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CHAPTER � TREFETHEN ���� � ��

The last chapter dealt with time dependence� and this one is motivated
by space dependence� Later chapters will combine the two�

Fourier analysis touches almost every aspect of partial di	erential equa

tions and their numerical solution� Sometimes Fourier ideas enter into the
analysis of a numerical algorithm derived from other principles�especially in
the stability analysis of �nite
di	erence formulas� Sometimes they underlie
the design of the algorithm itself�spectral methods� And sometimes the situ

ation is a mixture of both� as with iterative and multigrid methods for elliptic
equations� For one reason or another� Fourier analysis will appear in all of the
remaining chapters of this book�

The impact of Fourier analysis is also felt in many �elds besides di	er

ential equations and their numerical solution� such as quantum mechanics�
crystallography� signal processing� statistics� and information theory�

There are four varieties of Fourier transform� depending on whether the
spatial domain is unbounded or bounded� continuous or discrete

Name Space variable Transform variable

Fourier transform unbounded� continuous continuous� unbounded

Fourier series bounded� continuous discrete� unbounded

semidiscrete Fourier transform unbounded� discrete continuous� bounded
or z�transform

discrete Fourier transform bounded� discrete discrete� bounded
�DFT�

�The second and third varieties are mathematically equivalent�� This chapter
will describe the essentials of these operations� emphasizing the parallels be

tween them� In discrete methods for partial di	erential equations� one looks
for a representation that will converge to a solution of the continuous problem
as the mesh is re�ned� Our de�nitions are chosen so that the same kind of
convergence holds also for the transforms�

Rigorous Fourier analysis is a highly technical and highly developed area
of mathematics� which depends heavily on the theory of Lebesgue measure and
integration� We shall make use of L� and �� spaces� but for the most part this
chapter avoids the technicalities� In particular� a number of statements made
in this chapter hold not at every point of a domain� but �almost everywhere�
� everywhere but on a set of measure zero�
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���� The Fourier transform

If u�x� is a �Lebesgue
measurable� function of x � R � the L��norm of u
is the nonnegative or in�nite real number

kuk �
hZ �

��
ju�x�j�dx

i���
� �������

The symbol L� ��L
two�� denotes the set of all functions for which this integral
is �nite

L� � fu  kuk��g� �������

Similarly� L� and L� are the sets of functions having �nite L�
 and L�
norms�
de�ned by

kuk� �
Z �

��
ju�x�jdx� kuk� � sup

���x��
ju�x�j� �������

Note that since the L� norm is the norm used in most applications� because
of its many desirable properties� we have reserved the symbol k �k without a
subscript for it�

The convolution of two functions u�v is the function u�v de�ned by

�u�v��x� � �u�v��x� �
Z �

��
u�x�y�v�y�dy �

Z �

��
u�y�v�x�y�dy� �������

assuming these integrals exist� One way to think of u� v is as a weighted
moving average of values u�x� with weights de�ned by v�x�� or vice versa�

For any u�L�� the Fourier transform of u is the function �u��� de�ned
by

�u��� � �Fu���� �
Z �

��
e�i�xu�x�dx� � �R �

The quantity � is known as the wave number� the spatial analog of frequency�
For many functions u � L�� this integral converges in the usual sense for all
� � R � but there are situations where this is not true� and in these cases one
must interpret the integral as a limit in a certain L�
norm sense of integralsRM
�M as M ��� The reader interested in such details should consult the
various books listed in the references��

�If u � L�� then �u��� exists for every � and is continuous with respect to �� According to the
Riemann�Lebesgue Lemma� it also satis	es j�u���j� 
 as ����
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x �

Figure ������ Space and wave number domains for the Fourier trans

form �compare Figures ����� and �������

The following theorem summarizes some of the fundamental properties of
Fourier transforms�

THE FOURIER TRANSFORM

Theorem ����� If u�L�� then the Fourier transform

�u��� � �Fu���� �
Z �

��
e�i�xu�x�dx� � �R �������

belongs to L� also� and u can be recovered from �u by the inverse Fourier

transform

u�x� � �F���u��x� � �

��

Z �

��
ei�x�u���d�� x�R � �������

The L��norms of u and �u are related by Parseval�s equality�

k�uk �
p
��kuk� �������

If u�L� and v �L� �or vice versa�� then u�v �L�� and du�v satis�es

du�v��� � �u����v���� �������

These four equations are of such fundamental importance that they are
worth commenting on individually� although it is assumed the reader has al

ready been exposed to Fourier analysis�

�As mentioned in the introduction to this chapter� some of these properties�namely equations
������� and �������hold merely for �almost every� value of x or �� In fact even if f�z� is a
continuous function in L�� its Fourier transform may fail to converge at certain points x� To ensure
pointwise convergence one needs additional assumptions such as that f is of bounded variation

�de	ned below before Theorem ���� and belongs to L�� These assumptions also ensure that at any
point x where f has a jump discontinuity� its Fourier transform converges to the average value
�f�x���f�x������
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First of all� ������� indicates that �u��� is a measure of the correlation of
u�x� with the function ei�x� The idea behind Fourier analysis is to interpret
u�x� as a superposition of monochromatic waves ei�x with various wave num

bers �� and �u��� represents the complex amplitude �more precisely amplitude
density with respect to �� of the component of u at wave number ��

Conversely� ������� expresses the synthesis of u�x� as a superposition of its
components ei�x� each multiplied by the appropriate factor �u���� The factor
�� is a nuisance that could have been put in various places in our formulas�
but is hard to eliminate entirely�

Equation �������� Parseval�s equality� is a statement of energy conserva

tion the L� energy of any signal u�x� is equal to the sum of the energies of
its component vibrations �except for the factor

p
�� �� By �energy� we mean

the square of the L� norm�
Finally� the convolution equation ������� is perhaps the most subtle of

the four� The left side� du�v���� represents the strength of the wave number �
component that results when u is convolved with v�in other words� the degree
to which u and v beat in and out of phase with each other at wave number �
when multiplied together in reverse order with a varying o	set� Such beating
is caused by a quadratic interaction of the wave number component � in u
with the same component of v�hence the right
hand side �u����v����

All of the assertions of Theorem ��� can be veri�ed in the following ex

ample� which the reader should study carefully�

EXAMPLE ������ B�splines� Suppose u is the function

u�x� 	

� �
� for ���x� �

� otherwise

�������

�Figure ������� Then by ������� we have kuk	��p�
 and ������� gives

u��� 	 �
�

Z �

��

e�i�xdx 	
e�i�x

��i�
����
�

��

	
sin�

�
� ��������

�This function u��� is called a sinc function� more on these in x����� From ������� and the
indispensable identity� Z �

��

sin� s

s�
ds 	 �� ��������

which can be derived by complex contour integration
 we calculate kuk	p�
 which con�rms
��������

From the de�nition ������� it is readily veri�ed that in this example

�u�u��x� 	
� �

� ���jxj��� for ���x� �

� otherwise

��������

�worth memorizing�
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 � ��� ��
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�

Figure ������ The �rst three B�splines of Example ����� and their Fourier trans�
forms�

and

�u�u�u��x� 	

���
��

�
�� �

�x
� for ���x� �


�
� ����jxj�x�� for �� jxj � �

� otherwise


��������

and by ������� and ��������
 the corresponding Fourier transforms must be

du�u��� 	 sin� �
��

� du�u�u��� 	 sin� �
��

� ��������

See Figure ������ In general
 a convolution u�p� of p copies of u has the Fourier transform

du�p� ��� 	 Ffu�u�� � ��ug��� 	
�
sin�

�

	p
� ��������

Note that whenever u�p� or any other function is convolved with the function u of

�������
 it becomes smoother
 since the convolution amounts to a local moving average� In
particular
 u itself is piecewise continuous
 u�u is continuous and has a piecewise continuous
�rst derivative
 u �u �u has a continuous derivative and a piecewise continuous second
derivative
 and so on� In general u�p� is a piecewise polynomial of degree p� � with a
continuous �p���nd derivative and a piecewise continuous �p���st derivative
 and is known
as a B�spline� �See
 for example
 C� de Boor
 A Practical Guide to Splines� Springer
 ������

Thus convolution with u makes a function smoother
 while the e�ect on the Fourier
transform is to multiply it by sin��� and thereby make it decay more rapidly ���� This
relationship is evident in Figure ������

For applications to numerical methods for partial di	erential equations�
there are two properties of the Fourier transform that are most important�
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One is equation ������� the Fourier transform converts convolution into mul

tiplication� The second can be derived by integration by parts

cux��� �
Z �

��
e�i�xux�x�dx � �

Z �

��
��i��e�i�xu�x�dx � i� �u���� ��������

assuming u�x� is smooth and decays at �� That is� the Fourier transform
converts di	erentiation into multiplication by i�� This result is rigorously
valid for any absolutely continuous function u� L� whose derivative belongs
to L�� Note that di	erentiation makes a function less smooth� so the fact that
it makes the Fourier transform decay less rapidly �ts the pattern mentioned
above for convolution�

�� ��

Figure ������

EXAMPLE ������ The function

u�x� 	

���
��

�
� for ���x� �


� �
� for ��x� �

� otherwise


��������

illustrated in Figure �����
 has Fourier transform

u���	 �
�

Z 	

��

e�i�xdx� �
�

Z �

	

e�i�xdx

	
�

��i� ���e�i��e��i���� 	
�

�i�
�ei��e�i��� 	

isin� �

�
�

��������

which is i� times the Fourier transform �������� of the triangular hat function ��������� In
keeping with ��������
 �������� is the derivative of ���������

The following theorem collects �������� together with a number of addi

tional properties of the Fourier transform
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PROPERTIES OF THE FOURIER TRANSFORM

Theorem ���� Let u�v � L� have Fourier transforms �u � Fu� �v � Fv�
Then�

�a� Linearity� Ffu�vg���� �u�����v���� Ffcug���� c�u����

�b� Translation� If x
 �R � then Ffu�x�x
�g���� ei�x	�u����

�c� Modulation� If �
 �R � then Ffei�	xu�x�g���� �u����
��

�d� Dilation� If c�R with c ���� then Ffu�cx�g���� �u���c��jcj�

�e� Conjugation� Ffug���� �u�����

�f� Di	erentiation� If ux�L�� then Ffuxg���� i��u����

�g� Inversion� F��fug���� �

��
�u�����

Proof� See Exercise ������

In particular� taking c��� in part �d� above gives Ffu��x�g� �u�����
Combining this result with part �e� leads to the following elementary but useful
results� De�nitions u�x� is even� odd� real� or imaginary if u�x� � u��x��
u�x� ��u��x�� u�x� � u�x�� or u�x� ��u�x�� respectively� u�x� is hermitian

or skew
hermitian if u�x�� u��x� or u�x���u��x�� respectively�
SYMMETRIES OF THE FOURIER TRANSFORM

Theorem ���� Let u�L� have Fourier transform �u�Fu� Then
�a� u�x� is even �odd� �	 �u��� is even �odd�


�b� u�x� is real �imaginary� �	 �u��� is hermitian �skew�hermitian�


and therefore

�c� u�x� is real and even �	 �u��� is real and even


�d� u�x� is real and odd �	 �u��� is imaginary and odd


�e� u�x� is imaginary and even �	 �u��� is imaginary and even


�f� u�x� is imaginary and odd �	 �u��� is real and odd�

Proof� See Exercise ������
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In the discussion above we have twice observed the following relationships
between the smoothness of a function and the decay of its Fourier transform

u�x� �u���

smooth 
 decays rapidly as j�j��
decays rapidly as jxj�� 
 smooth

�Of course since the Fourier transform is essentially the same as the inverse
Fourier transform� by Theorem ���g� the two rows of this summary are equiv

alent�� The intuitive explanation is that if a function is smooth� then it can
be accurately represented as a superposition of slowly
varying waves� so one
does not need much energy in the high wave number components� Conversely�
a non
smooth function requires a considerable amplitude of high wave number
components to be represented accurately� These relationships are the bedrock
of analog and digital signal processing� where all kinds of smoothing operations
are e	ected by multiplying the Fourier transform by a �windowing function�
that decays suitably rapidly�

The following theorem makes these connections between u and �u precise�
This theorem may seem forbidding at �rst� but it is worth studying carefully�
Each of the four parts of the theorem makes a stronger smoothness assumption
on u than the last� and reaches a correspondingly stronger conclusion about
the rate of decay of �u��� as j�j ��� Parts �c� and �d� are known as the
Paley�Wiener theorems�

First� a standard de�nition� A function u de�ned on R is said to have
bounded variation if there is a constant M such that for any �nite m and
any points x
�x�� � � ��xm�

Pm
j�� ju�xj��u�xj���j �M �
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SMOOTHNESS OF u AND DECAY OF �u

Theorem ���� Let u be a function in L��

�a� If u has p�� continuous derivatives in L� for some p� �� and a pth
derivative in L� that has bounded variation� then

�u��� � O�j�j�p��� as j�j��� ��������

�b� If u has in�nitely many continuous derivatives in L�� then

�u��� � O�j�j�M� as j�j�� for all M� ��������

and conversely�

�c� If u can be extended to an analytic function of z� x�iy in the complex
strip j Imzj�a for some a	 �� with ku�x� iy�k� const uniformly for each
constant �a� y�a� then

eaj�j�u����L�� ��������

and conversely�

�d� If u can be extended to an entire function� of z � x� iy with ju�z�j�
O�eajzj� as jzj �� �z � C � for some a 	 �� then �u has compact support
contained in ��a�a�� i�e�

�u���� � for all j�j	a� ��������

and conversely�

Proof� See� for example� xVI�� of Y� Katznelson� An Introduction to
Harmonic Analysis� Dover� ����� �Also see Rudin �p� ����� Paley � Wiener�
Reed � Simon v� �� Ho�rmander v� � �p� ����� entire functions books� � � �

A function of the kind described in �d� is said to be band�limited� since
only a �nite band of wave numbers are represented in it�

Since the Fourier transform and its inverse are essentially the same� by
Theorem ���g� Theorem ��� also applies if the roles of u�x� and �u��� are inter

changed�

EXAMPLE ������ CONTINUED� The square wave u of Example ����� �Figure ������
satis�es condition �a� of Theorem ��� with p	 �
 so its Fourier transform should satisfy

�An entire function is a function that is analytic throughout the complex plane C �
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ju���j 	 O�j�j���
 as is veri�ed by ��������� On the other hand
 suppose we interchange
the roles of u and u and apply the theorem again� The function u��� 	 sin��� is entire

and since sin��� 	 �ei��e�i����i
 it satis�es u��� 	O�ej�j� as j�j �� �with � now taking
complex values�� By part �d� of Theorem ���
 it follows that u�x� must have compact
support contained in ������
 as indeed it does�

Repeating the example for u�u
 condition �a� now applies with p	�
 and the Fourier
transform �������� is indeed of magnitude O�j�j���
 as required� Interchanging u and u

we note that sin� ���� is an entire function of magnitude O�e�j�j� as j�j��
 and u�u has
support contained in �������

EXERCISES


 ������ Show that the two integrals in the de�nition ������� of u�v are equivalent�

 ������ Derive conditions �a�	�g� of Theorem ���� �Do not worry about justifying the usual
operations on integrals��


 ����
� Prove Theorem ����


 ������

�a� Which functions u�L��L� satisfy u�u	��
�b� How about u�u	u�


 ������ Integration�

�a� What does part �f� of Theorem ��� suggest should be the Fourier transform of the
function U�x�	

R x
��u�s�ds�

�b� Obviously U�x� cannot belong to L� unless
R�
��

u�x�dx	�
 so by Theorem ���
 this is

a necessary condition for U to be in L� also� Explain how the condition
R�
��

u�x�dx	�

relates to your formula of �a� for U in terms of u�


 �����

�a� Calculate the Fourier transform of u�x� 	 ���x����� �Hint� use a complex contour
integral if you know how� Otherwise
 look the result up in a table of integrals��

�b� How does this example �t into the framework of Theorem ���� Which parts of the
theorem apply to u�

�c� If the roles of u and u are interchanged
 how does the example now �t Theorem ����
Which parts of the theorem apply to u�


 ������ The autocorrelation function of a function u�L��L� may be de�ned by

��c� 	
�

kuk�
Z �

��

u�x�u�x�c�dx�

Find an expression for ��c� as an inverse Fourier transform of a product of Fourier transforms
involving u� This expression is the basis of some algorithms for computing ��c��
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 ������ Without evaluating any integrals
 use Theorem ��� and �������� to determine the
Fourier transform of the following function�

�� �� � � �


 ������ The uncertainty principle� Show by using Theorem ��� that if u�x� and u��� both
have compact support
 with u�L�
 then u�x�	 ��
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���� The semidiscrete Fourier transform

The semidiscrete Fourier transform is the reverse of the more familiar Fourier series�
instead of a bounded
 continuous spatial domain and an unbounded
 discrete transform
domain
 it involves the opposite� This is just what is needed for the analysis of numerical
methods for partial di�erential equations
 where we are perpetually concerned with functions
de�ned on discrete grids� For many analytical purposes it is simplest to think of these grids
as in�nite in extent�

Let h	 � be a real number
 the space step
 and let � � � �x���x	�x�� � � � be de�ned by
xj 	 jh� Thus fxjg	hZ
 where Z is the set of integers� We are concerned now with spatial
grid functions v	 fvjg
 which may or may not be approximations to a continuous function
u


vj 
u�xj��

As in the last chapter
 it will be convenient to write v�xj� sometimes for vj �

o o o o o o o o* * * * * * * * x �
h ���h ��h�

Figure ������ Space and wave number domains for the semidiscrete Fourier
transform�

For functions de�ned on discrete domains it is standard to replace the upper�case letter
L by a lower�case script letter 
� �Both symbols honor Henri Lebesgue
 the mathematician
who laid the foundations of modern functional analysis early in the twentieth century�� The

�h�norm of a grid function v is the nonnegative or in�nite real number

kvk 	


h

�X
j
��

jvj j�
����

� �������

Notice the h in front of the summation� One can think of ������� as a discrete approximation
to the integral ������� by the trapezoid rule or the rectangle rule for quadrature� �On an
unbounded domain these two are equivalent�� The symbol 
�h ��little L�two sub h�� denotes
the set of grid functions of �nite norm



�h 	 fv � kvk��g�

and similarly with 
�h and 
�h � In contrast to the situation with L�
 L�
 and L�
 these
spaces are nested�


�h� 
�h� 
�h � �������

�See Exercise �������



���� THE SEMIDISCRETE FOURIER TRANSFORM TREFETHEN ���� � 
�

The convolution v�w of two functions v�w is the function v�w de�ned by

�v�w�m 	 h

�X
j
��

vm�jwj 	 h

�X
j
��

vjwm�j � �������

provided that these sums exist� This formula is a trapezoid or rectangle rule approximation
to ��������

For any v � 
�h
 the semidiscrete Fourier transform of v is the function v��� de�ned
by

v��� 	 �Fhv����	h

�X
j
��

e�i�xjvj � � � ����h���h��

a discrete approximation to �������� A priori
 this sum de�nes a function v��� for all � �R�
However
 notice that for any integer m
 the exponential e��imxj�h	 e��imj is exactly � at
all of the grid points xj � More generally
 any wave number � is indistinguishable on the
grid from all other wave numbers ����m�h
 where m is any integer�a phenomenon called
aliasing� This means that the function v��� is ���h�periodic on R� To make sense of the
idea of analyzing v into component oscillations
 we shall normally restrict attention to one
period of v by looking only at wave numbers in the range ����h���h�
 and it is in this sense
that the Fourier transform of a grid function is de�ned on a bounded domain� But the
reader should bear in mind that the restriction of � to any particular interval is a matter
of labeling
 not mathematics� in principle e	 and e�		�ij are equally valid representations of
the grid function vj 	 ��

Thus for discretized functions v
 the transform v��� inhabits a bounded domain� On
the other hand the domain is still continuous� This re�ects the fact that arbitrarily �ne
gradations of wave number are distinguishable on an unbounded grid�

Since x and � belong to di�erent sets
 it is necessary to de�ne an additional vector
space for functions v� The L�

h�norm of a function v is the number

kvk 	
hZ ��h

���h

jv���j�d�
i���

� �������

One can think of this as an approximation to ������� in which the wave number components
with j�j	 ��h have been replaced by zero� The symbol L�

h denotes the set of �Lebesgue�
measurable� functions on ����h���h� of �nite norm


L�
h 	 fv � kvk��g� �������

Now we can state a theorem analogous to Theorem ����
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THE SEMIDISCRETE FOURIER TRANSFORM

Theorem ���� If v � 
�h� then the semidiscrete Fourier transform

v��� 	 �Fhv���� 	 h

�X
j
��

e�i�xjvj � � � ����h���h� �������

belongs to L�
h� and v can be recovered from v by the inverse semidiscrete Fourier

transform

vj 	 �F��
h v��x� 	

�

��

Z ��h

���h

ei�xj v���d�� j �Z� �������

The 
�h�norm of v and the L�
h�norm of v are related by Parseval�s equality�

kvk 	
p
��kvk� �������

If u� 
�h and v � 
�h �or vice versa�� then v�w� 
�h� and dv�w satis�es

dv�w��� 	 v��� w���� �������

As in the continuous case
 the following properties of the semidiscrete Fourier transform
will be useful� In �c�
 and throughout this book wherever convenient
 we take advantage of
the fact that v��� can be treated as a periodic function de�ned for all � �R�
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PROPERTIES OF THE SEMIDISCRETE FOURIER TRANSFORM

Theorem ���� Let v�w � 
�h have Fourier transforms v� w� Then�

�a� Linearity� Fhfv�wg���	 v���� w���� Fhfcvg���	 cv����

�b� Translation� If j	 �Z� then Fhfvj�j�g���	 ei�xj� v����

�c� Modulation� If �	 �R� then Fhfei��xjvjg���	 v����	��

�d� Dilation� If m�Z with m �	�� then Fhfvmjg���	 v���m��jmj�

�e� Conjugation� Fhfvg���	 v�����

The symmetry properties of the Fourier transform summarized in Theorem ��� apply
to the semidiscrete Fourier transform too� we shall not repeat the list here�

We come now to a fundamental result that describes the relationship of the Fourier
transform of a continuous function u to that of a discretization v of u�or if x and � are
interchanged
 the relationship of Fourier series to Fourier transforms� Recall that because
of the phenomenon of aliasing
 all wave numbers ����j�h
 j �Z
 are indistinguishable
on the grid hZ� Suppose that u � L� is a su ciently smooth function de�ned on R
 and
let v � 
�h be the discretization obtained by sampling u�x� at the points xj � The aliasing
principle implies that v��� must consist of the sum of all of the values u�����j�h�� This
result is known as the Poisson summation formula or the aliasing formula�

ALIASING FORMULA

Theorem ��	� Let u�L� be su�ciently smooth ���� with Fourier transform u� and let
v � 
�h be the restriction of u to the grid hZ� Then

v��� 	

�X
j
��

u�����j�h�� � � ����h���h�� ��������

Proof� Not yet written� See P� Henrici
 Applied and Computational Complex Analysis�
v� 
� Wiley
 �����

In applications
 we are very often concerned with functions v obtained by discretization

and it will be useful to know how much the Fourier transform is a�ected in the process�
Theorems ��� and ��� combine to give the following answers to this question�
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EFFECT OF DISCRETIZATION ON THE FOURIER TRANSFORM

Theorem ��
� Let v be the restriction to the grid hZ of a function u�L�� The following
estimates hold uniformly for all � � ����h���h�� or a forteriori� for � in any �xed interval
��A�A��
�a� If u has p�� continuous derivatives in L� for some p � ���� and a pth derivative in
L� that has bounded variation� then

jv���� u���j 	 O�hp��� as h� �� ��������

�b� If u has in�nitely many continuous derivatives in L�� then

jv���� u���j 	 O�hM � as h� � for all M� ��������

�c� If u can be extended to an analytic function of z	x�iy in the complex strip jImzj�a
for some a	 �� with ku���iy�k� const uniformly for each �a�y�a� then for any �	 ��

jv���� u���j 	 O�e���a����h� as h� �� ��������

�d� If u can be extended to an entire function of z	x�iy with u�z�	O�eajzj� as jzj��
�z � C � for some a	 �� then

v��� 	 u��� provided h���a� ��������

In part �c�
 u���iy� denotes a function of x
 namely u�x�iy� with x interpreted as a variable
and y as a �xed parameter�

Proof� In each part of the theorem
 u�x� is smooth enough for Theorem ��� to apply

which gives the identity

v���� u��� 	
�X
j
�

u�����j�h�� u�����j�h�� ��������

Note that since � � ����h���h�
 the arguments of u in this series have magnitudes at least
��h
 ���h
 ���h� � � � �

For part �a�
 Theorem ����a� asserts that ju���j � C�j�j�p�� for some constant C��
With �������� this implies

jv���� u���j � C�

�X
j
�

�j��h��p�� 	 C�h
p��

�X
j
�

j�p���

Since p � this sum converges to a constant
 which implies �������� as required�
Part �b� follows from part �a��
For part �c�
 � � � ���
For part �d�
 note that if h � ��a
 then ��h 	 a� Thus �������� reduces to � for all

� � ����h���h�
 as claimed�

Note that part �d� of Theorem ��� asserts that on a grid of size h
 the semidiscrete
Fourier transform is exact for band�limited functions containing energy only at wave numbers
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j�j smaller than ��h�the Nyquist wave number
 corresponding to two grid points per
wavelength� This two�points�per�wavelength restriction is famous among engineers
 and has
practical consequences in everything from �ghter planes to compact disc players� When we
come to discretize solutions of partial di�erential equations
 two points per wavelength will
be the coarsest resolution we can hope for under normal circumstances�

EXERCISES


 ������

�a� Prove �������� 
�h� 
�h� 
�h �

�b� Give examples to show that these inclusions are proper� 
�h �� 
�h and 

�
h �� 
�h�

�c� Give examples to show that neither inclusion in �a� holds for functions on continuous
domains� L� ��L� and L� ��L��


 ������ Let �� � 
�h� 
�h be the discrete di�erentiation and smoothing operators de�ned by

��v�j 	
�

�h
�vj���vj���� �v�j 	

�
� �vj���vj���� ��������

�a� Show that � and  are equivalent to convolutions with appropriate sequences d�m� 
�h�
�Be careful with factors of h��

�b� Compute the Fourier transforms d and m� How does d compare to the transform of
the exact di�erentiation operator for functions de�ned on R �Theorem ���f�� Illustrate

this comparison with a sketch of d��� against ��

�c� Compute kdk
 k dk
 kmk
 and k mk
 and verify Parseval!s equality�
�d� Compute the Fourier transforms of the convolution sequences corresponding to the

iterated operators �p and p �p ��� Discuss how these results relate to the rule of
thumb discussed in the last section� the smoother the function
 the more rapidly its
Fourier transform decays as j�j��� What imperfection in  does this analysis bring
to light�


 ����
� Continuation of Exercise ����� Let v be the discretization on the grid hZ of the
function u�x�	 ���x�����

�a� Determine v���� �Hint� calculating it from the de�nition ������� is very di cult��

�b� How fast does v��� approach u��� as h� �� Give a precise answer based on �a�
 then
compare your answer with the prediction of Theorem ����

�c� What would the answer to �b� have been if the roles of u and u had been interchanged�
that is
 if v had been the discretization not of u�x� but of its Fourier transform�


 ������ Integration by the trapezoid rule� A function u�L��L� can be integrated approxi�
mately by the trapezoid rule�

I 	

Z �

��

u�x�dx 
 Ih	h

�X
j
��

u�xj�� ��������

This is an in�nite sum
 but in practice one might delete the tails if u decays su ciently
rapidly as jxj � �� �This idea leads to excellent quadrature algorithms even for �nite
intervals
 which are �rst transformed to the real axis by a change of variables� for a survey
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see M� Mori
 �Quadrature formulas obtained by variable transformation and the DE�rule
�
J� Comp� Appl� Math� �� � �
 ������
 ���"�����

As h� �
 how good an approximation is Ih to the exact integral I� Of course the answer
will depend on the smoothness of u�x��

�a� State how Ih is related to the semidiscrete Fourier transform�

�b� Give a bound for jIh�I j based on the theorems of this section�
�c� In particular
 what can you say about jIh�I j for the function u�x�	 e�x

�

�

�d� Show that your bound can be improved in a certain sense by a factor of ��


������ ������ Draw a plot of sinn as a function of n
 where n ranges over the integers �not the
real numbers� from � to ����� �That is
 your plot should contain ���� dots� in Matlab this
can be done in one line�� Explain why the plot looks the way it does to the human eye
 and
what this has to do with aliasing� Make your explanation precise and quantitative� �See G�
Strang
 Calculus� Wellesley�Cambridge Press
 ������
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���� Interpolation and sinc functions

�This section is not written yet
 but here!s a hint as to what will be in it��

If �j is the Kronecker delta function

�j 	

�
� if j	�


� if j �	�
 �������

then ������� gives the semidiscrete Fourier transform

�j��� 	 h �for all ���

If we now apply the inverse transform formula �������
 we �nd after a little algebra

�j 	
sin��xj�h�

�xj�h
� �������

at least for j �	�� Since xj�h is a nonzero integer for each j �	�
 the sines are zero and this
formula matches ��������

Suppose
 however
 that we evaluate ������� not just for x	xj but for all values x�R�
Then we!ve got a sinc function again
 one that can be called a grid sinc function�

Sh�x� 	
sin��x�h�

�x�h
� �������

The plot of Sh�x� is the same as the upper�right plot of Figure �����
 except scaled so that
the zeros are on the grid �i�e� at integer multiples of h�� Obviously Sh�x� is a continuous
interpolant to the discrete delta function �j � Which one� It is the unique band�limited

interpolant
 band�limited in the sense that its Fourier transform cSh��� is zero for � ��
����h���h�� �Proof� by construction it!s band�limited in that way
 and uniqueness can be
proved via an argument by contradiction
 making use of Parseval!s equality ���������

More generally
 suppose we have an arbitrary grid function vj �well
 not quite arbitrary�
we!ll need certain integrability assumptions
 but let!s forget that for now�� Then the band�
limited interpolant to vj is the unique function v�x� de�ned for x � R with v�xj� 	 vj
and v���	 � for � �� ����h���h�� It can be derived in two equivalent ways�

Method �� Fourier transform� Given vj 
 compute the semidiscrete Fourier transform
v���� Then invert that transform
 and evaluate the resulting formula for all x rather than
just on the grid�

Method �� linear combination of sinc functions� Write

vj 	

�X
m
��

vm�m�j �
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and then set

v�x�	
�X

m
��

vmSh�x�xm��

The equivalence of Methods � and � is trivial� it follows from the linearity and translation�
invariance of all the processes in question�

The consideration of band�limited interpolation is a good way to get insight into the
Aliasing Formula presented as Theorem ���� �In fact
 maybe that should go in this section��
The following schema summarizes everything� Study it#

u�x�
F�T��� u���

� DISCRETIZE l ALIASING
FORMULA

vj
F�T��� v���

� BAND�LIMITED
INTERPOLATION � ZERO HIGH

WAVE NOS�

v�x�
F�T��� v���

The Gibbs phenomenon is a particular phenomenon of band�limited interpolation
that has received much attention� After an initial discovery by Wilbraham in ����
 it was
made famous by Michelson in ���� in a letter to Nature� and then by an analysis by Gibbs
in Nature the next year� Gibbs showed that if the step function

u�x� 	

�
�� x� �


�� x	 �

is sampled on a grid and then interpolated in the band�limited manner
 then the resulting
function v�x� exhibits a ringing e�ect� it overshoots the limits �� by about �$
 achieving
a maximum amplitude Z �

��

sin��y�

�y
dy 
 ��������� �������

The ringing is scale�invariant� it does not go away as h� �� In the �nal text I will illustrate
the Gibbs phenomenon and include a quick derivation of ��������
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���� The discrete Fourier transform

Note� although the results of the last two sections will be used throughout the remain�
der of the book
 the material of the present section will not be needed until Chapters � and
��

For the discrete Fourier transform
 both x and � inhabit discrete
 bounded domains�
or if your prefer
 they are periodic functions de�ned on discrete
 unbounded domains� Thus
there is a pleasing symmetry here
 as with the Fourier transform
 that was missing in the
semidiscrete case�

o o o o o o o o o* * * * * * * * * o o o o o o o o o* * * * * * * * *x �
�h

�
�N

�

	�N
� �		� �N

�

	 N
�x

�N
�

	�� x		� xN
�

	�

Figure ������ Space and wave number domains for the discrete Fourier trans�
form�

For the fundamental spatial domain we shall take ������
 as illustrated in Figure ������
Let N be a positive even integer
 set

h 	
��

N
�N even�� �������

and de�ne xj 	 jh for any j� The grid points in the fundamental domain are

x�N�� 	 ��� � � � � x	 	 �� � � � � xN���� 	 ��h�

An invaluable identity to keep in mind is this�

N

�
	
�

h
� �������

Let 
�N denote the set of functions on fxjg that are N �periodic with respect to j
 i�e

���periodic with respect to x
 with the norm

kvk 	
h
h

N����X
j
�N��

jvj j�
i���

� �������

�Since the sum is �nite
 the norm is �nite
 so every function of the required type is guaranteed
to belong to 
�N�and to 
�N and 
�N �� The discrete Fourier transform �DFT of a
function v � 
�N is de�ned by

v��� 	 �FNv���� 	 h

N����X
j
�N��

e�i�xjvj � � �Z�
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Since the spatial domain is periodic
 the set of wave numbers � is discrete
 and in fact �
ranges precisely over the set of integers Z� Thus it is natural to use � as a subscript


v� 	 �FNv�� 	 h

N����X
j
�N��

e�i�jhvj � � �Z�

and since h	���N 
 v� is N �periodic as a function of �� We shall take ��N���N��� as the
fundamental domain of wave numbers
 and let L�

N denote the set of N �periodic functions
on the grid Z
 with norm

kvk 	
h N����X
�
�N��

jv� j�
i���

� �������

This is nonstandard notation
 for an upper case L is normally reserved for a family of
functions de�ned on a continuum� We use it here to highlight the relationship of the discrete
Fourier transform with the semidiscrete Fourier transform�

The convolution of two functions in 
�N is de�ned by

�v�w�m 	 h

N����X
j
�N��

vm�jwj 	 h

N����X
j
�N��

vjwm�j � �������

Again
 since the sum is �nite
 there is no question of convergence�
Here is a summary of the discrete Fourier transform�
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THE DISCRETE FOURIER TRANSFORM

Theorem ���� If v � 
�N � then the discrete Fourier transform

v� 	 �FNv�� 	 h

N����X
j
�N��

e�i�jhvj � �N
�
� �� N

�
�� �������

belongs to L�
N � and v can be recovered from v by the inverse discrete Fourier trans�

form

vj 	 �F ��
N v�j 	

�

��

N����X
�
�N��

ei�jhv� � �������

The 
�N �norm of v and the L�
N �norm of v are related by Parseval�s equality�

kvk 	
p
��kvk� �������

If v�w � 
�N � then dv�w satis�es
�dv�w�� 	 v� w�� �������

As with the other Fourier transforms we have considered
 the following properties of
the discrete Fourier transform will be useful� Once again we take advantage of the fact that
v��� can be treated as a periodic function de�ned for all � �Z�

PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

Theorem ����� Let v�w � 
�N have discrete Fourier transforms v� w� Then�

�a� Linearity� FNfv�wg���	 v���� w���� FNfcvg���	 cv����

�b� Translation� If j	 �Z� then FNfvj�j�g���	 ei�xj� v����

�c� Modulation� If �	 �Z� then FNfei��xjvjg���	 v����	��

�e� Conjugation� FNfvg���	 v�����

�g� Inversion� F ��
N fvg���	 �

��h
v�����

An enormously important fact about discrete Fourier transforms is that they can be
computed rapidly by the recursive algorithm known as the fast Fourier transform �FFT���
A direct implementation of ������� or ������� requires %�N�� arithmetic operations
 but the

�The fast Fourier transform was discovered by Gauss in �
� at the age of �� but although he wrote
a paper on the subject� he did not publish it� and the idea was more or less lost until its celebrated
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FFT is based upon a recursion that reduces this �gure to %�N logN�� We shall not describe
the details of the FFT here
 but refer the reader to various books in numerical analysis
 signal
processing
 or other �elds� However
 to illustrate how simple an implementation of this idea
may be
 Figure ����� reproduces the original Fortran program that appeared in a ���� paper
by Cooley
 Lewis
 and Welch�y Assuming that N is a power of �
 it computes ��F ��

N 
 in
our notation� the vector A�� �N� represents v	� � � � �vN�� on input and ��v	� � � � ���vN�� on
output�

subroutine fft�a�m�

complex a����u�w�t

n � ���m do �	 l � ��m

nv� � n
� le � ���l

nm� � n�� le� � le
�

j�� u � ��

do  i � ��nm� ang � ���������������
le�

if �i�ge�j� goto � w � cmplx�cos�ang��sin�ang��

t � a�j� do �	 j � ��le�

a�j� � a�i� do �	 i � j�n�le

a�i� � t ip � i�le�

� k � nv� t � a�ip��u

� if �k�ge�j� goto  a�ip� � a�i��t

j � j�k �	 a�i� � a�i��t

k � k
� �	 u � u�w

goto � return

 j � j�k end

Figure ������ Complex inverse FFT program of Cooley
 Lewis
 and Welch
�������

As mentioned above
 this program computes the inverse Fourier transform according
to our de�nitions
 times ��� The same program can be used for the forward transform by
making use of the following identity�

rediscovery by Cooley and Tukey in ����� �See M� T� Heideman� et al�� �Gauss and the history
of the fast Fourier transform�� IEEE ASSP Magazine� October ����� Since then� fast Fourier
transforms have changed prevailing computational practices in many areas�
yBefore publication� permission to print this program will be secured�
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v� 	 FNf&vg���� 	 ��hF ��
N f&vg���� ��������

These equalities follow from parts �e� and �g� of Theorem ����
 respectively�
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���� Vectors and multiple space dimensions

Fourier analysis generalizes with surprising ease to situations where the independent
variable x and'or the dependent variable u are vectors� We shall only sketch the essentials

which are based on the following two ideas�

� If x is a d�vector
 then the dual variable � is a d�vector too
 and the Fourier integral is
a multiple integral involving the inner product x ���

� If u is an N �vector
 then its Fourier transform u is an N �vector too
 and is de�ned
componentwise�

As these statements suggest
 our notation will be as follows�

d 	 number of space dimensions� x	�x�� � � � �xd�
T �

N 	 number of dependent variables� u	�u�� � � � �uN �
T �

Both � and u become vectors of the same dimensions


�	���� � � � � �d�
T � u	�u�� � � � � uN�

T �

and �x becomes the dot product � �x 	 ��x�� � � �� �dxd� The formulas for the Fourier
transform and its inverse read

u��� 	 �Fu���� 	
Z
e�i��xu�x�dx

	

Z �

��

� � �
Z �

��

e�i��xu�x�dx� � � �dxd
�������

for � �Rd
 and

u�x� 	 �F��u��x� 	 �����d
Z
ei��xu���d�

	 �����d
Z �

��

� � �
Z �

��

ei��xu���d�� � � �d�d
�������

for x�Rd� In other words
 u and u are related componentwise�

u��� 	 �u������� � � � � u�N�����T � �������

If the vector L��norm is de�ned by

kuk� 	
Z
ku�x�k�dx 	

Z �

��

� � �
Z �

��

ku�x�k�dx� � � �dxd� �������
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where the symbol k �k in the integrand denotes the ��norm on vectors of length N 
 then
Parseval�s equality for vector Fourier transforms takes the form

kuk 	 ����d��kuk� �������

The set of vector functions with bounded vector ��norms can be written simply as �L��N �
Before speaking of convolutions
 we have to go a step further and allow u�x� and u���

to be M �N matrices rather than just N �vectors� The de�nitions above extend to this
further case unchanged
 if the symbol k � k in the integrand of ������� now represents the
��norm �largest singular value� of a matrix� If u�x� is an M�P matrix and v�x� is a P�N
matrix
 then the convolution u�v is de�ned by

�u�v��x� 	
Z
u�x�y�v�y�dy

	

Z
u�y�v�x�y�dy

	

Z �

��

� � �
Z �

��

u�x�y�v�y�dy� � � � dyd�

�������

and it satis�es du�v��� 	 u���v���� �������

Since matrices do not commute in general
 it is no longer possible to exchange u and v as
in ��������

This generalization of Fourier transforms and convolutions to matrix functions is far
from idle
 for we shall need it for the Fourier analysis of multistep �nite di�erence approxi�
mations such as the leap frog formula�

Similar generalizations of our scalar results hold for semidiscrete and discrete Fourier
transforms�

EXERCISES


 ������ What is the Fourier transform of the vector function

u�x� 	
� sinx

x
�
sin�x

�x

T
�

de�ned for x�R�

 ������ What is the Fourier transform of the scalar function

u�x�	 e�
�

�
�x�

�
�x�

�
��

de�ned for x	�x��x��
T �R��
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