does the figure of 20 digits come from?

> 1.7.6. True or False: the stability region for any linear multistep formula is a closed subset
of the complex plane.
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—i

Figure 1.7.2. Boundaries of stability regions for Adams-Bashforth
formulas of orders 1-3.

Figure 1.7.3. Boundaries of stability regions for Adams-Moulton
formulas of orders 3-6. (Orders 1 and 2 were displayed already in
Figure 1.7.1(b,c).) Note that the scale is very different from that of
the previous figure.
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Figure 1.7.4. Boundaries of stability regions for backwards differ-
entiation formulas of orders 1-6 (exteriors of curves shown).

> 1.7.7. Simpson’s formula. Determine the stability region for Simpson’s formula (1.4.17),
and draw a sketch.

> 1.7.8.  Prove that any convergent linear multistep formula is absolutely unstable for all
sufficiently small positive k > 0.
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1.8. Stiffness

In 1962 Henrici’s Discrete Variable Methods in Ordinary Differential Equations ap-
peared. This landmark book, presenting the material of the previous sections in great
detail, made the “Dahlquist theory” of linear multistep formulas widely known. With the
availability of formulas of arbitrarily high order of accuracy and a general convergence the-
ory to prove that they worked, it may have seemed that little was left to do except turn
theory into software.

As ODE computations became commonplace in the 1960s, however, it became clear
that certain problems were handled badly by the usual methods. Unreasonably small time
steps would be required to achieve the desired accuracy. What was missing in the standard
theory was the notion of stiffness. As it happens, the missing piece had been supplied
a decade earlier in an eight-page paper by a pair of chemists at the University of Wis-
consin, C.F. Curtiss and J.O. Hirschfelder (Proc. Nat. Acad. Sci. 38, 1952). Curtiss and
Hirschfelder had identified the phenomenon of stiffness, coined the term, and invented back-
wards differentiation formulas to cope with it. However, their paper received little attention
for a number of years, and for example, it does not appear among Henrici’s three hundred
references.

What is a stiff ODE? The following are the symptoms most often mentioned:

1. The problem contains widely varying time scales.
2. Stability is more of a constraint on k than accuracy.
3. Explicit methods don’t work.*

Each of these statements has been used as a characterization of stiffness by one author or
another. In fact, they are all correct, and they are not independent statements but part of a
coherent whole. After presenting an example, we shall make them more precise and explain
the logical connections between them.

EXAMPLE 1.8.1. The linear initial-value problem
uy = —100(u— cos(t)) —sin(t), u(0)=1 (1.8.1)

has the unique solution u(t) = cos(t), for if u(t) = cos(t) the first term on the right becomes 0,
so that the large coefficient —100 drops out of the equation. That coefficient has a dominant
effect on nearby solutions of the ODE corresponding to different initial data, however, as
illustrated in Figure 1.8.1. A typical trajectory u(t) of a solution to this ODE begins by
shooting rapidly towards the curve cos(t) on a time scale ~0.01. This is the hallmark of
stiffness: rapidly changing components that are present in an ODE even when they are
absent from the solution being tracked.

*This last item is quoted from p. 2 of the book by Hairer and Wanner (1991). For all kinds of
information on numerical methods for stiff ODEs, including historical perspectives and lighthearted
humor, that is the book to turn to. Another earlier reference worth noting is L. F. Shampine and C.
W. Gear, “A user’s view of solving stiff ordinary differential equations,” SIAM Review 21 (1979),
1-17.
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Figure 1.8.1. u(t) =cos(t) and nearby solutions of the initial-value problem (1.8.1).

k. AB2 BD2
0.2 14.40 0.5404
0.1 —5.70 x 10* 0.54033
0.05 -1.91x10° 0.540309
0.02 —5.77x 100 0.5403034
0.01 0.54030196 0.54030258
0.005 0.54030222 0.54030238
0 0.540302306 0.540302306 =cos(1)

Table 1.8.1. Computed values v(1) for the same problem.

AB2

1010 +

10—10 1

Figure 1.8.2. Computed errors |[v(1)—cos(1)| as a function of step size k for the
same problem (log-log scale).
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Table 1.8.1 indicates the curious effect that this property of the ODE has on numerical
computations. For six values of k, the table compares the results at ¢t =1 computed by the
second-order Adams-Bashforth and backwards differentiation formulas. (Since the ODE is
linear, implementing the backwards differentiation formula is easy.) The difference between
the two columns of numbers is striking. The backwards differentiation formula behaves
beautifully, converging smoothly and quadratically to the correct answer, but the Adams-
Bashforth formula generates enormous and completely erroneous numbers for moderate k.
Yet when k becomes small enough it settles down to be just as accurate as backwards
differentiation.

This behavior is shown graphically in Figure 1.8.2, which is a log-log plot of the error
|[v(1) —cos(1)| as a function of k. The Adams-Bashforth formula is obviously useless for
k> 0.01. What if we only want two or three digits of accuracy? With the Adams-Bashforth
formula, that request cannot be satisfied; seven digits is the minimum.

Since the example just considered is linear, one can analyze what went
wrong with the Adams-Bashforth formula exactly. In the notation of the last
section, the trouble is that there is a root of the recurrence relation 7 (Z)v" =0
that lies outside the unit disk. We make the argument precise as follows.

EXAMPLE 1.8.1, CONTINUED. If u(¢) is any solution to u, = —100(u — cos(t)) —sin(t),
then (6u)(t) =u(t) —cos(t) satisfies the equation

(6u), = —100(5u). (1.8.2)

This is a linear, scalar, constant-coefficient ODE of the form (1.7.3) of the last section, with
a=—100. If we apply the 2nd-order Adams-Bashforth formula to it, we get the recurrence
relation

’Un+2—’l}n+1 — _look(gvn+1 —%’l}n),

that is,
"2 4 (150, — 1)o™ ™ —50k0™ = 0,

with characteristic polynomial
mi(2) = 2%+ (150k — 1)z — 50k = 2>+ (3k — 1)z — Lk.

For k£ > 0.01, one of the two roots of this polynomial lies in the negative real interval
(—o00,—1), whereas for k <0.01 that root crosses into the interval [—1,0). This is why
k=0.01 is the critical value for this problem, as is so strikingly evident in Figure 1.8.2.

Figure 1.8.3 shows how this analysis relates to the stability region of the second-order
Adams-Bashforth formula. The shaded region in the figure is the stability region (see Figure
1.7.2), and the crosses mark the quantities k = —100k corresponding to the values k (except
k=0.2) in Table 1.8.1. When & becomes as small as 0.01, i.e., k > —1, the crosses move into
the stability region and the computation is successful.
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Figure 1.8.3. The stability region for the 2nd-order Adams-Bash-
forth formula, with crosses marking the values k= —100k from Table
1.8.1.

With this example in mind, let us turn to a more careful discussion of
statements 1-3 on p. 65. The following summary describes what it means to
say that the ODE u, = f(u,t) is stiff with respect to the solution u*(¢) for
times t &~ t*.

1. Widely varying time scales. Stiffness arises when the time scale that
characterizes the evolution of u*(t) for ¢ ~t* is much slower than the time
scale that characterizes the evolution of small perturbations (0u)(¢) on that
solution for t ~t*.

2. Stability is more of a constraint than accuracy. If widely varying time
scales in this sense are present, and if the discrete ODE formula has a bounded
stability region, then there is a mismatch between the relatively large time
steps that are adequate to resolve u*(¢) and the relatively small time steps
that are necessary to prevent unstable growth of small perturbations (du)(t).
A successful computation will necessitate the use of these small time steps.

3. FEzxplicit methods don’t work. In particular, since explicit methods
always have bounded stability regions (Exercise 1.8.1), the solution of stiff
ODEs by explicit methods necessitates the use of small time steps. For better
results one must usually turn to implicit formulas with unbounded stability
regions.

If the real world supplied ODEs to be solved “at random,” then widely
varying time scales might not be a common concern. In actuality, the appli-
cations that the real world presents us with are often exceedingly stiff. One
example is the field of chemical kinetics. Here the ordinary differential equa-
tions describe reactions of various chemical species to form other species, and
the stiffness is a consequence of the fact that different reactions take place
on vastly different time scales. Time scale ratios of 10% or more are common.
Two other fields in which stiff ODEs arise frequently are control theory, where
controlling forces tend to be turned on and off again suddenly, and circuit sim-
ulation, since different circuit components tend to have widely differing natural
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frequencies.®* A fourth important class of stiff ordinary differential equations
are the systems of ODEs that arise after discretizing time-dependent partial
differential equations, particularly parabolic problems, with respect to their
space variables—the “method of lines.” This example will be discussed at
length in Chapter 4.

To be able to determine whether a particular problem is stiff, we need
tools for quantifying the notion of the “time scales” present in an ODE. The
way this is generally done is by reducing an arbitrary system of ODEs to a
collection of scalar, linear model problems of the form (1.7.3), to which the
idea of stability regions will be applicable. This is achieved by the following
sequence of three steps, a sequence that has been familiar to mathematical
scientists for a century:

u; = f(u,t) (1.8.3)
} LINEARIZE
u,=J(t)u (1.8.4)
{ FREEZE COEFFICIENTS
uy = Au (1.8.5)
J DIAGONALIZE
{u, =Au}, AeA(A). (1.8.6)

In (1.8.6), A(A) denotes the spectrum of A, i.e., the set of eigenvalues.
We begin with (1.8.3), a system of N first-order ODEs, with u*(¢) denoting
the particular solution that we are interested in. If we make the substitution

u(t) =u*(t) + (6u)(t),

as in (1.8.2), then stability and stiffness depend on the evolution of (du)(?).
The first step is to linearize the equation by assuming du is small. If f is
differentiable with respect to each component of u, then we have

flust) = f(u't)+J () (0u)(t) +o(([6ul),

where J(t) is the N x N Jacobian matrix of partial derivatives of f with
respect to u:

*See A. Sangiovanni-Vincentelli and J. K. White, Relaxation Techniques for the Solution of VLSI
Circuits, Kluwer, 1987.
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This means that if du is small, the ODE can be accurately approximated by
a linear problem:

up, = f(u®t)+J(t)(du).

If we subtract the identity u; = f(u* ) from this equation, we get
(Ou)y = J(t)(du).

One can think of this result as approximate, if du is small, or exact, if du is
infinitesimal. Rewriting du as a new variable u gives (1.8.4).
The second step is to freeze coefficients by setting

A=J(t)

for the particular value t* of interest. The idea here is that stability and
stiffness are local phenomena, which may appear at some times t* and not
others. The result is the constant-coefficient linear problem (1.8.5).

Finally, assuming A is diagonalizable, we diagonalize it. In general, any
system of N linear ordinary differential equations with a constant, diagonal-
izable coefficient matrix A is exactly equivalent to N scalar equations (1.7.3)
with values a equal to the eigenvalues of A. To exhibit this equivalence, let V'
be an N x N matrix such that V"1AV is diagonal. (The columns of V are eigen-
vectors of A.) Then u; = Au can be rewritten as u, = V(V"IAV)V Ly, ie.,
(V=tu), = (V7TAV)(V~u), a diagonal system of equations in the variables
V~lu. This diagonal system of ODEs can be interpreted as a representation
of the original system (1.8.5) in the basis of eigenvectors of A defined by the
columns of V. And thus, since a diagonal system of ODEs is the same as a
collection of independent scalar ODEs, we end up with the N problems (1.8.6).

Having reduced (1.8.3) to a collection of N scalar, linear, constant-coef-
ficient model problems, we now estimate stability and stiffness as follows:

RULE OF THUMB. For a successful computation of u*(t) for t = t*, k must
be small enough that for each eigenvalue A of the Jacobian matrix J(t*),

k=k\ lies inside the stability region S (or at least within a distance O(k)
of S).

This Rule of Thumb is not a theorem; exceptions can be found.* But if it
is violated, some numerical mode will very likely blow up and obliterate the
correct solution. Regarding the figure O(k), see Exercise 1.8.4.

*It is interesting to consider what keeps the Rule of Thumb from being a rigorous statement. The
various gaps in the argument can be associated with the three reductions (1.8.3)—(1.8.6). The step
(1.8.3)—(1.8.4) may fail if the actual discretization errors or rounding errors present in the problem
are large enough that they cannot be considered infinitesimal, i.e., the behavior of §u is nonlinear.
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A stiff problem is one for which satisfying the conditions of the Rule of
Thumb is more of a headache than resolving the underlying solution u*(t).
Here are some examples to illustrate the reduction (1.8.3)—(1.8.6).

EXAMPLE 1.8.2. If the equation in Example 1.8.1 had been
u, = —100sin(u — cos(t)) —sin(t),
then linearization would have been called for. Setting (du)(t) = u(t) — cos(t) gives
(0u), = —100sin(du),
and if u(t) ~ cos(t), then (du)(¢) is small, and the linear model becomes (1.8.2) again.
EXAMPLE 1.8.3. For the initial-value problem
u, = —100u?(t)sin(u — cos(t)) —sin(t),
we end up with a model equation with a time-dependent coefficient:

(6u), = —100cos?(t) (6u).

These are scalar examples. However, the usual reason that an ODE has
widely varying time scales is that it is a system of differential equations. If the
solution has N components, it is natural that some of them may evolve much
more rapidly than others. Here are three examples.

EXAMPLE 1.8.5. Consider the 2 x 2 linear initial-value problem

u®) —-1000 0\ [u® u) 1
= , te€jo,1], (0)= . (1.8.7)
el ¢ 0 -1 u? u® 1
Suppose we decide that an acceptable solution at ¢ = 1 is any vector with [v(!)(1)—e 10| < ¢
and [v®) (1) —e!| < € for some € >0. If (1.8.7) is solved by a pth order linear multistep
formula with time step k, the u(*) and «(?) components decouple completely, so the results

The step (1.8.4)—(1.8.5) may fail if the density of time steps is not large compared with the time
scale on which J(t) varies (D.J. Higham 1992). The finite size of the time steps also implies that if
an eigenvalue drifts outside the stability region for a short period, the error growth it causes may
be small enough not to matter. Finally, the step (1.8.5)—(1.8.6) may fail in the case where the
matrix A is far from normal, i.e., its eigenvectors are far from orthogonal. In this case the matrix
V is ill-conditioned and instabilities may arise even though the spectrum of A lies in the stability
region; it becomes necessary to consider the pseudospectra of A as well (D.J. Higham and L.N.T.,
1992). These effects of non-normality will be discussed in §§4.5-4.6, and turn out to be particularly
important in the numerical solution of time-dependent PDEs by spectral methods, discussed in
Chapter 8.
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in each component will be those for the corresponding model equation (1.7.3). To obtain
v®) sufficiently accurately, we need k = O(e'/?). But to obtain v(!) sufficiently accurately,
if the formula has a stability region of finite size like the Euler formula, we need k to be on
the order of 1073. Most likely this is a much tighter restriction.

EXAMPLE 1.8.6. The linear problem

u®) —5 6\ [u® u®) 1
= ) (0)= (1.8.8)

u(? " 4 -5 u(? u(? 1
is only superficially less trivial. The eigenvalues of the matrix are approximately —9.90
and —0.10; if 6 and 4 are changed to 5.01 and 4.99 they become approximately —9.999990

and —0.000010. As a result this system will experience a constraint on k just like that of
Example 1.8.5, or worse.

EXAMPLE 1.8.7. The nonlinear ODE

u) (g
u® J, cos(uM) —exp(u?)

e 4 (D)
J=— .
sin(u™)  exp(u®)

Near a point ¢ with (") (£) =0 and u(®)(¢) > 1, the matrix is diagonal with widely differing
eigenvalues, and the behavior will probably be stiff.

has Jacobian matrix

In general, a system of ODEs u; = f(u,t) is likely to be stiff at a point u =
u*, t=t" if the eigenvalues of J(u*,t*) differ greatly in magnitude, especially
if the large eigenvalues have negative real parts so that the corresponding
solution components tend to die away rapidly.

To solve stiff problems effectively, one needs discrete ODE formulas with
large stability regions. The particular shape of the stability region required
will depend on the problem, but as a rule, the most important property one
would like is for the stability region to include a large part of the left half-
plane. (Why the left half-plane? See Exercise 1.8.3.) The following definitions
are standard:

A linear multistep formula is A-stable if the stability region contains the
entire left half-plane Rek < 0. It is A(a)-stable, o € (0,7/2), if the stability
region contains the infinite sector |argk — | < . It is A(0)-stable if it is
A(a)-stable for some o> 0.
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Roughly speaking, an A-stable formula will perform well on almost any stiff
problem (and of course also on non-stiff problems, at some cost in extra work
per time step). An A(0)-stable formula will perform well on stiff problems
whose component modes exhibit exponential decay (negative real eigenvalues)
but not oscillation (imaginary eigenvalues). Discretizations of parabolic and
hyperbolic partial differential equations, respectively, will provide good exam-
ples of these two situations later in the book.

Figure 1.7.1 showed that both the backward Euler and trapezoid formulas
are A-stable. This seems encouraging; perhaps to play it safe, we can simply
use A-stable formulas all the time? But the following famous theorem shows
that that policy is too limiting:

SECOND DAHLQUIST STABILITY BARRIER

Theorem 1.13. The order of accuracy of an implicit A-stable linear mul-

tistep formula satisfies p < 2. An explicit linear multistep formula cannot
be A-stable.

Proof. (Dahlquist, BIT 1963). [Not yet written]

For serious computations, second-order accuracy is often not good enough.
This is why backwards differentiation formulas are so important. For all of
the higher-order Adams formulas, the stability regions are bounded, but the
backwards differentiation formulas are A(0)-stable for p <6.* Most of the
software in use today for stiff ordinary differential equations is based on these
formulas, though Runge-Kutta methods are also contenders (see the next sec-
tion). Because of Theorem 1.8, the usable backwards differentiation formulas
are only those with p <6. In practice, some codes restrict attention to p <5.

Of course there are a dozen practical issues of computation for stiff ODEs
that we have not touched upon here. For example, how does one solve the
nonlinear equations at each time step? (The answer is invariably some form of
Newton’s method; see the references.) The state of software for stiff problems
is highly advanced, as is also true for non-stiff problems. A non-stiff solver
applied to a stiff problem will typically get the right answer, but it will take
excessively small time steps. Many such codes incorporate devices to detect
that stiffness is present and alert the user to that fact, or in some cases, to
trigger an automatic change to a stiff solution method.

EXERCISES

> 1.8.1. Prove that the stability region of any explicit linear multistep formula is bounded.

*For p=3,4,5,6 the values of « involved are approximately 86°, 73°, 52°, 18°. See Figure 1.7.4.
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> 1.8.2. Suppose Figure 1.8.2 had been based on the error |v(2) —cos(2)| instead of |v(1)—
cos(1)]. Qualitatively speaking, how would the plot have been different?

> 1.8.3. What is special about the left half-plane that makes it appear in the definition of
A-stability? Avoid an answer full of waffle; write two or three sentences that hit the nail on
the head.

> 1.8.4. The Rule of Thumb of p. 70 mentions the distance O(k) from the stability region.
Explain where this figure comes from, perhaps with the aid of an example. Why is it O(k)
rather than, say, O(k?) or O(k'/?)?

> 1.8.5. Here is a second-order initial-value problem:
(1) = cos(tu, (b)) + (u(t))? +t, u(0)=1, u;(0) =0.

(a) Rewrite it as a first-order initial-value problem of dimension 2.

(b) Write down the precise formula used to obtain v™*! at each step if this initial-value
problem is solved by the second-order Adams-Bashforth formula.

(c) Write down the 2 x 2 Jacobian matrix J for the system (a).

> 1.8.6. An astronomer decides to use a non-stiff ODE solver to predict the motion of Jupiter
around the sun over a period of 10,000 years. Saturn must certainly be included in the
calculation if high accuracy is desired, and Neptune and Uranus might as well be thrown in
for good measure. Now what about Mars, Earth, Venus, and Mercury? Including these inner
planets will improve the accuracy slightly, but it will increase the cost of the computation.
Estimate as accurately as you can the ratio by which it will increase the computation time
on a serial computer. (Hint: your favorite almanac or encyclopedia may come in handy.)

> 1.8.7. A linear multistep formula is A-stable. What can you conclude about the roots of
o(2)?

> 1.8.8. Van der Pol oscillator. The equation eu,, = —u+(1—u?)u,, known as the Van der Pol
equation, represents a simple harmonic oscillator to which has been added a nonlinear term
that introduces positive damping for |u| > 1 and negative damping for |u| < 1. Solutions
to this equation approach limit cycles of finite amplitude, and if € is small, the oscillation
is characterized by periods of slow change punctuated by short intervals during which u(#)
swings rapidly from positive to negative or back again.

(a) Reduce the Van der Pol equation to a system of first-order ODEs, and compute the
Jacobian matrix of this system.

(b) What can you say about the stiffness of this problem?

> 1.8.9. Given € < 1, suppose you solve an initial-value problem involving the linear equation
u, = —Au+ f(t), where A is a constant 3 x 3 matrix with eigenvalues 1, e /2, and ¢!, and
f(t) is a slowly-varying vector function of dimension 3. You solve this equation by a linear
multistep program that is smart enough to vary the step size adaptively as it integrates, and
your goal is to compute the solution u(1) accurate to within an absolute error on the order
of 6 € 1. How many time steps (order of magnitude functions of § and €) will be needed
if the program uses (a) the second-order Adams-Moulton method, and (b) the third-order
Adams-Moulton method? (Hint: be careful!)

» 1.8.10. A nonlinear stiff ODE. [To appear]
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1.9. Runge-Kutta methods

Linear multistep formulas represent one extreme—one function evaluation per time
step—and Runge-Kutta methods represent the other. They are one-step, multistage meth-
ods, in which f(u,t) may be evaluated at any number of stages in the process of getting from
v™ to v"t1, but those stages are intermediate evaluations that are never used again. As a
result, Runge-Kutta methods are often more stable than linear multistep formulas, but at
the price of more work per time step. They tend to be easier to implement than linear multi-
step formulas, since starting values are not required, but harder to analyze. These methods
were first developed a century ago by Runge (1895), Heun (1900), and Kutta (1901).

In this book we will not discuss Runge-Kutta methods in any detail; we merely list a
few of them, below, and state two theorems without proof. This is not because they are
less important than linear multistep methods, but merely to keep the scale of the book
manageable. Fortunately, the fundamental concepts of stability, accuracy and convergence
are much the same for Runge-Kutta as for linear multistep formulas. The details are quite
different, however, and quite fascinating, involving a remarkable blend of ideas of combina-
torics and graph theory. For information, see the books by Butcher and by Hairer, Ngrsett,
and Wanner.

Runge-Kutta formulas tend to be “not very unique”. If we define

s = numbers of stages, p = order of accuracy,

then for most values of s there are infinitely many Runge-Kutta formulas with the maximal
order of accuracy p. Here are some of the best-known examples [which should properly be
presented in tableau form, but I haven’t gotten around to that]:

“Modified Euler” or “improved polygon” formula (s=p=2)
a:=kf(v",t,),
b:=kf(v"+a/2,t,+k/2), (1.9.1)

"l =" +b.

“Improved Euler” or “Heun” formula (s=p=2)
a:= kf(vna tn)a
b:=kf(v"+a,t,+k), (1.9.2)
" i=0"+1(a+b).

“Heun’s third-order formula” (s=p=23)
a:=kf(w",t,),
b:i=kf(v"+a/3,t,+k/3),
c:=kf(v"+2b/3,t,+2k/3),

"= 0"+ L(a+3c).

(1.9.3)
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“Fourth-order Runge-Kutta formula” (s=p=4)*

ai= k(" 1),

b:=kf(v"+a/2,t,+k/2),

c:=kf(w"+b/2,t,+k/2), (1.9.4)
d:=kf(v" +c,t,+k),

0" =" + ¢ (a+2b+2c+ d).

If f is independent of u, the first two of these formulas reduce to the midpoint and
trapezoid formulas, respectively, and the fourth-order formula reduces to Simpson’s rule.
This last formula is sometimes called “the” Runge-Kutta formula, and is very widely known.

How accurate can a Runge-Kutta formula be? Here is what was known as of 1987:

ORDER OF ACCURACY OF EXPLICIT RUNGE-KUTTA FORMULAS

Theorem 1.14. An explicit Runge-Kutta formula of order of accuracy p has the fol-
lowing minimum number of stages s:

Order p Minimum number of stages s
1,2,3,4 1,2,3,4 (respectively)

5 6

6 7

7 9

8 11

9 12-17 (precise minimum unknown)

10 13-17 (precise minimum unknown)

Proof. See Butcher (1987). g

Figure 1.9.1 shows the stability regions for the explicit Runge-Kutta formulas with
s =1,2,3,4. Since these formulas are not unique, the reader may wonder which choice
the figure illustrates. As it turns out, it illustrates all the choices, for they all have the
same stability regions, which are the level curves |p(z)| =1 for the truncated Taylor series
approximations to e*. (This situation changes for s >5.)

The classical Runge-Kutta formulas were explicit, but in recent decades implicit Runge-
Kutta formulas have also been studied extensively. Unlike linear multistep formulas, Runge-
Kutta formulas are not subject to an A-stability barrier. The following result should be
compared with Theorems 1.9 and 1.13.

IMPLICIT RUNGE-KUTTA FORMULAS

Theorem 1.15. An s-stage implicit Runge-Kutta formula has order of accuracy p < 2s.
For each s, there exists an A-stable implicit Runge-Kutta formula with p =2s.

*already given in Exercise 1.3.4.
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T _3i

Figure 1.9.1. Boundaries of stability regions for Runge-Kutta formulas with
s=1,2,3,4.

Theorem 1.15 looks like a panacea; why not use implicit Runge-Kutta methods all
the time for stiff problems? The answer is that they lead to large systems of equations
to be solved. For an initial-value problem involving N variables, an implicit linear multi-
step formula requires the solution of a system of N equations at each step, whereas in the
Runge-Kutta case the dimension becomes sN. Since the work involved in solving a system
of equations usually depends superlinearly on its size, it follows that implicit Runge-Kutta
formulas tend to be more advantageous for small systems than for the larger ones that
arise, for example, in discretizing partial differential equations. On the other hand, many
special tricks have been devised for those problems, especially to take advantage of sparsity,
so no judgment can be considered final. The book by Hairer and Wanner contains experi-
mental comparisons of explicit and implicit multistep and Runge-Kutta codes, reaching the
conclusion that they all work well.
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1.10. Notes and References

This chapter has said little about the practical side of numerical solution of ordinary
differential equations. One topic barely mentioned is the actual implementation of implicit
methods—the solution of the associated equations at each time step by Newton’s method
and its variants. Another gap is that we have not discussed the idea of adaptive step
size and order control, which, together with the development of special methods for stiff
problems, are the most important developments in the numerical solution of ODEs during
the computer era. The software presently available for solving ODEs is so powerful and
reliable that there is little reason other than educational to write one’s own program, except
for very easy problems or specialized applications. Essentially all of this software makes use
of adaptive step size control, and some of it controls the order of the formula adaptively
too. Trustworthy codes can be found in the IMSL, NAG, and Harwell libraries, in Matlab,
and in numerous other sources. The best-known programs are perhaps those developed at
Sandia Laboratories and the Lawrence Livermore Laboratory, which can be obtained from
the Netlib facility described in the Preface.

Although this book does not discuss boundary-value problems for ODEs, the reader
should be aware that in that area too there is excellent adaptive software, which is far
more efficient and reliable than the program a user is likely to construct by combining an
initial-value problem solver with the idea of “shooting”. Two well-known programs are
PASVA and its various derivatives, which can be found in the NAG Library, and COLSYS,
which has been published in the Transactions on Mathematical Software and is available
from Netlib. A standard textbook on the subject is U. M. Ascher, R. M. M. Mattheij and
R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential
Equations, Prentice Hall, 1988.

Some applications lead to systems of differential equations that must be solved in con-
junction with additional non-differential conditions. Such systems are called differential-
algebraic equations (DAEs) and have been investigated by Gear, Petzold, and many
others. Software is available for these problems too, including a well-known program by
Petzold known as DASSL.

The scale of ODEs that occur in practice can be enormous. One example of engineering
interest arises in the simulation of VLSI circuits, where one encounters sparse stiff systems
containing thousands or tens of thousands of variables. In such cases it is of paramount
importance to exploit the special properties of the systems, and one special method that
has been devised goes by the name of waveform relaxation; see the footnote on p. 69.
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