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CHAPTER � TREFETHEN ���� � ���

This chapter begins our study of time�dependent partial di�erential equa�
tions� whose solutions vary both in time� as in Chapter �� and in space� as
in Chapter �� The simplest approach to solving partial di�erential equations
numerically is to set up a regular grid in space and time and compute approx�
imate solutions on this grid by marching forwards in time� The essential point
is discretization�

Finite di�erence modeling of partial di�erential equations is one of several
�elds of science that are concerned with the analysis of regular discrete struc�
tures� Another is digital signal processing� already mentioned in Chapter ��
where continuous functions are discretized in a similar fashion but for quite
di�erent purposes� A third is crystallography� which investigates the behav�
ior of physical structures that are themselves discrete� The analogies between
these three �elds are close� and we shall occasionally point them out� The
reader who wishes to pursue them further is referred to Discrete�Time Signal
Processing� by A� V� Oppenheim and R� V� Schafer� and to An Introduction
to Solid State Physics� by C� Kittel�

This chapter will describe �ve di�erent ways to look at �nite di�erence
formulas
as discrete approximations to derivatives� as convolution �lters� as
Toeplitz matrices� as Fourier multipliers� and as derivatives of polynomial in�
terpolants� Each of these points of view has its advantages� and the reader
should become comfortable with all of them�

The �eld of partial di�erential equations is broad and varied� as is in�
evitable because of the great diversity of physical phenomena that these equa�
tions model� Much of the variety is introduced by the fact that practical
problems usually involve one or more of the following complications�

� multiple space dimensions�
� systems of equations�
� boundaries�
� variable coe�cients�
� nonlinearity�

To begin with� however� we shall concentrate on a simple class of problems�
�pure� �nite di�erence models for linear� constant�coe�cient equations on
an in�nite one�dimensional domain� The fascinating phenomena that emerge
from this study turn out to be fundamental to an understanding of the more
complicated problems too�
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���� Scalar model equations

Partial di�erential equations fall roughly into three great classes� which
can be loosely described as follows�

elliptic � time�independent�

parabolic � time�dependent and di�usive�

hyperbolic � time�dependent and wavelike� �nite speed of propagation�

In some situations� this trichotomy can be made mathematically precise� but
not always� and we shall not worry about the rigorous de�nitions� The reader
is referred to various books on partial di�erential equations� such as those by
John� Garabedian� or Courant and Hilbert� There is a particularly careful dis�
cussion of hyperbolicity in G� B� Whitham�s book Linear and Nonlinear Waves�
For linear partial di�erential equations in general� the state of the art among
pure mathematicians is set forth in the four�volume work by L� H�ormander�
The Analysis of Linear Partial Di�erential Operators�

Until Chapter �� we shall consider only time�dependent equations�
The simplest example of a hyperbolic equation is

ut � ux� �������

the one�dimensional �rst�order wave equation� which describes advection
of a quantity u�x�t� at the constant velocity ��� Given su�ciently smooth
initial data u�x���� u��x�� ������� has the solution

u�x�t� � u��x� t�� �������

as can be veri�ed by inserting ������� in �������� see Figure �����b� This solution
is unique� The propagation of energy at a �nite speed is characteristic of
hyperbolic partial di�erential equations� but this example is atypical in having
all of the energy propagate at exactly the same �nite speed�

The simplest example of a parabolic equation is

ut � uxx� �������

the one�dimensional heat equation� which describes di�usion of a quan�
tity such as heat or salinity� In this book uxx denotes the partial derivative
��u��x�� and similarly with uxxx� uxt� and so on� For an initial�value problem
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�a�

�b�

�c�

�d�

Figure ������ Evolution to t�� of �a� hat�shaped initial data under
�b� the wave equation �������� �c� the heat equation �������� and �d�
the Schr�odinger equation ������� �the real part is shown��

de�ned by ������� and su�ciently well�behaved initial data u�x���� u��x�� the
solution

u�x�t��
�

��

Z
�

��

ei�x��
�t �u����d�

�
�p
��t

Z
�

��

e��x�s�
���tu��s�ds �������

can be derived by Fourier analysis�� Physically� ������� asserts that the os�
cillatory component in the initial data of wave number � decays at the rate

e��
�t because of di�usion� which is what one would expect from �������� See

Figure �����c� Incidentally� ������� is not the only mathematically valid solu�
tion to the initial�value problem for �������� To make it unique� restrictions on
u�x�t� must be added such as a condition of boundedness as jxj ��� This
phenomenon of nonuniqueness is typical of parabolic partial di�erential equa�
tions� and results from the fact that ������� is of lower order with respect to t
than x� so that u��x� constitutes data on a �characteristic surface��

A third model equation that we shall consider from time to time is the
one�dimensional Schr	odinger equation�

ut � iuxx� �������

�In fact� it was Joseph Fourier who �rst derived the heat equation equation in 	
��� He then invented
Fourier analysis to solve it�
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which describes the propagation of the complex state function in quantum
mechanics and also arises in other �elds such as underwater acoustics� Just
as with the heat equation� the solution to the Schr�odinger equation can be
expressed by an integral�

u�x�t��
�

��

Z
�

��

ei�x�i�
�t �u����d�

�
�p
��it

Z
�

��

ei�x�s�
���tu��s�ds� �����	�

but the behavior of solutions to this equation is very di�erent� Schr�odinger�s
equation is not di�usive but dispersive� which means that rather than de�
caying as t increases� solutions tend to break up into oscillatory wave packets�
See Figure �����d�

Of course �������� �������� and ������� can all be modi�ed to incorporate
constant factors other than �� so that they become ut � aux� ut � auxx� ut �
iauxx� This a�ects the speed of advection� di�usion� or dispersion� but not the
essential mathematics� The constant can be eliminated by a rescaling of x or
t� so we omit it in the interests of simplicity �Exercise �������

The behavior of our three model equations for a hat�shaped initial function
is illustrated in Figure ������ The three waves shown there are obviously
very di�erent� In �b�� nothing has happened except advection� In �c�� strong
dissipation or di�usion is evident� sharp corners have been smoothed� The
Schr�odinger result of �d� exhibits dispersion� oscillations have appeared in
an initially non�oscillatory problem� These three mechanisms of advection�
dissipation� and dispersion are central to the behavior of partial di�erential
equations and their discrete models� and together account for most linear
phenomena� We shall focus on them in Chapter ��

Since many of the pages ahead are concerned with Fourier analysis of
�nite di�erence and spectral approximations to �������� �������� and �������� we
should say a few words here about the Fourier analysis of the partial di�erential
equations themselves� The fundamental idea is that when an equation is linear
and has constant coe�cients� it admits �plane wave� solutions of the form

u�x�t� � ei��x
�t�� � �R � � � C � �����
�

where � is again the wave number and � is the frequency� Another way to
put it is to say that if the initial data u�x��� � ei�x are supplied to an equation
of this kind� then there is a solution for t 	 � consisting of u�x��� multiplied by
an oscillatory factor ei�t� The di�erence between various equations lies in the
di�erent values of � they assign to each wave number �� and this relationship�

� � ����� �������
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is known as the dispersion relation for the equation� For �rst�order examples
it might better be called a dispersion function� but higher�order equations
typically provide multiple values of � for each �� and so the more general term
�relation� is needed� See Chapter ��

It is easy to see what the dispersion relations are for our three model
scalar equations� For example� substituting ei��x
�t� into ������� gives i�� i��
or simply �� �� Here are the three results�

ut� ux � �� �� �������

ut� uxx � �� i��� ��������

ut� iuxx � ������ ��������

Notice that for the wave and Schr�odinger equations� � � R for x � R � these
equations conserve energy in the L� norm� For the heat equation� on the
other hand� the frequencies are complex� every nonzero � � R has Im� 	 ��
which by �����
� corresponds to an exponential decay� and the L� energy is
not conserved��

The solutions ������� and �����	� can be derived by Fourier synthesis from
the dispersion relations �������� and ��������� For example� for the heat equa�
tion� �������� and �����	� imply

u�x�t� �
�

��

Z
�

��

ei�x��
�t�u����d�

�
�

��

Z
�

��

ei�x��
�t
Z
�

��

e�i�x
�

u�x��dx�d�� ��������

From here to ������� is just a matter of algebra�
Equations �������� �������� and ������� will serve as our basic model equa�

tions for investigating the fundamentals of �nite�di�erence and spectral meth�
ods� This may seem odd� since in all three cases the exact solutions are known�
so that numerical methods are hardly called for� Yet the study of numerical
methods for these equations will reveal many of the issues that come up repeat�
edly in more di�cult problems� In some instances the reduction of complicated
problems to simple models can be made quite precise� For example� a hyper�
bolic system of partial di�erential equations is de�ned to be one that can be
locally diagonalized into a collection of problems of the form �������� see Chap�
ter 	� In other instances the guidance given by the model equations is more
heuristic�

�The backwards heat equation ut��uxx has the dispersion relation ���i��� and its solutions
blow up at an unbounded rate as as t increases unless the range of wave�numbers present is limited�
The initial�value problem for this equation is ill�posed in L��
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EXERCISES


 ������ Show by rescaling x and�or t that the constants a and b can be eliminated in� �a�
ut	 aux
 �b� ut	 buxx
 �c� ut	 aux�buxx�


 ������ Consider the second�order wave equation utt	uxx�

�a� What is the dispersion relation
 Plot it in the real ��� plane
 and be sure to show all
values of � for each ��

�b� Verify that the function u�x�t� 	 �
� �f�x� t��f�x� t��� �

�

R x�t

x�t
g�s�ds is the solution

corresponding to initial data u�x���	 f�x�
 ut�x���	 g�x��


 ������

�a� Verify that ������� and ������� represent solutions to ������� and ��������both di�eren�
tial equation and initial conditions�

�b� Fill in the derivation of ��������i�e�
 justify the second equals sign�


 ������ Derive a Fourier integral representation of the solution ������� to the initial�value
problem ut	ux
 u�x���	u��x��


 ������

�a� If ������� is written as a convolution u�x�t� 	 u��x� �h�t��x�
 what is h�t��x�
 �This
function is called the heat kernel��

�b� Prove that if u��x� is a continuous function with compact support
 then the resulting
solution u�x�t� to the heat equation is an entire function of x for each t� ��

�c� Outline a proof of the Weierstrass approximation theorem� if f is a continuous
function de�ned on an interval �a�b�
 then for any �� �
 there exists a polynomial p�x�
such that jf�x��p�x�j�� for x� �a�b��


������ ����	� Method of characteristics� Suppose ut 	 a�x�t�ux and u�x��� 	 u��x� for x � R
and t � �
 where a�x�t� is a smoothly varying positive function of x and t� Then u�x�t� is
constant along characteristic curves with slope ���a�x�t��

Figure �����

x

t u�x�t�

�a� Derive a representation for u����� as the solution to an ODE initial�value problem�

�b� Find u����� to �ve�digit accuracy for the problem ut 	 e���t����cos	x�ux
 u�x��� 	 x�
Plot the appropriate characteristic curve�

�c� Find u����� to �ve�digit accuracy for the same equation de�ned on the interval x �
������ with right�hand boundary condition u��� t�	 ��t� Plot the appropriate charac�
teristic curve�
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���� Finite di�erence formulas

Let h� � and k� � be a �xed space step and time step
 respectively
 and set xj 	 jh
and tn	nk for any integers j and n� The points �xj � tn� de�ne a regular grid or mesh in

two dimensions
 as shown in Figure ������formally
 the subset hZ�kZ of R�� For the rest
of this book our aim is to approximate continuous functions u�x�t� by grid functions vnj 


vnj �u�xj � tn�	 ��	�	��

The notation v�xj � tn�	 vnj will also be convenient
 and we shall sometimes write v
n or v�tn�

to represent the spatial grid function fvnj g
 j �Z
 for a �xed value n�

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � ���
h

lk

Figure ������ Regular �nite di�erence grid in x and t�

The purpose of discretization is to obtain a problem that can be solved by a �nite
procedure� The simplest kind of �nite procedure is an s�step �nite di	erence formula

which is a �xed formula that prescribes vn��

j as a function of a �nite number of other grid
values at time steps n���s through n �explicit case� or n�� �implicit case�� To compute
an approximation fvnj g to u�x�t�
 we shall begin with initial data v�� 	 	 	 �vs��
 and then

compute values vs�vs��� 	 	 	 in succession by applying the �nite di�erence formula� This
process is sometimes known as marching with respect to t�

A familiar example of a �nite di�erence model for the �rst�order wave equation �������
is the leap frog �LF� formula


LF �
�

�k
�vn��

j �vn��j � 	
�

�h
�vnj���vnj���	 ��	�	��

This equation can be obtained from ������� by replacing the partial derivatives in x and t by
centered �nite di�erences� The analogous leap frog type approximation to the heat equation
������� is

LFxx�
�

�k
�vn��

j �vn��j � 	
�

h�
�vnj����v

n
j �v

n
j���	 ��	�	��

However
 we shall see that this formula is unstable� A better approximation is the Crank�
Nicolson� �CN� formula


CN�
�

k
�vn��

j �vnj � 	
�

�

�
�

h�
�vnj����v

n
j �v

n
j����

�

h�
�vn��

j�� ��v
n��
j �vn��

j�� �

�
� ��	�	��

�Spelling note �	� the name is �Nicolson�� not �Nicholson��
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which is said to be implicit
 since it couples together the values vn��
j at the new time step

and therefore leads to a system of equations to be solved� In contrast
 leap frog formulas
are explicit� One can also de�ne a CN formula for �������
 namely

CNx�
�

k
�vn��

j �vnj � 	
�

�

�
�

�h
�vnj���vnj����

�

�h
�vn��

j�� �vn��
j�� �

�
� ��	�	��

but we shall see that since explicit formulas such as LF are stable for �������
 and easier to
implement
 an implicit formula like ������� has little to recommend it in this case� Another
famous and extremely important explicit approximation for ut	 ux is the Lax�Wendro	

formula
 discovered in �����

LW�
�

k
�vn��

j �vnj � 	
�

�h
�vnj���vnj����

k

�h�
�vnj����v

n
j �v

n
j���	 ��	�	��

The second term on the right is the �rst we have encountered whose function is not imme�
diately obvious� we shall see later that it raises the order of accuracy from � to �� We shall
see also that although the leap frog formula may be suitable for linear hyperbolic problems
such as arise in acoustics
 the nonlinear hyperbolic problems of �uid mechanics generally
require a formula like Lax�Wendro� that dissipates energy at high wave numbers�

We shall often use acronyms such as LF
 CN
 and LW to abbreviate the names of
standard �nite di�erence formulas
 as above
 and subscripts x or xx will be added sometimes
to distinguish between a model of the wave equation and a model of the heat equation� For
the formulas that are important in practice we shall usually manage to avoid the subscripts�

Of the examples above
 as already mentioned
 LF and CN are important in practice

while LFxx and CNx are not so important�

Before introducing further �nite di�erence formulas
 we need a more compact notation�
Chapter � introduced the time shift operator Z


Zvnj 	 vn��
j 	 ��	�	��

Similarly
 let K denote the space shift operator

Kvnj 	 vnj��� ��	�	��

and let I or � represent the identity operator


Ivnj 	 �v
n
j 	 vnj 	 ��	�	��

We shall make regular use of the following discrete operators acting in the space direction�

SPATIAL DIFFERENCE AND AVERAGING OPERATORS



�	
�
� �I�K�� 


�
	 �

� �K
���I� 
�	

�
� �K

���K�� ��	�	���

��	
�

h
�K�I�� �

�
	
�

h
�I�K���� ��	

�

�h
�K�K���� ��	�	���

�
�
	

�

h�
�K��I�K���	 ��	�	���
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�
 
�
 and 
� are known as forward
 backward
 and centered spatial averaging

operators
 ��
 ��
 and �� are the corresponding spatial di	erence operators of �rst
order
 and �

�
is a centered spatial di�erence operator of the second order� For discretization

in time we shall use exactly the same notation
 but with superscripts instead of subscripts��

TEMPORAL DIFFERENCE AND AVERAGING OPERATORS



�	 �
� �I�Z�� 
�	 �

� �Z
���I� 
�	 �

� �Z
���Z�� ��	�	���

��	
�

k
�Z�I�� ��	

�

k
�I�Z���� ��	

�

�k
�Z�Z���� ��	�	���

��	
�

k�
�Z��I�Z���	 ��	�	���

In this notation
 for example
 the LF and CN formulas ������� and ������� can be
rewritten

LF� ��v 	 ��v� CN� ��v 	 
��
�
v	

Note that since Z and K commute
 i�e�
 ZK 	KZ
 the order of the terms in any product
of these discrete operators can be permuted at will� For example
 we might have written
�
�

� above instead of 
��

�
�

Since all of these operators depend on h or on k
 a more complete notation would be
���h�
 ���h�
 ���h�
 etc� For example
 the symbol ����h� is de�ned by

����h�vj 	
�

�h
�K��K���vj 	

�

�h
�vj���vj���� ��	�	���

and similarly for ����h�
 etc� �Here and in subsequent formulas
 subscripts or superscripts
are omitted when they are irrelevant to the discrete process under consideration��

In general there may be many ways to write a di�erence operator� For example


�� 	
�
� �������� �

�
	 ���� 	 �

�
�� 	 ����

�
�h��

�	

As indicated above
 a �nite di�erence formula is explicit if it contains only one nonzero
term at time level n�� �e�g� LF�
 and implicit if it contains several �e�g� CN�� As in the
ODE case
 implicit formulas are typically more stable than explicit ones
 but harder to
implement� On an unbounded domain in space
 in fact
 an implicit formula would seem
to require the solution of an in�nite system of equations to get from vn to vn�� � This is
essentially true
 and in practice
 a �nite di�erence formula is usually applied on a bounded
mesh
 where a �nite system of equations must be solved� Thus our discussion of unbounded
meshes will be mainly a theoretical device�but an important one
 for many of the stability
and accuracy phenomena that need to be understood have nothing to do with boundaries�

In implementing implicit �nite di�erence formulas
 there is a wide gulf between one�
dimensional problems
 which lead to matrices whose nonzero entries are concentrated in a

�The notations ��� ��� ��� ��� ��� �� are reasonably common if not quite standard� The other
notations of this section are not standard�



���� FINITE DIFFERENCE FORMULAS TREFETHEN ���� � ���

narrow band
 and multidimensional problems
 which do not� The problem of how to solve
such systems of equations e ciently is one of great importance
 to which we shall return in
x��� and in Chapters ��

We are now equipped to present a number of well�known �nite di�erence formulas for
the wave and heat equations� These are listed in Tables ����� �wave equation� and �����
�heat equation�
 and the reader should take the time to become familiar with them� The
tables make use of the abbreviations

�	
k

h
� 
	

k

h�
� ��	�	���

which will appear throughout the book� The diagram to the right of each formula in the
tables
 whose meaning should be self�evident
 is called the stencil of that formula� More
extensive lists of formulas can be found in a number of books� For the heat equation
 for
example
 see Chapter � of the book by Richtmyer and Morton�

Of the formulas mentioned in the tables
 the ones most often used in practice are
probably LF
 UW �upwind�
 and LW �Lax�Wendro	� for hyperbolic equations
 and CN
and DF �DuFort�Frankel� for parabolic equations� However
 computational problems vary
enormously
 and these judgments should not be taken too seriously�

As with linear multistep formulas for ordinary di�erential equations
 it is useful to
have a notation for an arbitrary �nite di�erence formula for a partial di�erential equation�
The following is an analog of equation ���������

An s
step linear �nite di	erence formula is a scalar formula

sX
�
�

rX
�
��

���v
n����
j�� 	 � ��	�	���

for some constants f���g with ��� 		 �� ������ 		 � for some ��� and �r��� 		 � for some
��� If ��� 	 � for all 
 		 � the formula is explicit� whereas if ��� 		 � for some 
 		 �
it is implicit� Equation �������� also describes a vector
valued 
nite di�erence formula�
in this case each vnj is an N 
vector� each ��� is an N�N matrix� and the conditions
��� 		� become det��� 		��

The analogy between �������� �linear �nite di�erence formulas� and �������� �linear
multistep formulas� is imperfect� What has become of the quantities ffng in ��������

The answer is that �������� was a general formula that applied to any ODE de�ned by a
function f�u�t�
 possibly nonlinear� the word !linear" there referred to the way f enters into
the formula
 not to the nature of f itself� In ��������
 by contrast
 we have assumed that
the terms analogous to f�u�t� in the partial di�erential equation are themselves linear and
have been incorporated into the discretization� Thus �������� is more precisely analogous to
��������

EXERCISES


������ ������ Computations for Figure ������ The goal of this problem is to calculate the curves of
Figure ����� by �nite di�erence methods� In all parts below
 your mesh should extend over
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an interval ��M�M � large enough to be e�ectively in�nite� At the boundaries it is simplest
to impose the boundary conditions u��M�t�	u�M�t�	 ��

It will probably be easiest to program all parts together in a single collection of subroutines

which accepts various input parameters to control h
 k
M 
 choice of �nite di�erence formula

and so on� Note that parts �c�
 �f�
 and �g� involve complex arithmetic�

The initial function for all parts is u��x� 	maxf����jxjg
 and the computation is carried
to t	��

Please make your output compact by combining plots and numbers on a page wherever
appropriate�

�a� Lax
Wendro� for ut 	 ux� Write a program to solve ut 	 ux by the LW formula with
k	�h��
 h	�������� 	 	 	������ Make a table of the computed values v��	����
 and the
error in these values
 for each h� Make a plot showing the superposition of the results
�i�e� v�x���� for various h
 and comment�

�b� Euler for ut 	 uxx� Extend the program to solve ut 	 uxx by the EUxx formula with
k	�h���
 h	�������� 	 	 	 ������ Make a table listing v����� for each h� Plot the results
and comment on them�

�c� Euler for ut	 iuxx� Now solve ut	 iuxx by the EUxx formula modi�ed in the obvious
way
 with k	�h���
 h	�������� can you go further
 Make a table listing v����� for
each h� Your results will be unstable� Explain why this has happened by drawing a
sketch that compares the stability region of a linear multistep formula to the set of
eigenvalues of a spatial di�erence operator� �This kind of analysis is discussed in the
next section��

�d� Tridiagonal system of equations� To compute the answer more e ciently for the heat
equation
 and to get any answer at all for Schr#odinger$s equation
 it is necessary to use
an implicit formula
 which involves the solution of a tridiagonal system of equations at
each time step� Write a subroutine TRDIAG�n�c�d�e�b�x� to solve the linear system
of equations Ax 	 b
 where A is the n�n tridiagonal matrix de�ned by ai���i 	 ci

aii 	 di
 ai�i�� 	 ei� The method to use is Gaussian elimination without pivoting of
rows or columns�� if you are in doubt about how to do this
 you can �nd details in
many books on numerical linear algebra or numerical solution of partial di�erential
equations� Test TRDIAG carefully
 and report the solution of the system�B�

� � � �
� � � �
� � � �
� � � �

�CA
�B�
x�
x�
x	
x�

�CA	
�B�
�
��
��
��

�CA 	

�e� Crank
Nicolson for ut	uxx� Write down carefully the tridiagonal matrix equation that
is involved when ut 	 uxx is solved by the formula CN� Apply TRDIAG to carry out
this computation with k 	 �

�h
 h	 �������� 	 	 	 ������ Make a table listing v����� for
each h� Plot the results and comment on them�

�f� Crank
Nicolson for ut 	 iuxx� Now write down the natural modi�cation of CN for
solving ut	 iuxx� Making use of TRDIAG again
 solve this equation with k	 �

�h
 h	

�The avoidance of pivoting is justi�able provided that the matrix A is diagonally dominant� as it
will be in the examples we consider� Otherwise Gaussian elimination may be unstable� see Golub
� Van Loan� Matrix Computations� �nd ed�� Johns Hopkins� 	�
��
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�������� 	 	 	 ������ Make tables listing v����� and v����� for each h� Plot the results�
both Rev�x��� and jv�x���j
 superimposed on a single graph�and comment on them�
How far away does the boundary at x	M have to be to yield reasonable answers


�g� Arti
cial dissipation� In part �f� you may have observed spurious wiggles contaminating
the solution� These can be blamed in part on unwanted re�ections at the numerical
boundaries at x	
M 
 and we shall have more to say about them in Chapters � and ��
To suppress these wiggles
 try adding a arti�cial dissipation term to the right�hand
side of the �nite di�erence formula
 such as

a

h

��

�
vnj � huxx�xj � tn� ��	�	���

for some a� �� What choices of M and a best reproduce Figure �����d
 Does it help
to apply the arti�cial dissipation only near the boundaries x	
M



������ ������ Model equations with nonlinear terms� Our model equations develop some inter�
esting solutions if nonlinear terms are added� Continuing the above exercise
 modify your
programs to compute solutions to the following partial di�erential equations
 all de�ned in
the interval x� ������ and with boundary conditions u�
��	 �� Devise whatever strategies
you can think of to handle the nonlinearities successfully� such problems are discussed more
systematically in �

��

�a� Burgers� equation� ut	�
�
�u

��x��uxx� �� �� Consider a Lax�Wendro� type of formula
with
 say
 �	�	�
 and initial data the same as in Figure ������ How does the numerical
solution behave as t increases
 How do you think the exact mathematical solution
should behave


�b� Nonlinear heat equation� ut 	 uxx�eu� u�x��� 	 �� For this problem you will need a
variant of the Crank�Nicolson formula or perhaps the backward Euler formula� With
the aid of a simple adaptive time�stepping strategy
 generate a persuasive sequence of
plots illustrating the !blow�up" of the solution that occurs� Make a plot of ku��� t�k

�
�

the maximum value of u�as a function of t� What is your best estimate
 based on
comparing results with several grid resolutions
 of the time at which ku��� t�k

�
becomes

in�nite


�c� Nonlinear heat equation� ut	 uxx�u�� u�x���	 ��cos��x�� Repeat part �b� for this
new nonlinearity� Again
 with the aid of a simple adaptive time�stepping strategy

generate a persuasive sequence of plots illustrating the blow�up of the solution
 and
make a plot of ku��� t�k

�
as a function of t� What is your best estimate of the time at

which ku��� t�k
�
becomes in�nite


�d� Nonlinear Schr�odinger equation� ut 	 iuxx��juj�u� �� �� Take the initial data from
Figure ����� again� How does the solution behave as a function of t
 and how does the
behavior depend on �
 Again
 try to generate a good set of plots
 and estimate the
critical value of t if there is one�

�Spelling note ��� the name is �Burgers�� so one may write �Burgers� equation� but never �Burger�s
equation��
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�EUx 
 Euler�
��v
 ��v vn��j 
 vnj �

�
�
��vnj���v

n
j���

�BEx 
 Backward Euler�
��v
 ��v vn��j 
 vnj �

�
�
��vn��j�� �v

n��
j�� �

�CNx 
 Crank�Nicolson�
��v
����v vn��j 
 vnj �

�
�
��vnj���v

n
j����

�
�
��vn��j�� �v

n��
j�� �

LF 
 Leap frog
��v
 ��v vn��j 
 vn��j ���vnj���v

n
j���

BOXx 
 Box
���

�v
����v �����vn��j ������vn��j�� 
�����vnj ������vnj��

LF� 
 Fourth�order Leap frog
��v
 �

�
���h�v�

�
�
����h�v vn��j 
 vn��j � �

�
��vnj���v

n
j����

�
�
��vnj���v

n
j���

LXF 
 Lax�Friedrichs
�
k
�Z����v
 ��v vn��j 
 �

�
�vnj���vnj����

�
�
��vnj���v

n
j���

UW 
 Upwind
��v
 ��v vn��j 
 vnj ���vnj���v

n
j �

LW 
 Lax�Wendro� ���	��
��v
 ��v�

�
�
k�
�
v vn��j 
 vnj �

�
�
��vnj���v

n
j����

�
�
���vnj����vnj �vnj���

Table ��
��� Finite di�erence approximations for the �rst�order
wave equation ut � ux� with � � k�h� For the equation ut � aux�
replace � by �a in each formula� Names in parenthesis mark formu�
las that are not normally useful in practice� Orders of accuracy and
stability restrictions are listed in Table ������
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EUxx 
 Euler
��v
 �

�
v vn��j 
 vnj ���vnj����vnj �vnj���

BExx 
 Backward Euler �Laasonen� �����
��v
 �

�
v vn��j 
 vnj ���vn��j�� ��vn��j �vn��j�� �

CN 
 Crank�Nicolson ������
��v
���

�
v vn��j 
 vnj �

�
�
��vnj����vnj �vnj����

�
�
��vn��j�� ��vn��j �vn��j�� �

�LFxx 
 Leap frog�
��v
 �

�
v vn��j 
 vn��j ����vnj����vnj �vnj���

BOXxx 
 Box
�	
�
I� �

�
����

�v
���
�
v

CN� 
 Fourth�order Crank�Nicolson
��v
����

�
�
�
�h�� �

�
�
�
��h��v

DF 
 DuFort�Frankel ������
��v
h���K�����K���v vn��j 
 vn��j ����vnj����vn��j �vn��j ��vnj���

SA 
 Saul�ev ������

Table ��
�
� Finite di�erence approximations for the heat equation
ut � uxx� with � � k�h�� For the equation ut � auxx� replace � by
�a in each formula� Names in parenthesis mark formulas that are
not normally useful in practice� Orders of accuracy and stability
restrictions are listed in Table ������
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���� Spatial di�erence operators and the

method of lines

In designing a �nite di�erence method for a time�dependent partial dif�
ferential equation� it is often useful to divide the process into two steps� �rst�
discretize the problem with respect to space� thereby generating a system of
ordinary di�erential equations in t� next� solve this system by some discrete
method in time� Not all �nite di�erence methods can be analyzed this way�
but many can� and it is a point of view that becomes increasingly important
as one considers more di�cult problems�

EXAMPLE ������ For example
 suppose ut 	 ux is discretized in space by the approxi�
mation ��� ���x� Then the PDE becomes

vt 	 ��v� ��	�	��

where v represents an in�nite sequence fvj�t�g of functions of t� This is an in�nite system
of ordinary di�erential equations
 each one of the form

�vj
�t

	
�

�h
�vj���vj���	 ��	�	��

On a bounded domain the system would become �nite
 though possibly quite large�

A system of ordinary di�erential equations of this kind is known as a
semidiscrete approximation to a partial di�erential equation� The idea of
constructing a semidiscrete approximation and then solving it by a numerical
method for ordinary di�erential equations is known as the method of lines�
The explanation of the name is that one can think of fvj�t�g as an approxima�
tion to u�x�t� de�ned on an array of parallel lines in the x�t plane� as suggested
in Figure ������

x

v
���t�

v��t� v��t�

Figure ������ The �method of lines�
semidiscretization of a time�
dependent PDE�
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EXAMPLE ������ CONTINUED� Several of the formulas of the last section can be in�
terpreted as time�discretizations of ������� by linear multistep formulas� The Euler and
Backward Euler discretizations ������� and ������� give the Euler and Backward Euler for�
mulas listed in Table ������ The trapezoid rule ������� gives the Crank�Nicolson formula of
�������
 and the midpoint rule ������� gives the leap frog formula of �������� On the other
hand the upwind formula comes from the Euler discretization
 like the Euler formula
 but
with the spatial di�erence operator �� instead of ��� The Lax�Wendro� and Lax�Friedrichs
formulas do not �t the semidiscretization framework�

The examples just considered were �rst� and second�order accurate ap�
proximations with respect to t �the de�nition of order of accuracy will come
in x����� Higher�order time discretizations for partial di�erential equations
have also become popular in recent years� although one would rarely go so
far as the sixth� or eighth�order formulas that appear in many adaptive ODE
codes� The advantage of higher�order methods is� of course� accuracy� One
disadvantage is complexity� both of analysis and of implementation� and an�
other is computer storage� For an ODE involving a few dozen variables� there
is no great di�culty if three or four time levels of data must be stored� but
for a large�scale PDE
for example� a system of �ve equations de�ned on a
����������� mesh in three dimensions
the storage requirements become
quite large�

The idea of semidiscretization focuses attention on spatial di�erence op�
erators as approximations of spatial di�erential operators� It happens that
just as in Chapter �� many of the approximations of practical interest can be
derived by a process of interpolation� Given data on a discrete mesh� the idea
is as follows�

��� Interpolate the data	

�
� Di�erentiate the interpolant at the mesh points�
�������

In step �
� one di�erentiates once for a �rst�order di�erence operator� twice
for a second�order di�erence operator� and so on� The spatial discretizations
of many �nite di�erence and spectral methods �t the scheme �������� the vari�
ations among them lie in in the nature of the grid� the choice of interpolating
functions� and the order of di�erentiation�

EXAMPLE ������

First order of accuracy�� For example
 suppose data vj 
 vj�� are interpolated by a
polynomial q�x� of degree �� Then ��vj 	 qx�xj�� See Figure �����a�

�Unfortunately� the word �order� customarily refers both to the order of a di�erential or di�erence
operator� and to the order of accuracy of the latter as an approximation to the former� The reader
is advised to be careful�
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o

o

o

o

*
*

*

*

*

vj

vj��

xj��xj

vj
vj��

vj��

xj��xj�� xj

q�x�

q�x�

�a� 

 �b� 
�

Figure ����
� Derivation of spatial di�erence operators via polyno�
mial interpolation�

Second order of accuracy� Let data vj��
 vj 
 vj�� be interpolated by a polynomial q�x�
of degree �� Then ��vj 	 qx�xj� and ��vj 	 qxx�xj�� See Figure �����b�

Fourth order of accuracy� Let vj��
 vj��
 vj 
 vj��
 vj�� be interpolated by a polynomial

q�x� of degree �� Then qx�xj�	
�
	���h�vj�

�
	����h�vj 
 the fourth�order approximation listed

in Table ������

To proceed systematically� let x��x	� � � � �xnmax
be a set of arbitrary distinct

points of R � not necessarily uniformly spaced� Suppose we wish to derive the
coe�cients cmnj of all of the spatial di�erence operators centered at x� � of
orders ��m�mmax based on any initial subset x��x	� � � � �xn of these points�
That is� we want to derive all of the approximations

dmf

dxm
��� �

nX
j��

cmnjf�xj� ��m�mmax� mmax�n�nmax �������

in a systematic fashion� The following surprisingly simple algorithm for this
purpose was published by Bengt Fornberg in �Generation of �nite di�erence
formulas on arbitrarily spaced grids�� Math� Comp� �� ������� 	���
�	�
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FINITE DIFFERENCE APPROXIMATIONS ON AN ARBITRARY GRID

Theorem ���� Given mmax� � and nmax�mmax� the following algorithm
computes coe�cients of 
nite di�erence approximations in arbitrary distinct
points x�� � � � �xnmax

to �m��xm ���m�mmax� at x��� as described above�

c��� �� �� � �� �

for n �� � to nmax

� �� �

for j �� � to n��

� �� ��xn�xj�

if n�mmax then cnn�	�j �� �

for m �� � to min�n�mmax�

cmnj �� �xnc
m
n�	�j�mcm�	n�	�j���xn�xj�

for m �� � to min�n�mmax�

cmn�n �� ��mcm�	n�	�n�	�xn�	c
m
n�	�n�	���

� �� �

�The unde�ned quantities c�	n�	�j appearing for m�� may be taken to be ���

Proof� �Not yet written�

From this single algorithm one can derive coe�cients for centered� one�sided�
and much more general approximations to all kinds of derivatives� A number
are listed in Tables ����������� at the end of this section� see also Exercise
������

If the grid is regular� then simple formulas can be derived for these �nite
di�erence approximations� In particular� let D�p denote the discrete �rst�
order spatial di�erence operator obtained by interpolating vj�p� � � � �vj
p by a

polynomial q�x� of degree �p and then di�erentiating q once at xj � and letD
�m�
�p

be the analogous higher�order di�erence operator obtained by di�erentiating
m times� Then we have� for example�

D�� 
��h�� D
���
� � 


�
�h�� �������

and

D� �� �
�
��h�� 	

�
���h�� D
���
� �� �

�
��h�� 	
�
���h�� �����	�
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and

D� �� �
�
��h�� �

�
���h��
	
	�
���h�� �����
�

D
���
� �� �

�
��h�� �
�
���h��

	
	�
���h�� �������

The corresponding coe�cients appear explicitly in Table ������
The following theorem gives the coe�cients for �rst� and second�order

formulas of arbitrary order of accuracy�

CENTERED FINITE DIFFERENCE APPROXIMATIONS ON A REGULAR GRID

Theorem ��
� For each integer p� �� there exist unique 
rst�order and

second�order di�erence operators D�p and D
���
�p of order of accuracy �p that

utilize the points vj�p� � � � �vj
p� namely�

D�p ��
pX

j�	

�j 
��jh�� D
���
�p ��

pX
j�	

�j 
��jh�� �������

where

�j �� �����j
	
�

p

p�j

�	�
p�j

p

�
��

�����j
	�p���

�p�j�� �p�j��
� ��������

Proof� �Not yet written�

As p��� ������� and �������� have the following formal limits�

D
�

�� �
��h���
���h���
���h��		 	 � ��������

D���
�

�� �

�
�h���


�
��h���


�
��h��		 	 � ��������

These series look both in�nite and nonconvergent
unimplementable and pos�
sibly even meaningless� However� that is far from the case� In fact they are
precisely the �rst�order and second�order spectral di�erentiation opera�

tors for data de�ned on the in�nite grid hZ� The corresponding interpolation
processes involve trigonometric or sinc functions rather than polynomials�

��� Interpolate the data by sinc functions as in x
��	
�
� Di�erentiate the interpolant at the mesh points�

��������

As was described in x���� such a procedure can be implemented by a semidis�
crete Fourier transform� and it is well de�ned for all data v � ��h� The uses of
these operators will be the subject of Chapter 
�
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One useful way to interpret spatial di�erencing operators such as D�p is
in terms of convolutions� From �������� it is easy to verify that the �rst�order
operators mentioned above can be expressed as

D�v ��
�

h�
� 	 	 	 � � � 	

� � � 	
� � � � 	 	 	 �
v� ��������

D�v ��
�

h�
� 	 	 	 � � � 	

	�
�
� � � �

�
	
	� � � 	 	 	 �
v� ��������

���

D
�
v ��

�

h�
� 	 	 	 � 	

�
	
� � 	

� � � �� 	
� � 	

�
	
� 	 	 	 �
v ������	�

�recall Exercise ������� In each of these formulas the sequence in parentheses
indicates a grid function w� fwjg� with the zero in the middle representing
w�� Since w has compact support� except in the case D

�
� there is no problem

of convergence associated with the convolution�
Any convolution can also be thought of as multiplication by a Toeplitz

matrix
that is� a matrix with constant entries along each diagonal �aij �
ai�j�� For example� if v is interpreted as an in�nite column vector �� � � �v

�	�v��

v	� � � � � ��
T � then 
�v becomes the left�multiplication of v by the in�nite matrix

of the form


� ��
�

h

�BBBBBBBBB�

� 	
�

�	
� � 	

�

�	
� � 	

�

�	
� � 	

�

�	
� �

�CCCCCCCCCA
� ������
�

All together� there are at least �ve distinct ways to interpret the construc�
tion of spatial di�erence operators on a regular grid
all equivalent� but each
having its own advantages�

�� Approximation of di�erential operators� To the classical numerical
analyst� a spatial di�erence operator is a �nite di�erence approximation to a
di�erential operator�


� Interpolation� To the data �tter� a spatial di�erence operator is an ex�
act di�erential operator applied to an interpolatory approximant� as described
above� This point of view is basic to spectral methods� which are based on
global rather than local interpolants�

�� Convolution� To the signal processor� a di�erence operator is a convo�
lution �lter whose coe�cients happen to be chosen so that it has the e�ect of
di�erentiation�

�� Toeplitz matrix multiplication� To the linear algebraist� it is mul�
tiplication by a Toeplitz matrix� This point of view becomes central when
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problems of implementation of implicit formulas come up� where the matrix
de�nes a system of equations that must be solved�

�� Fourier multiplier� Finally� to the Fourier analyst� a spatial di�er�
ence operator is the multiplication of the semidiscrete Fourier transform by a
trigonometric function of �
which happens to approximate the polynomial
corresponding to a di�erential operator�


 
 


Going back to the method of lines idea of the beginning of this section� if
we view a �nite di�erence model of a partial di�erential equation as a system
of ordinary di�erential equations which is solved numerically� what can we say
about the stability of this system This viewpoint amounts to taking h 	 �
�xed but letting k vary� From the results of Chapter �� we would expect
meaningful answers in the limit k� � so long as the discrete ODE formula is
stable� On the other hand if k is �xed as well as h� the question of absolute
stability comes up� as in x��
� Provided that the in�nite size of the system of
ODEs can safely be ignored� we expect time�stability whenever the eigenvalues
of the spatial di�erence operator lie in the stability region of the ODE method�
In subsequent sections we shall determine these eigenvalues by Fourier analysis�
and show that their location often leads to restrictions on k as a function of h�

EXERCISES


 ������ Nonuniform grids� Consider an exponentially graded mesh on ����� with xj 	hsj 

s� �� Apply ������� to derive a ��point centered approximation on this grid to the �rst�order
di�erentiation operator �x�


������ ������ Fornberg�s algorithm� Write a brief program �either numerical or
 better
 symbolic�
to implement Fornberg$s algorithm of Theorem ���� Run the program in such a way as to
reproduce the coe cients of backwards di�erentiation formulas in Table ����� and equiva�
lently Table ������ What are the coe cients for !one�sided half�way point" approximation
of zeroth
 �rst
 and second derivatives in the points ����
 ���
 ���
 ���



 ������ Lax
Wendro� formula� Derive the Lax�Wendro� formula ������� via interpolation of
vnj��
 v

n
j and vnj�� by a polynomial q�x� followed by evaluation of q�x� at an appropriate

point�
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Table ������ Coe�cients for centered �nite di�erence approxima�
tions �from Fornberg��



���� THE METHOD OF LINES TREFETHEN ���� � ���

Table ����
� Coe�cients for centered �nite di�erence approxima�
tions at a �half�way� point �from Fornberg��
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Table ������ Coe�cients for one�sided �nite di�erence approxima�
tions �from Fornberg��
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���� Implicit formulas and linear algebra


This section is not yet written� but here is a sketch��

Implicit �nite di�erence formula lead to systems of equations to solve� If
the PDE is linear this becomes a linear algebra problem Ax� b� while if it is
nonlinear an iteration will possibly be required that involves a linear algebra
problem at each step� Thus it is hard to overstate the importance of linear
algebra in the numerical solution of partial di�erential equations�

For a �nite di�erence grid involving N points in each of d space dimen�
sions� A will have dimension !�Nd� and thus !�N�d� entries� Most of these are
zero� the matrix is sparse� If there is just one space dimension� A will have a
narrow band�width and Ax� b can be solved in !�N� operations by Gaussian
elimination or related algorithms� Just a few remarks about solutions of this
kind� � � � First� if A is symmetric and positive de�nite� one normally preserves
this form by using the Cholesky decomposition� Second� unless the matrix
is positive de�nite or diagonally dominant� pivoting of the rows is usually
essential to ensure stability�

When there are two or more space dimensions the band�width is larger
and the number of operations goes up� so algorithms other than Gaussian
elimination become important� Here are some typical operation counts �orders
of magnitude� for the canonical problem of solving the standard �ve�point
Laplacian �nite�di�erence operator on a rectangular domain� For the iterative
methods� � denotes the accuracy of the solution� typically log� � !�logN��
and we have assumed this in the last line of the table�

Algorithm �D �D �D

Gaussian elimination N� N� N�

banded Gaussian elimination N N� N�

Jacobi or Gauss�Seidel iteration N� log� N� log � N� log�

SOR iteration N� log� N� log � N� log�

conjugate gradient iteration N� log� N� log � N� log�

preconditioned CG iteration N log� N��� log� N�� log�

nested dissection N N� N�� log�

fast Poisson solver N logN N� logN N� logN

multigrid iteration N log� N� log � N� log�

�full� multigrid iteration N N� N�
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These algorithms vary greatly in how well they can be generalized to vari�
able coe�cients� di�erent PDEs� and irregular grids� Fast Poisson solvers are
the most narrowly applicable and multigrid methods� despite their remarkable
speed� the most general� Quite a bit of programming e�ort may be involved
in multigrid calculations� however�

Two observations may be made about the state of linear algebra in scien�
ti�c computing nowadays� First� multigrid methods are extremely important
and becoming ever more so� Second� preconditioned conjugate gradient �CG�
methods are also extremely important� as well as other preconditioned itera�
tions such as GMRES� BCG� and QMR for nonsymmetric matrices� These are
often very easy to implement� once one �nds a good preconditioner� and can
be spectacularly fast� See Chapter ��
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���� Fourier analysis of

	nite di�erence formulas

In x��� we noted that a spatial di�erence operator D can be interpreted as
a convolution� Dv� a
v for some a with compact support� By Theorem ����
it follows that if v � ��h� then dDv���� da
v���� �a����v���� This fact is the basis
of Fourier analysis of �nite di�erence methods� In this section we shall work
out the details for scalar one�step �nite di�erence formulas �s�� in ����������
treating �rst explicit formulas and then implicit ones� The next section will
extend these developments to vector and multistep formulas��

To begin in the simplest setting� consider an explicit� scalar� one�step
�nite di�erence formula

vn
	j �� Svnj ��
rX

���	

��v
n
j
�� �������

where f��g are �xed constants� The symbol S denotes the operator that

maps vn to vn
	� In this case of an explicit formula� S is de�ned for arbitrary
sequences v� and by ������� we have

Sv �� a
v� a� ��
�

h
��
���� �������

To be able to apply Fourier analysis� however� let us assume v � ��h� which
implies Sv � ��h also since S is a �nite sum� Then Theorem ��� gives

cSv��� �� da
v��� �� �a����v���� �������

EXAMPLE ��
��� Upwind formula for ut 	 ux� The upwind formula �Table ������ is
de�ned by

vn��
j �	 Svnj �	 vnj ���v

n
j���vnj �� ��	�	��

where �	 k�h� By ������� or �������
 this is equivalent to Sv	 a�v with

aj �	


���������

�

h
� if j	��


�

h
����� if j	�


� otherwise�

�A good reference on the material of this section is the classic monograph by R� D� Richtmyer and
K� W� Morton� Di�erence Methods for Initial�Value Problems� 	���� Chapters � and ��
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By �������
 the Fourier transform is

%a��� �	 h�e�i�x��a
���e

�i�x
�a�� �	 �ei�h������	

The interpretation of �a��� is simple� it is the ampli�cation factor by
which the component in v of wave number � is ampli�ed when the �nite dif�
ference operator S is applied� Often we shall denote this ampli�cation factor
simply by g���� a notation that will prove especially convenient for later gen�
eralizations�

To determine g��� for a particular �nite di�erence formula� one can always
apply the de�nition above� �nd the sequence a� then compute its Fourier
transform� This process is unnecessarily complicated� however� because of a
factor h that is divided out and then multiplied in again� and also a pair
of factors �� in the exponent and the subscripts that cancel� Instead� as a
practical matter� it is simpler �and easier to remember� to insert the trial
solution vnj � gnei�jh in the �nite di�erence formula and see what expression
for g� g��� results�

EXAMPLE ��
��� CONTINUED� To derive the ampli�cation factor for the upwind
formula more quickly
 insert vnj 	 gnei�jh in ������� to get

gn��ei�jh �	 gn
�
ei�jh���ei��j���h�ei�jh�

�
�

or after factoring out gnei�jh

g��� �	 ����ei�h���	 ��	�	��

EXAMPLE ��
��� Lax
Wendro� formula for ut	ux� The Lax�Wendro� formula �Table
������ is de�ned by

vn��
j �	 Svnj �	 vnj �

�
���v

n
j���vnj����

�
��

��vnj����v
n
j �v

n
j���	 ��	�	��

Inserting vnj 	 gnei�jh and dividing by the common factor gnei�jh gives

g��� �	 �� �
���e

i�h�e�i�h�� �
��

��ei�h���e�i�h�	

The two expressions in parentheses come up so often in Fourier analysis of �nite di�erence
formulas that it is worth recording what they are equivalent to�

ei�h�e�i�h �	 �isin�h� ��	�	��

ei�h���e�i�h	�cos�h�� �	 ��sin�
�h

�
	 ��	�	��

The ampli�cation factor function for the Lax�Wendro� formula is therefore

g��� �	 �� i�sin�h���� sin�
�h

�
	 ��	�	��
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EXAMPLE ��
��� Euler formula for ut	uxx� As an example involving the heat equation

consider the Euler formula of Table �����


vn��
j �	 Svnj �	 vnj �
�v

n
j����v

n
j �v

n
j���� ��	�	���

where 
	 k�h�� By �������
 insertion of vnj 	 gnei�jh gives

g��� �	 ���
 sin�
�h

�
	 ��	�	���

Now let us return to generalities� Since g���� �a��� is bounded as a func�

tion of �� ������� implies the bound kcSvk� k�a�vk�k�ak
�
k�vk �by ��������� hence

kSvk�k�ak
�
kvk �by ��������� where k�ak

�
denotes the �sup�norm�

k�ak
�

�� max
����
�h�
�h�

j�a���j� ��������

Thus S is a bounded linear operator from ��h to ��h� Moreover� since �v���
could be chosen to be a function arbitrarily narrowly peaked near a wave
number �� with j�a����j� k�ak

�
� this inequality cannot be improved� Therefore

kSk �� k�ak
�
� ��������

The symbol kSk denotes the operator ��h�
�norm of S� that is� the norm on
the operator S � ��h� ��h induced by the usual norm ������� on ��h �see Appendix
B��

kSk �� sup
v�	�

h

kSvk
kvk � ��������

Repeated applications of the �nite di�erence formula are de�ned by vn�

Snv�� and if v� � ��h� then cvn��� � ��a����ncv����� Since �a��� is just a scalar
function of �� we have

k��a����nk
�

�� max
�

�j�a���jn� �� �max
�
j�a���j�n �� �k�ak

�
�n�

and therefore by the same argument as above�

kvnk� �k�ak
�
�nkv�k

and
kSnk �� �k�ak

�
�n� ��������

A comparison of �������� and �������� reveals that if S is the �nite dif�
ference operator for an explicit scalar one�step �nite di�erence formula� then
kSnk� kSkn� In general� however� bounded linear operators satisfy only the
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inequality kSnk � kSkn� and this will be the best we can do when we turn
to multistep �nite di�erence formulas or to systems of equations in the next
section�

The results above can be summarized in the following theorem�

FOURIER ANALYSIS OF

EXPLICIT SCALAR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� The scalar 
nite di�erence formula ������� de
nes a bound�
ed linear operator S � ��h� ��h� with

kSnk �� k�ank
�

�� �k�ak
�
�n for n� �� ������	�

If v� � ��h and vn�Snv�� then

cvn��� �� ��a����ncv����� ������
�

vnj ��
�

��

Z 
�h

�
�h
ei�xj ��a����ncv����d�� ��������

and
kvnk� �k�ak

�
�nkv�k� ��������

Proof� The discussion above together with Theorem ����

Now let us generalize this discussion by considering an arbitrary one�step
scalar �nite di�erence formula� which may be explicit or implicit� This is the
special case of �������� with s��� de�ned as follows�

A one�step linear �nite di�erence formula is a formula

rX
���	

��v
n
	
j
� ��

rX
���	

��v
n
j
� ��������

for some constants f��g and f��g with �� �� �� If �� � � for � �� � the
formula is explicit� while if �� ��� for some � ��� it is implicit�

Equation ������� is the special case of �������� with �� � �� �� � � for � �� ��

Again we wish to use �������� to de�ne an operator S � vn �� vn
	� but now
we have to be more careful� Given any sequence vn� �������� amounts to an
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in�nite system of linear equations for the unknown sequence vn
	� In the
terms of the last section� we must solve

Bvn
	 �� Avn ��������

for vn
	� where A and B are in�nite Toeplitz matrices� But before the operator
S will be well�de�ned� we must make precise what it means to do this�

The �rst observation is easy� Given any sequence vn� the right�hand side
of �������� is unambiguously de�ned since only �nitely many numbers �� are

nonzero� Likewise� given any sequence vn
	� the left�hand side is unambigu�
ously de�ned� Thus for any pair vn� vn
	� there is no ambiguity about whether
or not they satisfy ��������� it is just a matter of whether the two sides are
equal for all j� We can write �������� equivalently as

b
vn
	 �� a
vn ��������

for sequences a� �
�

h
�
��� b� �

�

h
�
��� there is no ambiguity about what it

means for a pair vn� vn
	 to satisfy ���������
The di�culty comes when we ask� given a sequence vn� does there exist

a unique sequence vn
	 satisfying �������� In general the answer is no� as is
shown by the following example�

EXAMPLE ��
��� Crank
Nicolson for ut	uxx� The Crank�Nicolson formula ������� is

vn��
j �vnj �	

�
�
�v

n
j����v

n
j �v

n
j����

�
�
�v

n��
j�� ��v

n��
j �vn��

j�� �� ��	�	���

where 
	 k�h�� Suppose vn is identically zero� Then the formula reduces to

vn��
j�� �����

�



�vn��

j �vn��
j�� �	 �	 ��	�	���

One solution of this equation is vn��
j 	� for all j
 and this is the !right" solution as far as

applications are concerned� But �������� is a second�order recurrence relation with respect
to j
 and therefore it has two linearly independent nonzero solutions too
 namely vn��

j 	�j 

where � is either root of the characteristic equation

�������
�



���� �	 �	 ��	�	���

Thus solutions to implicit �nite di�erence formulas on an in�nite grid may
be nonunique� In general� if the nonzero coe�cients at level n�� extend over
a range of J�� grid points� there will be a J�dimensional space of possible
solutions at each step� In a practical computation� the grid will be truncated
by boundaries� and the nonuniqueness will usually disappear� However� from
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a conceptual point of view there is a more basic observation to be made� which
has relevance even to �nite grids� the �nite di�erence formula has a unique
solution in the space ��h�

To make this precise we need the following assumption� which is satis�ed
for the �nite di�erence formulas used in practice� Let �b��� denote� as usual�
the Fourier transform of the sequence b�

Solvability Assumption for implicit scalar one�step 
nite di�erence for�
mulas�

�b��� ��� for � � "���h���h#� ������	�

Since �b��� is ���h�periodic� this is equivalent to the assumption that �b��� ���
for all � �R � It is also equivalent to the statement that no root � of the char�
acteristic equation analogous to �������� lies on the unit circle in the complex
plane�

Now suppose vn and vn
	 are two sequences in ��h that satisfy ���������
Then Theorem ��� implies

�b��� dvn
	��� �� �a���cvn���� ������
�

or by the solvability assumption�

dvn
	��� �� g���cvn���� ��������

where

g��� ��
�a���
�b���

� ��������

Since g��� is a continuous function on the compact set "���h���h#� it has
a �nite maximum

kgk
�

�� max
����
�h�
�h�

������a����b���

�������� ��������

Now a function in ��h is uniquely determined by its Fourier transform� There�
fore �������� implies that for any vn � ��h� there is at most one solution vn
	 � ��h
to ��������� On the other hand obviously such a solution exists� since ��������
tells how to construct it�

We have proved that if �b satis�es the solvability assumption ������	�� then
for any vn � ��h� there exists a unique vn
	 � ��h satisfying ��������� In other
words� �������� de�nes a bounded linear operator S � vn �� vn
	�

This and related conclusions are summarized in the following generaliza�
tion of Theorem ����
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FOURIER ANALYSIS OF

IMPLICIT SCALAR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� If the solvability assumption �����
�� holds� then the im�
plicit 
nite di�erence formula �����
�� de
nes a bounded linear operator
S � ��h� ��h� with

kSnk �� kgnk
�

�� �kgk
�
�n for n� �� ��������

where g���� �a�����b���� If v� � ��h and vn�Snv�� then

cvn��� �� �g����ncv����� ��������

vnj ��
�

��

Z 
�h

�
�h
ei�xj �g����n�v���d�� ��������

and
kvnk� �kgk

�
�nkv�k� ��������

In principle� the operator S might be implemented by computing a semi�
discrete Fourier transform� multiplying by �a�����b���� and computing the in�
verse transform� In practice� an implicit formula will be applied on a �nite
grid and its implementation will usually be based on solving a �nite linear
system of equations� But as will be seen in later sections� sometimes the best
methods for solving this system are again based on Fourier analysis�

EXAMPLE ��
��� CONTINUED� As with explicit formulas
 the easiest way to calculate
ampli�cation factors of implicit formulas is by insertion of the trial solution vnj 	 gnei�jh�
For the implicit Crank�Nicolson model of ��������
 by �������
 this leads to

g��� �	 ���
 sin�
�h

�
��
g���sin�

�h

�
�

that is


g��� 	
%a���

%b���
	
���
 sin� �h

�

���
 sin� �h
�

� ��	�	���

where again 
	 k�h�� Since the denominator %b��� is positive for all �
 the Crank�Nicolson
formula satis�es the solvability assumption ��������
 regardless of the value of 
�

EXERCISES


 ������ Ampli
cation factors� Calculate the ampli�cation factors for the �a� Euler
 �b� Crank�
Nicolson
 �c� Box
 and �d� Lax�Friedrichs models of ut	ux� For the implicit formulas
 verify
that the solvability assumption is satis�ed�
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��
� Fourier analysis of

vector and multistep formulas

It is not hard to extend the developments of the last section to vector or multistep
�nite di�erence formulas� Both extensions are essentially the same
 for we shall reduce
a multistep scalar formula to a one�step vector formula
 in analogy to the reduction of
higher�order ordinary di�erential equations in x��� and of linear multistep formulas in x����

It is easiest to begin with an example and then describe the general situation�

EXAMPLE ������ Leap frog for ut	ux� The leap frog formula ������� is

vn��
j �	 vn��j ���vnj���vnj���	 ��	�	��

Let wn	 fwn
j g be the vector�valued grid function de�ned by

wn
j �	

�
vnj

vn��j

�
	 ��	�	��

Then the leap frog formula can be rewritten as�
vn��
j

vnj

�
	

�
�� �

� �

��
vnj��

vn��j��

�
�

�
� �

� �

��
vnj

vn��j

�
�

�
� �

� �

��
vnj��

vn��j��

�
�

that is


wn��
j �	 �

��w
n
j�����w

n
j ���w

n
j���

where

�
�� �	

�
�� �

� �

�
� �� �	

�
� �

� �

�
� �� �	

�
� �

� �

�
	 ��	�	��

Equivalently


wn�� �	 a�wn�

where a is the in�nite sequence of ��� matrices with a�	h���
�� �x����� For w

n � ���h�
N

�the set of N �vector sequences with each component sequence in ��h�
 we then have

dwn����� �	 %a���cwn���	

As described in x���
 all of these transforms are de�ned componentwise� From ������� we
get

%a��� �	

�
�i�sin�h �

� �

�
	 ��	�	��
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This is the ampli�cation matrix %a��� or G��� for leap frog
 and values at later time steps
are given by cwn �	 �%a����ncw�	

In general� an arbitrary explicit or implicit� scalar or vector multistep
formula �������� can be reduced to the one�step form ��������� where each vj
is an N �vector and each �� or �� is an N�N matrix� for a suitable value N �
The same formula can also be written in the form ��������� if B and A are
in�nite Toeplitz matrices whose elements are N�N matrices �i�e�� A and B
are tensors�� or in the form ��������� if a and b are sequences of N�N matrices�
The condition ������	� becomes

Solvability Assumption for implicit vector one�step 
nite di�erence for�
mulas�

det �b��� ��� for � � "���h���h#� ���	���

The ampli�cation matrix for the �nite di�erence formula is

G��� �� "�b���#�	"�a���#� ���	�	�

and as before� the �nite di�erence formula de�nes a bounded linear operator
on sequences of N �vectors in ���h�

N �
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FOURIER ANALYSIS OF

IMPLICIT VECTOR ONE�STEP FINITE DIFFERENCE FORMULAS

Theorem ���� If the solvability assumption ������� holds� the implicit
vector 
nite di�erence formula �����
�� de
nes a bounded linear operator
S � ���h�

N � ���h�
N � with

kSnk �� kGnk
�
� �kGk

�
�n for n� �� ���	�	�

where G���� "�b���#�	�a���� If v� � ���h�
N and vn�Snv�� then

cvn��� �� �G����ncv����� ���	�
�

vnj ��
�

��

Z 
�h

�
�h
ei�xj �G����n�v���d�� ���	���

and
kvnk� �kGk

�
�nkv�k� ���	���

In ���	�	� and ���	���� kGk
�

is the natural extension of ������� to the matrix�
valued case� it denotes the maximum

kGk
�

�� max
����
�h�
�h�

kG���k�

where the norm on the right is the matrix ��norm �largest singular value� of
an N�N matrix� The formula kSnk� kSkn is no longer valid in general for
vector �nite di�erence formulas�

EXERCISES


 ��	��� Ampli
cation matrices� Calculate the ampli�cation matrices for the �a� DuFort�
Frankel and �b� fourth�order leap frog formulas of x���� Be sure to describe precisely what
one�step vector �nite di�erence formula your ampli�cation matrix is based upon�
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