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This chapter begins our study of time-dependent partial differential equa-
tions, whose solutions vary both in time, as in Chapter 1, and in space, as
in Chapter 2. The simplest approach to solving partial differential equations
numerically is to set up a regular grid in space and time and compute approx-
imate solutions on this grid by marching forwards in time. The essential point
is discretization.

Finite difference modeling of partial differential equations is one of several
fields of science that are concerned with the analysis of regular discrete struc-
tures. Another is digital signal processing, already mentioned in Chapter 1,
where continuous functions are discretized in a similar fashion but for quite
different purposes. A third is crystallography, which investigates the behav-
ior of physical structures that are themselves discrete. The analogies between
these three fields are close, and we shall occasionally point them out. The
reader who wishes to pursue them further is referred to Discrete-Time Signal
Processing, by A. V. Oppenheim and R. V. Schafer, and to An Introduction
to Solid State Physics, by C. Kittel.

This chapter will describe five different ways to look at finite difference
formulas—as discrete approximations to derivatives, as convolution filters, as
Toeplitz matrices, as Fourier multipliers, and as derivatives of polynomial in-
terpolants. Each of these points of view has its advantages, and the reader
should become comfortable with all of them.

The field of partial differential equations is broad and varied, as is in-
evitable because of the great diversity of physical phenomena that these equa-
tions model. Much of the variety is introduced by the fact that practical
problems usually involve one or more of the following complications:

» multiple space dimensions,

* systems of equations,

* boundaries,

* variable coefficients,

* nonlinearity.
To begin with, however, we shall concentrate on a simple class of problems:
“pure” finite difference models for linear, constant-coefficient equations on
an infinite one-dimensional domain. The fascinating phenomena that emerge

from this study turn out to be fundamental to an understanding of the more
complicated problems too.
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3.1. Scalar model equations

Partial differential equations fall roughly into three great classes, which
can be loosely described as follows:

elliptic — time-independent,
parabolic — time-dependent and diffusive,

hyperbolic — time-dependent and wavelike; finite speed of propagation.

In some situations, this trichotomy can be made mathematically precise, but
not always, and we shall not worry about the rigorous definitions. The reader
is referred to various books on partial differential equations, such as those by
John, Garabedian, or Courant and Hilbert. There is a particularly careful dis-
cussion of hyperbolicity in G. B. Whitham’s book Linear and Nonlinear Waves.
For linear partial differential equations in general, the state of the art among
pure mathematicians is set forth in the four-volume work by L. Hormander,
The Analysis of Linear Partial Differential Operators.

Until Chapter 9, we shall consider only time-dependent equations.

The simplest example of a hyperbolic equation is

Uy = Uy, (3.1.1)

the one-dimensional first-order wave equation, which describes advection
of a quantity u(z,t) at the constant velocity —1. Given sufficiently smooth
initial data u(z,0) =ugy(z), (3.1.1) has the solution

u(x,t) = ug(z+1), (3.1.2)

as can be verified by inserting (3.1.2) in (3.1.1); see Figure 3.1.1b. This solution
is unique. The propagation of energy at a finite speed is characteristic of
hyperbolic partial differential equations, but this example is atypical in having
all of the energy propagate at exactly the same finite speed.

The simplest example of a parabolic equation is

Up = Ugy, (313)

the one-dimensional heat equation, which describes diffusion of a quan-
tity such as heat or salinity. In this book u,, denotes the partial derivative
0%*u/0x?, and similarly with u,,,, u,;, and so on. For an initial-value problem
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Figure 3.1.1. Evolution to t =1 of (a) hat-shaped initial data under
(b) the wave equation (3.1.1), (¢) the heat equation (3.1.3), and (d)
the Schrodinger equation (3.1.5) (the real part is shown).

defined by (3.1.3) and sufficiently well-behaved initial data u(z,0) =ug(x), the
solution

u(e,t) =5 [ &g (6)de

T J—00

1 00 2
_ —(z—s)"/4t d 3.14
= e ug(s)ds 1.
=/ o(5) (3.1.4)
can be derived by Fourier analysis.* Physically, (3.1.4) asserts that the os-
cillatory component in the initial data of wave number £ decays at the rate

=€’ because of diffusion, which is what one would expect from (3.1.3). See
Figure 3.1.1c. Incidentally, (3.1.4) is not the only mathematically valid solu-
tion to the initial-value problem for (3.1.3). To make it unique, restrictions on
u(x,t) must be added such as a condition of boundedness as |x| — co. This
phenomenon of nonuniqueness is typical of parabolic partial differential equa-
tions, and results from the fact that (3.1.3) is of lower order with respect to ¢
than x, so that ug(x) constitutes data on a “characteristic surface.”

A third model equation that we shall consider from time to time is the
one-dimensional Schrodinger equation,

Up = Uy, (3.1.5)

*In fact, it was Joseph Fourier who first derived the heat equation equation in 1807. He then invented
Fourier analysis to solve it.
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which describes the propagation of the complex state function in quantum
mechanics and also arises in other fields such as underwater acoustics. Just
as with the heat equation, the solution to the Schrodinger equation can be
expressed by an integral,

u(est)= o [ i (6 de

™ J—00

1 0 i(w—s)?/4t
\/m/_ooe ug(s)ds, (3.1.6)
but the behavior of solutions to this equation is very different. Schrodinger’s
equation is not diffusive but dispersive, which means that rather than de-
caying as t increases, solutions tend to break up into oscillatory wave packets.
See Figure 3.1.1d.

Of course (3.1.1), (3.1.3), and (3.1.5) can all be modified to incorporate
constant factors other than 1, so that they become u, = au,, u; = au,,, v, =
tau,,. This affects the speed of advection, diffusion, or dispersion, but not the
essential mathematics. The constant can be eliminated by a rescaling of = or
t, so we omit it in the interests of simplicity (Exercise 3.1.1).

The behavior of our three model equations for a hat-shaped initial function
is illustrated in Figure 3.1.1. The three waves shown there are obviously
very different. In (b), nothing has happened except advection. In (c¢), strong
dissipation or diffusion is evident: sharp corners have been smoothed. The
Schrodinger result of (d) exhibits dispersion: oscillations have appeared in
an initially non-oscillatory problem. These three mechanisms of advection,
dissipation, and dispersion are central to the behavior of partial differential
equations and their discrete models, and together account for most linear
phenomena. We shall focus on them in Chapter 5.

Since many of the pages ahead are concerned with Fourier analysis of
finite difference and spectral approximations to (3.1.1), (3.3.3), and (3.1.5), we
should say a few words here about the Fourier analysis of the partial differential
equations themselves. The fundamental idea is that when an equation is linear
and has constant coefficients, it admits “plane wave” solutions of the form

u(z,t) = eGrtwt) (EeR, weC, (3.1.7)

where ¢ is again the wave number and w is the frequency. Another way to
put it is to say that if the initial data u(z,0) = e’6% are supplied to an equation
of this kind, then there is a solution for ¢ > 0 consisting of u(x,0) multiplied by
an oscillatory factor e®?. The difference between various equations lies in the
different values of w they assign to each wave number &, and this relationship,

w = w(§), (3.1.8)
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is known as the dispersion relation for the equation. For first-order examples
it might better be called a dispersion function, but higher-order equations
typically provide multiple values of w for each &, and so the more general term
“relation” is needed. See Chapter 5.

It is easy to see what the dispersion relations are for our three model
scalar equations. For example, substituting e’¢*+t%) into (3.1.1) gives iw = i€,
or simply w=¢&. Here are the three results:

up=uy: w=E, (3.1.9)
Up=Upy: w=1E%, (3.1.10)
Up =iy, w=—E (3.1.11)

Notice that for the wave and Schrodinger equations, w € R for z € R; these
equations conserve energy in the L? norm. For the heat equation, on the
other hand, the frequencies are complex: every nonzero £ € R has Imw > 0,
which by (3.1.7) corresponds to an exponential decay, and the L? energy is
not conserved.*

The solutions (3.1.4) and (3.1.6) can be derived by Fourier synthesis from
the dispersion relations (3.1.10) and (3.1.11). For example, for the heat equa-
tion, (3.1.10) and (2.1.6) imply

ule,t) = o [ iy (©)ag

27 J—o0
1 o0 . o0 e !

= —/ e’&”_gt/ e~ 8T (") da de. (3.1.12)
21 J—0 —00

From here to (3.1.4) is just a matter of algebra.

Equations (3.1.1), (3.1.3), and (3.1.5) will serve as our basic model equa-
tions for investigating the fundamentals of finite-difference and spectral meth-
ods. This may seem odd, since in all three cases the exact solutions are known,
so that numerical methods are hardly called for. Yet the study of numerical
methods for these equations will reveal many of the issues that come up repeat-
edly in more difficult problems. In some instances the reduction of complicated
problems to simple models can be made quite precise. For example, a hyper-
bolic system of partial differential equations is defined to be one that can be
locally diagonalized into a collection of problems of the form (3.1.1); see Chap-
ter 6. In other instances the guidance given by the model equations is more
heuristic.

*The backwards heat equation u; = —u,, has the dispersion relation w = —i§2, and its solutions
blow up at an unbounded rate as as ¢t increases unless the range of wave-numbers present is limited.
The initial-value problem for this equation is ill-posed in L.
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EXERCISES

> 3.1.1. Show by rescaling = and/or ¢ that the constants a and b can be eliminated in: (a)
Up = AUy, (b) Uy = bumm’ (C) Up = AUy +buacac

> 3.1.2. Consider the second-order wave equation u, =u,,
(a) What is the dispersion relation? Plot it in the real {&—w plane, and be sure to show all
values of w for each &.
(b) Verify that the function u(z,t) = [f(z+t)+ f(z—t) ]+ f“t )ds is the solution
corresponding to initial data u(x,0) = f(z), u,(x,0) =

> 3.1.3.

(a) Verify that (3.1.4) and (3.1.6) represent solutions to (3.1.3) and (3.1.5)—both differen-
tial equation and initial conditions.
(b) Fill in the derivation of (3.1.4)—i.e., justify the second equals sign.

> 3.1.4. Derive a Fourier integral representation of the solution (3.1.2) to the initial-value
problem u, = u,, u(z,0) = uy(x).

> 3.1.5.
(a) If (3.1.4) is written as a convolution u(z,t) = uy(x) * hyy)(z), what is hyy(z)? (This
function is called the heat kernel.)
(b) Prove that if ug(z) is a continuous function with compact support, then the resulting
solution u(x,t) to the heat equation is an entire function of x for each ¢ > 0.
(c) Outline a proof of the Weierstrass approximation theorem: if f is a continuous

function defined on an interval [a,b], then for any e > 0, there exists a polynomial p(z)
such that | f(z) —p(z)| <€ for z € [a,b].

B 3.1.6. Method of characteristics. Suppose u, = a(z,t)u, and u(z,0) = uy(z) for z € R
and t > 0, where a(z,t) is a smoothly varying positive function of x and ¢. Then u(z,t) is
constant along characteristic curves with slope —1/a(z,t):

L u(z,t)
Figure 3.1.2

T

(a) Derive a representation for «(0,1) as the solution to an ODE initial-value problem.

(b) Find u(0,1) to five-digit accuracy for the problem u, = el +1)(1Fc0s3z)y 4y(3 0) =
Plot the appropriate characteristic curve.

(c) Find u(0,1) to five-digit accuracy for the same equation defined on the interval z €
[—1,1] with right-hand boundary condition u(1,t) =1+¢. Plot the appropriate charac-
teristic curve.
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3.2. Finite difference formulas

Let h >0 and k>0 be a fixed space step and time step, respectively, and set z; = jh
and ¢, =nk for any integers j and n. The points (:rj,tn) define a regular grid or mesh in
two dimensions, as shown in Figure 3.2.1—formally, the subset hZ X kZ of R?. For the rest
of this book our aim is to approximate continuous functions u(z,t) by grid functions vy,

v u(z),t,). (3.2.1)

The notation v(z;,t,) = v} will also be convenient, and we shall sometimes write v™ or v(t,,)
to represent the spatial grid function {v}'}, j € Z, for a fixed value n.

X X X X X X X
X X X X X X X 1k
X X X X X X X
X X X X X hx X

Figure 3.2.1. Regular finite difference grid in = and t.

The purpose of discretization is to obtain a problem that can be solved by a finite
procedure. The simplest kind of finite procedure is an s-step finite difference formula,
which is a fixed formula that prescribes U?"'l as a function of a finite number of other grid
values at time steps n+1—s through n (explicit case) or n+1 (implicit case). To compute
an approximation {v}'} to u(z,t), we shall begin with initial data v0,...,v°7!, and then
compute values v®,v°+t! ... in succession by applying the finite difference formula. This
process is sometimes known as marching with respect to t.

A familiar example of a finite difference model for the first-order wave equation (3.1.1)
is the leap frog (LF) formula,

1 1

LF: o (ft! =7l = ﬁ(U;LH —vly). (3.2.2)

This equation can be obtained from (3.1.1) by replacing the partial derivatives in z and ¢ by
centered finite differences. The analogous leap frog type approximation to the heat equation
(3.1.3) is
1 - 1 n n n

LF,,: o5 (U;.H'1 —vj b= 72 (V1 — 207 + i ). (3.2.3)
However, we shall see that this formula is unstable. A better approximation is the Crank-
Nicolson* (CN) formula,

1 171

1
. n+1 _ n+1 n+1 n+1
CN: %(ijr —of) = 372 (vy+1—2u§l+v;‘,1)+—h2 (i =207+ )|, (3:2.4)

*Spelling note #1: the name is “Nicolson”, not “Nicholson”.
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which is said to be implicit, since it couples together the values U?"'l at the new time step
and therefore leads to a system of equations to be solved. In contrast, leap frog formulas
are explicit. One can also define a CN formula for (3.1.1), namely

1 171

N,: — (" ) = 2 | —
¢ (i =vi) =3 |3,

1
@ L j (Vi1 —vi_1) + 57 (=™ tH], (3.2.5)

2h Jj+1 j—1

but we shall see that since explicit formulas such as LF are stable for (3.1.1), and easier to
implement, an implicit formula like (3.2.5) has little to recommend it in this case. Another
famous and extremely important explicit approximation for u, =u, is the Lax-Wendroff
formula, discovered in 1960:

1 1 k
LW: z (U;’Jrl —v}) = o (Vi1 —vig)+ Q—hQ(U;L“ —2v} +vi ). (3.2.6)
The second term on the right is the first we have encountered whose function is not imme-
diately obvious; we shall see later that it raises the order of accuracy from 1 to 2. We shall
see also that although the leap frog formula may be suitable for linear hyperbolic problems
such as arise in acoustics, the nonlinear hyperbolic problems of fluid mechanics generally
require a formula like Lax-Wendroff that dissipates energy at high wave numbers.

We shall often use acronyms such as LF, CN, and LW to abbreviate the names of
standard finite difference formulas, as above, and subscripts = or zx will be added sometimes
to distinguish between a model of the wave equation and a model of the heat equation. For
the formulas that are important in practice we shall usually manage to avoid the subscripts.

Of the examples above, as already mentioned, LF and CN are important in practice,
while LF,, and CN, are not so important.

Before introducing further finite difference formulas, we need a more compact notation.
Chapter 1 introduced the time shift operator Z,

Zuj = vt (3.2.7)

Similarly, let K denote the space shift operator
Kv} =v? (3.2.8)
and let I or 1 represent the identity operator,

v} = 1v} =v7. (3.2.9)

We shall make regular use of the following discrete operators acting in the space direction:

SPATIAL DIFFERENCE AND AVERAGING OPERATORS.

py=3U+K), p_=zK '+I)  p=35(K "+K), (3.2.10)
1 1 1 1 1
6+:E(K_I)’ 5_:E(I_K ), (Sozﬁ(K—K ), (3.2.11)

6, =— (K-2I+K"). (3.2.12)
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My, p_, and py are known as forward, backward, and centered spatial averaging
operators, 6,, 0,, and J, are the corresponding spatial difference operators of first
order, and 4, is a centered spatial difference operator of the second order. For discretization
in time we shall use exactly the same notation, but with superscripts instead of subscripts:*

TEMPORAL DIFFERENCE AND AVERAGING OPERATORS.
pt=1(1+2), pm=3Z71+1) W =3(z""+2), (3.2.13)
5+:1(Z—I) 5—:1([_Z—1) 60:i(Z—Z_1) (3.2.14)
k ’ k ’ 2k ’ o
1
6% = (220 zZh). (3.2.15)

In this notation, for example, the LF and CN formulas (3.2.2) and (3.2.4) can be
rewritten
LF: 6% = §yv, ON: §Tv = ptd .

Note that since Z and K commute, i.e., ZK = KZ, the order of the terms in any product
of these discrete operators can be permuted at will. For example, we might have written
d, T above instead of ptd,.

Since all of these operators depend on h or on k, a more complete notation would be
0, (h), 6_(h), 6y(h), etc. For example, the symbol §,(2h) is defined by

1 _ 1
6o(2h)v; = E(K2 -K 2)vj = E(UHQ —Vj_3), (3.2.16)
and similarly for d,(3h), etc. (Here and in subsequent formulas, subscripts or superscripts
are omitted when they are irrelevant to the discrete process under consideration.)
In general there may be many ways to write a difference operator. For example,

o =30, +6_), 0, =0,06_=008, =[]

Asindicated above, a finite difference formula is explicit if it contains only one nonzero
term at time level n+1 (e.g. LF), and implicit if it contains several (e.g. CN). As in the
ODE case, implicit formulas are typically more stable than explicit ones, but harder to
implement. On an unbounded domain in space, in fact, an implicit formula would seem
to require the solution of an infinite system of equations to get from v™ to v™t!! This is
essentially true, and in practice, a finite difference formula is usually applied on a bounded
mesh, where a finite system of equations must be solved. Thus our discussion of unbounded
meshes will be mainly a theoretical device—but an important one, for many of the stability
and accuracy phenomena that need to be understood have nothing to do with boundaries.

In implementing implicit finite difference formulas, there is a wide gulf between one-
dimensional problems, which lead to matrices whose nonzero entries are concentrated in a

*The notations dy, 6., 6_, pg, fty, pp_ are reasonably common if not quite standard. The other
notations of this section are not standard.
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narrow band, and multidimensional problems, which do not. The problem of how to solve
such systems of equations efficiently is one of great importance, to which we shall return in
§3.4 and in Chapters 9.

We are now equipped to present a number of well-known finite difference formulas for
the wave and heat equations. These are listed in Tables 3.2.1 (wave equation) and 3.2.2
(heat equation), and the reader should take the time to become familiar with them. The
tables make use of the abbreviations

A= (3.2.17)

k
h’ 2’
which will appear throughout the book. The diagram to the right of each formula in the
tables, whose meaning should be self-evident, is called the stencil of that formula. More
extensive lists of formulas can be found in a number of books. For the heat equation, for
example, see Chapter 8 of the book by Richtmyer and Morton.

Of the formulas mentioned in the tables, the ones most often used in practice are
probably LF, UW (upwind), and LW (Lax-Wendroff) for hyperbolic equations, and CN
and DF (DuFort-Frankel) for parabolic equations. However, computational problems vary
enormously, and these judgments should not be taken too seriously.

As with linear multistep formulas for ordinary differential equations, it is useful to
have a notation for an arbitrary finite difference formula for a partial differential equation.
The following is an analog of equation (1.2.11):

An s-step linear finite difference formula is a scalar formula

23: Z a,, v =0 (3.2.18)

v=0p=—"¢

for some constants {a,, } with agy #0, a_,,, #0 for some vy, and ., # 0 for some
vy. If a,o=0 for all p#0 the formula is explicit, whereas if a5 # 0 for some p#0
it is implicit. Equation (3.2.18) also describes a vector-valued finite difference formula;
in this case each v} is an N-vector, each a,,, is an N x N matrix, and the conditions
a,, #0 become deta,, #0.

The analogy between (3.2.18) (linear finite difference formulas) and (1.2.11) (linear
multistep formulas) is imperfect. What has become of the quantities {f"} in (1.2.11)7?
The answer is that (1.2.11) was a general formula that applied to any ODE defined by a
function f(u,t), possibly nonlinear; the word “linear” there referred to the way f enters into
the formula, not to the nature of f itself. In (3.2.18), by contrast, we have assumed that
the terms analogous to f(u,t) in the partial differential equation are themselves linear and
have been incorporated into the discretization. Thus (3.2.18) is more precisely analogous to
(1.7.4).

EXERCISES

» 3.2.1. Computations for Figure 3.1.1. The goal of this problem is to calculate the curves of
Figure 3.1.1 by finite difference methods. In all parts below, your mesh should extend over
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an interval [— M, M] large enough to be effectively infinite. At the boundaries it is simplest
to impose the boundary conditions u(—M,t) =u(M,t)=0.

It will probably be easiest to program all parts together in a single collection of subroutines,
which accepts various input parameters to control h, k, M, choice of finite difference formula,
and so on. Note that parts (c), (f), and (g) involve complex arithmetic.

The initial function for all parts is uy(z) =max{0,1—|z|}, and the computation is carried
tot=1.

Please make your output compact by combining plots and numbers on a page wherever
appropriate.

(a) Lax-Wendroff for u, =u,. Write a program to solve u, =u, by the LW formula with
k=2h/5,h=1/2,1/4,...,1/64. Make a table of the computed values v(—.5,1), and the
error in these values, for each h. Make a plot showing the superposition of the results
(i.e. v(z,1)) for various h, and comment.

(b) Euler for u, =u,,. Extend the program to solve u, =u,, by the EU,, formula with
k=2h%/5,h=1/2,1/4,...,1/16. Make a table listing v(1,1) for each h. Plot the results
and comment on them.

(c) Euler for u, = iu,,. Now solve u, = iu,, by the EU__ formula modified in the obvious
way, with k=2h?/5, h=1/2,1/4; can you go further? Make a table listing v(1,1) for
each h. Your results will be unstable. Explain why this has happened by drawing a
sketch that compares the stability region of a linear multistep formula to the set of
eigenvalues of a spatial difference operator. (This kind of analysis is discussed in the
next section.)

(d) Tridiagonal system of equations. To compute the answer more efficiently for the heat
equation, and to get any answer at all for Schrédinger’s equation, it is necessary to use
an implicit formula, which involves the solution of a tridiagonal system of equations at
each time step. Write a subroutine TRDIAG(n,c,d,e,b,x) to solve the linear system
of equations Az = b, where A is the n xn tridiagonal matrix defined by a;,,; =¢;,
a;; =d;, a; ;. =e;. The method to use is Gaussian elimination without pivoting of
rows or columns;* if you are in doubt about how to do this, you can find details in
many books on numerical linear algebra or numerical solution of partial differential
equations. Test TRDIAG carefully, and report the solution of the system

5 1 0 0\ /2, 7
15 20|z (17
024 1) |a] {20
00 1 4/ \z, 19

(e) Crank-Nicolson for u, = u,,. Write down carefully the tridiagonal matrix equation that
is involved when u, = u,, is solved by the formula CN. Apply TRDIAG to carry out
this computation with k& = %h, h=1/4,1/8,...,1/64. Make a table listing v(1,1) for
each h. Plot the results and comment on them.

(f) Crank-Nicolson for u, =iu,,. Now write down the natural modification of CN for
solving u; = iu,,. Making use of TRDIAG again, solve this equation with k= $h, h=

* The avoidance of pivoting is justifiable provided that the matrix A is diagonally dominant, as it
will be in the examples we consider. Otherwise Gaussian elimination may be unstable; see Golub
& Van Loan, Matrix Computations, 2nd ed., Johns Hopkins, 1989.
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1/4,1/8,...,1/32. Make tables listing v(1,1) and v(6,1) for each h. Plot the results—
both Rewv(z,1) and |v(z,1)|, superimposed on a single graph—and comment on them.
How far away does the boundary at © = M have to be to yield reasonable answers?

(g) Artificial dissipation. In part (f) you may have observed spurious wiggles contaminating
the solution. These can be blamed in part on unwanted reflections at the numerical
boundaries at £ = =M, and we shall have more to say about them in Chapters 5 and 6.
To suppress these wiggles, try adding a artificial dissipation term to the right-hand
side of the finite difference formula, such as

a
E;ﬁ'(&u? ~ hu,,(v;,t,) (3.2.19)
for some a > 0. What choices of M and a best reproduce Figure 3.1.1d? Does it help
to apply the artificial dissipation only near the boundaries © =+M?

» 3.2.2. Model equations with nonlinear terms. Our model equations develop some inter-
esting solutions if nonlinear terms are added. Continuing the above exercise, modify your
programs to compute solutions to the following partial differential equations, all defined in
the interval z € [—1,1] and with boundary conditions u(+1) =0. Devise whatever strategies
you can think of to handle the nonlinearities successfully; such problems are discussed more
systematically in [?7].

(a) Burgers* equation: u, = (3u?), +€u,,, € >0. Consider a Lax-Wendroff type of formula
with, say, e=0.1, and initial data the same as in Figure 3.1.1. How does the numerical
solution behave as t increases? How do you think the exact mathematical solution
should behave?

(b) Nonlinear heat equation: u, =u,, +e*, u(x,0) =0. For this problem you will need a
variant of the Crank-Nicolson formula or perhaps the backward Euler formula. With
the aid of a simple adaptive time-stepping strategy, generate a persuasive sequence of
plots illustrating the “blow-up” of the solution that occurs. Make a plot of ||u(-,t)|| . —
the maximum value of u—as a function of ¢. What is your best estimate, based on
comparing results with several grid resolutions, of the time at which ||u(-,t)||,, becomes
infinite?

(c) Nonlinear heat equation: u, =u,, +u®, u(z,0) = 1+ cos(mz). Repeat part (b) for this
new nonlinearity. Again, with the aid of a simple adaptive time-stepping strategy,
generate a persuasive sequence of plots illustrating the blow-up of the solution, and
make a plot of ||u(-,t)||,, as a function of ¢. What is your best estimate of the time at
which ||u(-,1)||,, becomes infinite?

(d) Nonlinear Schrédinger equation: u, = iu,, +alu|?u, a > 0. Take the initial data from
Figure 3.1.1 again. How does the solution behave as a function of ¢, and how does the
behavior depend on a? Again, try to generate a good set of plots, and estimate the
critical value of ¢ if there is one.

lloo

*Spelling note #2: the name is “Burgers”, so one may write “Burgers’ equation” but never “Burger’s
equation”.
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(EU, = Euler)

§Tv=d4v ?H—U +3A (0} Uiy — )

(BE, = Backward Euler)

5~ v =3gv VP =0l AT i)
(CN,, = Crank-Nicolson)

dto=ptyv U?Jrl =vj+7 TA(} Vi1 — 1)+i>‘( ?jrrll —Y faky)
LF = Leap frog

8% = dyv U;H—l U?_l + A0 —vj )
BOX, = Box

pydto=pto v (T4+N)vp T+ (1= Nl = (1= Mol + (1 + Al

LF4 = Fourth-order Leap frog
8% = 260 (h)v — £6,(2h)v ;Hl v?fl + %A(U?H —vj ) — %A(v;‘+2 —vl5)

LXF = Lax-Friedrichs

%(Z — )V = 0gv ”?H = %(”?ﬂ +v?_q)+ %A(U?-H —vj_y)
UW = Upwind
Ftu =0 v vith =P + AW — o))

LW = Lax-Wendroff (1960)

5T v =6yv+ 3kd v VI =0 AT =) + g AP (V] — 207 ol

J

Table 3.2.1. Finite difference approximations for the first-order
wave equation u; = u,, with A =k/h. For the equation u, = au,,
replace A by Aa in each formula. Names in parenthesis mark formu-
las that are not normally useful in practice. Orders of accuracy and
stability restrictions are listed in Table 4.4.1.

1)
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EU,, = Euler

4., n+l _  n no o __9,n n
dto=4d0 v =l +o (v —2v) +o) )

BE,, = Backward Euler (Laasonen, 1949)

- n+l _ n n+l n+1 n+1
d"v=0,v v =0+ o (v =207 +oit))

CN = Crank-Nicolson (1947)

+o — n+tl _ n 1 n o _9,n n 1 n+l _ 9, n+1 n+1
dTo=p*o v vt =vi g0 =207 ol )+ 5o (vl — 207 +oiT)

(LF,, = Leap frog)

0,, n+l _  n—1 n n n
v =4d,v v =0l 20 (v — 207+l )

BOX,, = Box
(BI+%pg)dtv=pté, v

CN4 = Fourth-order Crank-Nicolson
5t =t (A0, (h) — 38, (21

DF = DuFort-Frankel (1953)

Ov=h"2(K—2p"+ K)o ot =0] " 120 (0} — (0] oI 40t )

SA = Saul’ev (1957)

Table 3.2.2. Finite difference approximations for the heat equation
Uy = u,,, with ¢ = k/h%. For the equation u, = au,,, replace o by
oa in each formula. Names in parenthesis mark formulas that are
not normally useful in practice. Orders of accuracy and stability
restrictions are listed in Table 4.4.2.
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3.3. Spatial difference operators and the
method of lines

In designing a finite difference method for a time-dependent partial dif-
ferential equation, it is often useful to divide the process into two steps: first,
discretize the problem with respect to space, thereby generating a system of
ordinary differential equations in ¢; next, solve this system by some discrete
method in time. Not all finite difference methods can be analyzed this way,
but many can, and it is a point of view that becomes increasingly important
as one considers more difficult problems.

EXAMPLE 3.3.1. For example, suppose u, =u,, is discretized in space by the approxi-
mation 0y~ 0/0x. Then the PDE becomes

vy = g, (3.3.1)

where v represents an infinite sequence {v;(t)} of functions of ¢. This is an infinite system
of ordinary differential equations, each one of the form

Ov; 1
yre ﬁ(vj-i-l —Vj_1)- (3.3.2)

On a bounded domain the system would become finite, though possibly quite large.

A system of ordinary differential equations of this kind is known as a
semidiscrete approximation to a partial differential equation. The idea of
constructing a semidiscrete approximation and then solving it by a numerical
method for ordinary differential equations is known as the method of lines.
The explanation of the name is that one can think of {v;(#)} as an approxima-
tion to u(x,t) defined on an array of parallel lines in the x-t plane, as suggested
in Figure 3.3.1:

vy () 0@ v (t)

[T

Figure 3.3.1. The “method of lines”—semidiscretization of a time-
dependent PDE.
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EXAMPLE 3.3.1, CONTINUED. Several of the formulas of the last section can be in-
terpreted as time-discretizations of (3.3.1) by linear multistep formulas. The Euler and
Backward Euler discretizations (1.2.3) and (1.2.4) give the Euler and Backward Euler for-
mulas listed in Table 3.2.1. The trapezoid rule (1.2.5) gives the Crank-Nicolson formula of
(3.2.5), and the midpoint rule (1.2.6) gives the leap frog formula of (3.2.2). On the other
hand the upwind formula comes from the Euler discretization, like the Euler formula, but
with the spatial difference operator d, instead of J,. The Lax-Wendroff and Lax-Friedrichs
formulas do not fit the semidiscretization framework.

The examples just considered were first- and second-order accurate ap-
proximations with respect to ¢ (the definition of order of accuracy will come
in §4.2). Higher-order time discretizations for partial differential equations
have also become popular in recent years, although one would rarely go so
far as the sixth- or eighth-order formulas that appear in many adaptive ODE
codes. The advantage of higher-order methods is, of course, accuracy. One
disadvantage is complexity, both of analysis and of implementation, and an-
other is computer storage. For an ODE involving a few dozen variables, there
is no great difficulty if three or four time levels of data must be stored, but
for a large-scale PDE—for example, a system of five equations defined on a
200 x 200 x 200 mesh in three dimensions—the storage requirements become
quite large.

The idea of semidiscretization focuses attention on spatial difference op-
erators as approximations of spatial differential operators. It happens that
just as in Chapter 1, many of the approximations of practical interest can be
derived by a process of interpolation. Given data on a discrete mesh, the idea
is as follows:

(1) Interpolate the data;

3.3.3
(2) Differentiate the interpolant at the mesh points. ( )

In step (2) one differentiates once for a first-order difference operator, twice
for a second-order difference operator, and so on. The spatial discretizations
of many finite difference and spectral methods fit the scheme (3.3.3); the vari-
ations among them lie in in the nature of the grid, the choice of interpolating
functions, and the order of differentiation.

EXAMPLE 3.3.2.
First order of accuracy.* For example, suppose data vj, v;;q are interpolated by a
polynomial g(z) of degree 1. Then d, v, =q,(z;). See Figure 3.3.2a.

* Unfortunately, the word “order” customarily refers both to the order of a differential or difference
operator, and to the order of accuracy of the latter as an approximation to the former. The reader
is advised to be careful.
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q(z)

J J+1 Tj—1 T ﬂ‘fj+1
(a) 5+ (b) 9o

Figure 3.3.2. Derivation of spatial difference operators via polyno-
mial interpolation.

Second order of accuracy. Let data v;_,, v;, v;,, be interpolated by a polynomial ¢(x)
of degree 2. Then dyv; = q,(z;) and 0, v; =q,,(;). See Figure 3.3.2b.
Fourth order of accuracy. Let Vi, UJ 1, v;, ”J+1’ j+2 be interpolated by a polynomial

q(z) of degree 4. Then ¢, (z;) = 36, ( or 16, 0(2h)v;, the fourth-order approximation listed
in Table 3.2.1.

To proceed systematically, let g, zy,...,2, _ be aset of arbitrary distinct
points of R, not necessarily uniformly spaced. Suppose we wish to derive the
coefficients ¢ of all of the spatial difference operators centered at z =0 of
orders 0 <m <my,, based on any initial subset z(,z;,...,z, of these points.

That is, we want to derive all of the approximations

dm f
dl‘m ch]f Ogmgmmaxa max<n<nmax (334)
in a systematic fashion. The following surprisingly simple algorithm for this

purpose was published by Bengt Fornberg in “Generation of finite difference
formulas on arbitrarily spaced grids,” Math. Comp. 51 (1988), 699-706.
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FINITE DIFFERENCE APPROXIMATIONS ON AN ARBITRARY GRID

Theorem 3.1. Given my,,, >0 and n,,, > M., the following algorithm
computes coefficients of finite difference approximations in arbitrary distinct

points xy,...,x,  tod™/0x™ (0 <m <my,,. ) at x =0, as described above:

=1, a:=1

for n:=1ton
g:=1

for j :==0ton—1

B = Bz, —x;)

if n<my,, then ¢;,_; ;=0

max

max

for m := 0 to min(n,m,,,)

~1
Cnj = (Tpep1j—meny )/ (@, — )

for m := 0 to min(n,my,,)

Com = a(mczl—l,n—l _%—1021—1,71—1)/5

o=

(The undefined quantities 07;1

1,j appearing for m =0 may be taken to be 0.)
Proof. [Not yet written]

From this single algorithm one can derive coefficients for centered, one-sided,
and much more general approximations to all kinds of derivatives. A number
are listed in Tables 3.3.1-3.3.3 at the end of this section; see also Exercise
3.3.2.

If the grid is regular, then simple formulas can be derived for these finite
difference approximations. In particular, let D,, denote the discrete first-

order spatial difference operator obtained by interpolating v . S Ujgp by a

iy
polynomial ¢(z) of degree 2p and then differentiating ¢ once at x;, and let Dg‘)

be the analogous higher-order difference operator obtained by differentiating
m times. Then we have, for example,

Dy=dy(h), DY) =o,(h). (3.3.5)

and
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and
Dy = 364(h) — 26, (2h) + 1564 (3h), (3.3.7)
2
DY) = 36, (h) = 36, (2h) + 156, (3h). (3.3.8)

The corresponding coefficients appear explicitly in Table 3.3.1.
The following theorem gives the coefficients for first- and second-order
formulas of arbitrary order of accuracy:

CENTERED FINITE DIFFERENCE APPROXIMATIONS ON A REGULAR GRID

Theorem 3.2. For each integer p > 1, there exist unique first-order and
(2)

second-order difference operators Dy, and Dy,

of order of accuracy 2p that

utilize the points v;_,...,v;,, namely:
4 . 2 < .
Dy, = a;d(jh), Dy, =Y ;0. (jh), (3.3.9)
Jj=1 J=1
where
, ' 2(—1)3+1 (ph)2
o = 2(—1)J+1< b .>/<p+‘7> = 207 ) (3.3.10)
pP—J p (p=3)'(p+7)!

Proof. [Not yet written] g

As p— 00, (3.3.9) and (3.3.10) have the following formal limits:

D, := 26y(h) —20,(2h) +26,(3h) —---. (3.3.11)
D) := 25, (h) — 20, (2h) +26, (3h) —---. (3.3.12)

These series look both infinite and nonconvergent—unimplementable and pos-
sibly even meaningless! However, that is far from the case. In fact they are
precisely the first-order and second-order spectral differentiation opera-
tors for data defined on the infinite grid hZ. The corresponding interpolation
processes involve trigonometric or sinc functions rather than polynomials:

(1) Interpolate the data by sinc functions as in §2.3;

3.3.13
(2) Differentiate the interpolant at the mesh points. ( )

As was described in §2.3, such a procedure can be implemented by a semidis-
crete Fourier transform, and it is well defined for all data v € Z,Ql. The uses of
these operators will be the subject of Chapter 7.
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One useful way to interpret spatial differencing operators such as Dy, is
in terms of convolutions. From (2.2.3), it is easy to verify that the first-order
operators mentioned above can be expressed as

1

Dyvi= 75(++-0 0 0 10 -1 00 0-)xv, (3314
1

Dyv —ﬁ( 00 -5 20 -2 L 0 0-)xv, (3.3.15)

1
D UZ:—(-.._i % _% 1 0 —1 % — - )xv (3.3.16)

L=
W=

(recall Exercise 2.2.1). In each of these formulas the sequence in parentheses
indicates a grid function w = {w;}, with the zero in the middle representing
wp. Since w has compact support, except in the case D, there is no problem
of convergence associated with the convolution.

Any convolution can also be thought of as multiplication by a Toeplitz
matrix—that is, a matrix with constant entries along each diagonal (aij =
ai_j). For example, if v is interpreted as an infinite column vector (...,v_y,vy,

Ugyye e ,)T, then dyv becomes the left-multiplication of v by the infinite matrix
of the form
0 1
2
1 1
| 0 3
5y = — -3 0 3 (3.3.17)
h 1 g 1
2 2
1
-1 0

All together, there are at least five distinct ways to interpret the construc-
tion of spatial difference operators on a regular grid—all equivalent, but each
having its own advantages:

1. Approximation of differential operators. To the classical numerical
analyst, a spatial difference operator is a finite difference approximation to a
differential operator.

2. Interpolation. To the data fitter, a spatial difference operator is an ex-
act differential operator applied to an interpolatory approximant, as described
above. This point of view is basic to spectral methods, which are based on
global rather than local interpolants.

3. Convolution. To the signal processor, a difference operator is a convo-
lution filter whose coefficients happen to be chosen so that it has the effect of
differentiation.

4. 'Toeplitz matrix multiplication. To the linear algebraist, it is mul-
tiplication by a Toeplitz matrix. This point of view becomes central when
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problems of implementation of implicit formulas come up, where the matrix
defines a system of equations that must be solved.

5. Fourier multiplier. Finally, to the Fourier analyst, a spatial differ-
ence operator is the multiplication of the semidiscrete Fourier transform by a
trigonometric function of & —which happens to approximate the polynomial
corresponding to a differential operator.

*x *x *x

Going back to the method of lines idea of the beginning of this section, if
we view a finite difference model of a partial differential equation as a system
of ordinary differential equations which is solved numerically, what can we say
about the stability of this system? This viewpoint amounts to taking h >0
fixed but letting k& vary. From the results of Chapter 1, we would expect
meaningful answers in the limit £ — 0 so long as the discrete ODE formula is
stable. On the other hand if k£ is fixed as well as h, the question of absolute
stability comes up, as in §1.7. Provided that the infinite size of the system of
ODEs can safely be ignored, we expect time-stability whenever the eigenvalues
of the spatial difference operator lie in the stability region of the ODE method.
In subsequent sections we shall determine these eigenvalues by Fourier analysis,
and show that their location often leads to restrictions on k as a function of A.

EXERCISES

> 3.3.1. Nonuniform grids. Consider an exponentially graded mesh on (0,00) with z; =hs’,
s> 1. Apply (3.3.3) to derive a 3-point centered approximation on this grid to the first-order
differentiation operator d,.

» 3.3.2. Fornberg’s algorithm. Write a brief program (either numerical or, better, symbolic)
to implement Fornberg’s algorithm of Theorem 3.1. Run the program in such a way as to
reproduce the coefficients of backwards differentiation formulas in Table 1.4.3 and equiva-
lently Table 3.3.3. What are the coefficients for “one-sided half-way point” approximation
of zeroth, first, and second derivatives in the points —1/2, 1/2, 3/2, 5/27

> 3.3.3. Lax-Wendroff formula. Derive the Lax-Wendroff formula (3.2.6) via interpolation of
vy, v} and v}, by a polynomial g(z) followed by evaluation of g(z) at an appropriate
point.
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Table 3.3.1. Coefficients for centered finite difference approxima-
tions (from Fornberg).
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Table 3.3.2. Coefficients for centered finite difference approxima-
tions at a “half-way” point (from Fornberg).
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Table 3.3.3. Coefficients for one-sided finite difference approxima-
tions (from Fornberg).
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3.4. Implicit formulas and linear algebra
[This section is not yet written, but here is a sketch.]

Implicit finite difference formula lead to systems of equations to solve. If
the PDE is linear this becomes a linear algebra problem Ax =0, while if it is
nonlinear an iteration will possibly be required that involves a linear algebra
problem at each step. Thus it is hard to overstate the importance of linear
algebra in the numerical solution of partial differential equations.

For a finite difference grid involving N points in each of d space dimen-
sions, A will have dimension ©(N?) and thus ©(N??) entries. Most of these are
zero; the matrix is sparse. If there is just one space dimension, A will have a
narrow band-width and Az =b can be solved in ©(NN) operations by Gaussian
elimination or related algorithms. Just a few remarks about solutions of this
kind... . First, if A is symmetric and positive definite, one normally preserves
this form by using the Cholesky decomposition. Second, unless the matrix
is positive definite or diagonally dominant, pivoting of the rows is usually
essential to ensure stability.

When there are two or more space dimensions the band-width is larger
and the number of operations goes up, so algorithms other than Gaussian
elimination become important. Here are some typical operation counts (orders
of magnitude) for the canonical problem of solving the standard five-point
Laplacian finite-difference operator on a rectangular domain. For the iterative
methods, € denotes the accuracy of the solution; typically loge = ©(logN),
and we have assumed this in the last line of the table.

Algorithm 1D 2D 3D
Gaussian elimination N3 N6 N9
banded Gaussian elimination N N4 N7
Jacobi or Gauss-Seidel iteration N3loge N4loge Nbloge
SOR iteration N?loge N3loge Ntloge
conjugate gradient iteration N2?loge N3loge N4loge
preconditioned CG iteration Nloge N?3loge N"loge
nested dissection N N3 N"loge
fast Poisson solver Nlog N N?log N N3log N
multigrid iteration Nloge N2loge N3loge

“full” multigrid iteration N N? N3
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These algorithms vary greatly in how well they can be generalized to vari-
able coefficients, different PDEs, and irregular grids. Fast Poisson solvers are
the most narrowly applicable and multigrid methods, despite their remarkable
speed, the most general. Quite a bit of programming effort may be involved
in multigrid calculations, however.

Two observations may be made about the state of linear algebra in scien-
tific computing nowadays. First, multigrid methods are extremely important
and becoming ever more so. Second, preconditioned conjugate gradient (CG)
methods are also extremely important, as well as other preconditioned itera-
tions such as GMRES, BCG, and QMR for nonsymmetric matrices. These are
often very easy to implement, once one finds a good preconditioner, and can
be spectacularly fast. See Chapter 9.
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3.5. Fourier analysis of
finite difference formulas

In §3.3 we noted that a spatial difference operator D can be interpreted as
a convolution: Dv=axv for some a with compact support. By Theorem 2.5,
it follows that if v € £2, then Dv(€) =axv(€) =a(£)d(€). This fact is the basis
of Fourier analysis of finite difference methods. In this section we shall work
out the details for scalar one-step finite difference formulas (s =1 in (3.2.18)),
treating first explicit formulas and then implicit ones. The next section will
extend these developments to vector and multistep formulas.*

To begin in the simplest setting, consider an explicit, scalar, one-step
finite difference formula

,
;’H = Svj = Zéa#v?+#, (3.5.1)
p—

v

where {a,} are fixed constants. The symbol S denotes the operator that
maps v" to v+, In this case of an explicit formula, S is defined for arbitrary
sequences v, and by (2.2.3) we have

1
Sv = axuv, a, = E(a_“)' (3.5.2)

To be able to apply Fourier analysis, however, let us assume v € 6,21, which
implies Sv € (7 also since S is a finite sum. Then Theorem 2.5 gives

Sv(€) = axv(§) := a(&)d(¢). (3.5.3)

EXAMPLE 3.5.1. Upwind formula for u, =u,. The upwind formula (Table 3.2.1) is
defined by

v;‘H = Svj =] + AV — o)), (3.5.4)
where A=Fk/h. By (2.2.3) or (3.5.2), this is equivalent to Sv=ax*v with

! if 5 1
- if j=—1,
h J

a; =41 o
“(1-)) ifj=0,
;A=A iy
0 otherwise.

* A good reference on the material of this section is the classic monograph by R. D. Richtmyer and
K. W. Morton, Difference Methods for Initial-Value Problems, 1967, Chapters 4 and 7.
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By (2.2.6), the Fourier transform is

a(€) := h(e ®"-1a_, +e %%qy) := Xe®" +(1-N).

The interpretation of a(§) is simple: it is the amplification factor by
which the component in v of wave number £ is amplified when the finite dif-
ference operator S is applied. Often we shall denote this amplification factor
simply by ¢(§), a notation that will prove especially convenient for later gen-
eralizations.

To determine g(§) for a particular finite difference formula, one can always
apply the definition above: find the sequence a, then compute its Fourier
transform. This process is unnecessarily complicated, however, because of a
factor h that is divided out and then multiplied in again, and also a pair
of factors —1 in the exponent and the subscripts that cancel. Instead, as a
practical matter, it is simpler (and easier to remember) to insert the trial
solution v” = g"e*I" in the finite difference formula and see what expression
for g=g(&) results.

EXAMPLE 3.5.1, CONTINUED. To derive the amplification factor for the upwind
formula more quickly, insert v}’ = g"eih in (3.5.4) to get

g TLeiih = gn (eiﬁjh+>\(ei§(j+1)h _eigjh))’
or after factoring out g"eii",

g(€) == 1+ A" —1). (3.5.5)

EXAMPLE 3.5.2. Lax-Wendroff formula for u, =u,. The Lax-Wendroff formula (Table
3.2.1) is defined by

v;‘H = Svf = wf + (0], — ) )+ %)\2(11?“ =20} +vj ). (3.5.6)
Inserting v} = g"e*/" and dividing by the common factor g"e’/" gives

9(€) r= 1+ LA — e Eh) 4 L\? (80 — 24 ¢ i6h),

The two expressions in parentheses come up so often in Fourier analysis of finite difference
formulas that it is worth recording what they are equivalent to:

eth —eih .= 2jsin¢h, (3.5.7)

, : h
eh _9 4 e =2cosEh—2 := —4sin® % (3.5.8)

The amplification factor function for the Lax-Wendroff formula is therefore

g(€) == 1+iXsin&h— 222 sin? % (3.5.9)
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EXAMPLE 3.5.3. Euler formula for u, = u,,. As an example involving the heat equation,
consider the Euler formula of Table 3.2.2,

VIt = Sul = ol o (vl — 207 ol ), (3.5.10)

where o = k/h?. By (3.5.8), insertion of v? = g"etih gives

g(€) := 1—40sin? % (3.5.11)

Now let us return to generalities. Since ¢g(§) =a(&) is bounded as a func-
tion of £, (3.5.3) implies the bound ||Sv|| = ||av|| < ||a]|« 7] (by (2.2.4)), hence
I1Sv|| < lal| ||Vl (by (2.2.8)), where ||a||,, denotes the “sup-norm”

_r71rr1/ah}7c7r/h] la(&)]. (3.5.12)

a =

il =
Thus S is a bounded linear operator from /3 to (2. Moreover, since (&)
could be chosen to be a function arbitrarily narrowly peaked near a wave
number &, with |a(&;)| = |d/| o, this inequality cannot be improved. Therefore

151 = llalloo- (3.5.13)

The symbol ||S|| denotes the operator ¢2-2-norm of S, that is, the norm on
the operator S : €2 — (3 induced by the usual norm (2.2.1) on ¢3 (see Appendix
B):

1] := sup 1201

. (3.5.14)
veez [l]l

Repeated applications of the finite difference formula are defined by v™ =
S™p0, and if vy € £7, then v7(€) = (a(€))™0(€). Since a(€) is just a scalar
function of &, we have

1@(€)) lloo = max(

a(OI) = (max|a©))" := (llallo)",
and therefore by the same argument as above,
o™ < (llal] o)™ l10°]]
and
1571 = (llaflo)™. (3.5.15)

A comparison of (3.5.13) and (3.5.15) reveals that if S is the finite dif-
ference operator for an explicit scalar one-step finite difference formula, then
IIS™|| = ||S||™. In general, however, bounded linear operators satisfy only the
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inequality [|.S™|| < ||S||", and this will be the best we can do when we turn
to multistep finite difference formulas or to systems of equations in the next
section.

The results above can be summarized in the following theorem.

FOURIER ANALYSIS OF
EXPLICIT SCALAR ONE-STEP FINITE DIFFERENCE FORMULAS

Theorem 3.3. The scalar finite difference formula (3.5.1) defines a bound-
ed linear operator S : E%L — 02, with

1511 = lla"lloo == (lalls)™  for n>0. (3.5.16)

If 0 e 5,21 and v™ = S™°, then

F(E) 1= (al€)" D), (3:5.17)
=g [ S aE) P (35,19

and
o< (lallo) o). (3:5.19

Proof. The discussion above together with Theorem 2.5. g

Now let us generalize this discussion by considering an arbitrary one-step
scalar finite difference formula, which may be explicit or implicit. This is the
special case of (3.2.18) with s =1, defined as follows:

A one-step linear finite difference formula is a formula
r 1 T
Y Bl = Y auufy, (3.5.20)

for some constants {c,} and {8,} with B, #0. If 3, =0 for p#0 the
formula is explicit, while if 3, #0 for some p#0 it is implicit.

Equation (3.5.1) is the special case of (3.5.20) with =1, 8, =0 for u#0.

Again we wish to use (3.5.20) to define an operator S:v™ — v+, but now
we have to be more careful. Given any sequence v™, (3.5.20) amounts to an
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infinite system of linear equations for the unknown sequence v"*1. In the
terms of the last section, we must solve

Byt = Ay" (3.5.21)

for v"*! where A and B are infinite Toeplitz matrices. But before the operator
S will be well-defined, we must make precise what it means to do this.
The first observation is easy. Given any sequence v", the right-hand side

of (3.5.20) is unambiguously defined since only finitely many numbers @, are

nonzero. Likewise, given any sequence v"*!, the left-hand side is unambigu-
ously defined. Thus for any pair v”, v"+1, there is no ambiguity about whether
or not they satisfy (3.5.20): it is just a matter of whether the two sides are
equal for all j. We can write (3.5.20) equivalently as

bxv" T = axo™ (3.5.22)

for sequences Q= 30y, b, = %ﬂ_u; there is no ambiguity about what it
means for a pair v™, v"! to satisfy (3.5.22).

The difficulty comes when we ask: given a sequence v", does there exist
a unique sequence v" ! satisfying (3.5.22)? In general the answer is no, as is

shown by the following example.

EXAMPLE 3.5.4. Crank-Nicolson for u;, = u,,. The Crank-Nicolson formula (3.2.4) is

n+1 n.__ 1 n n n 1 n+1 n+1 n+1
v = = o (vl —2v) +uiy) + 5o (vl =207 +oiT), (3.5.23)

where o = k/h%. Suppose v™ is identically zero. Then the formula reduces to
1
vt =201+ S)op T ot = 0. (3.5.24)

One solution of this equation is U?"'l =0 for all j, and this is the “right” solution as far as
applications are concerned. But (3.5.24) is a second-order recurrence relation with respect

to 7, and therefore it has two linearly independent nonzero solutions too, namely vf“ =K,
where k is either root of the characteristic equation
9 1
k*—2(14+—-)k+1:=0. (3.5.25)
o

Thus solutions to implicit finite difference formulas on an infinite grid may
be nonunique. In general, if the nonzero coefficients at level n+1 extend over
a range of J+1 grid points, there will be a J-dimensional space of possible
solutions at each step. In a practical computation, the grid will be truncated
by boundaries, and the nonuniqueness will usually disappear. However, from
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a conceptual point of view there is a more basic observation to be made, which
has relevance even to finite grids: the finite difference formula has a unique
solution in the space E%L.

To make this precise we need the following assumption, which is satisfied
for the finite difference formulas used in practice. Let b(£) denote, as usual,
the Fourier transform of the sequence b.

Solvability Assumption for implicit scalar one-step finite difference for-
mulas:

b(E)#0  for £€[—n/h,7/h). (3.5.26)

Since I;(f) is 27 /h-periodic, this is equivalent to the assumption that I;(f) #0
for all £ € R. Tt is also equivalent to the statement that no root s of the char-
acteristic equation analogous to (3.5.25) lies on the unit circle in the complex
plane.

Now suppose v and v
Then Theorem 2.5 implies

"+l are two sequences in €2 that satisfy (3.5.22).

b(E)vmHL(€) = a(€)v(€), (3.5.27)
or by the solvability assumption,
vnFL(E) = g(€)oR(€), (3.5.28)
where A( )
g(€) == Zé). (3.5.29)

Since g(&) is a continuous function on the compact set [—m/h,7/h], it has
a finite maximum R
@‘ <oo

b(¢)

Now a function in 6,21 is uniquely determined by its Fourier transform. There-
fore (3.5.28) implies that for any v™ € (2, there is at most one solution v™*! € (2
to (3.5.22). On the other hand obviously such a solution exists, since (3.5.28)
tells how to construct it.

We have proved that if b satisfies the solvability assumption (3.5.26), then
for any v™ € (3, there exists a unique v"™! € (3 satisfying (3.5.22). In other
words, (3.5.22) defines a bounded linear operator S : v™ s v" 1,

This and related conclusions are summarized in the following generaliza-
tion of Theorem 3.3:

19lloo == (3.5.30)

max
§€[—m/h,m/h]
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FOURIER ANALYSIS OF
IMPLICIT SCALAR ONE-STEP FINITE DIFFERENCE FORMULAS

Theorem 3.4. If the solvability assumption (3.5.26) holds, then the im-
plicit finite difference formula (3.5.20) defines a bounded linear operator
S:E%—>€2, with

151 = [lg"[loo := (llgllsc)™  for n>0, (3.5.31)

where g(€) = a(€)/b(€). If v0 € 3 and v™ = S™", then

() == (g(€))™0(€), (3.5.32)
=g [ e e (3.5:33

and
o™ 1< (lglloe) ™ 12°]] (3.5.34)

In principle, the operator S might be implemented by computing a semi-
discrete Fourier transform, multiplying by a(£)/b(€), and computing the in-
verse transform. In practice, an implicit formula will be applied on a finite
grid and its implementation will usually be based on solving a finite linear
system of equations. But as will be seen in later sections, sometimes the best
methods for solving this system are again based on Fourier analysis.

EXAMPLE 3.5.4, CONTINUED. As with explicit formulas, the easiest way to calculate
amplification factors of implicit formulas is by insertion of the trial solution v} = g"eih.
For the implicit Crank-Nicolson model of (3.5.23), by (3.5.8), this leads to

25 §h

g(&) := 1—20sin QUg(f)st—

that is,
(€)  1—20sin® &

- , 3.5.35
(&) 1+20sin”& ( )

9(§) = i

where again o = k/h?. Since the denominator b(¢) is positive for all &, the Crank-Nicolson
formula satisfies the solvability assumption (3.5.26), regardless of the value of o.

EXERCISES

> 3.5.1. Amplification factors. Calculate the amplification factors for the (a) Euler, (b) Crank-
Nicolson, (c) Box, and (d) Lax-Friedrichs models of u, = u,,.. For the implicit formulas, verify
that the solvability assumption is satisfied.
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3.6. Fourier analysis of
vector and multistep formulas

It is not hard to extend the developments of the last section to vector or multistep
finite difference formulas. Both extensions are essentially the same, for we shall reduce
a multistep scalar formula to a one-step vector formula, in analogy to the reduction of
higher-order ordinary differential equations in §1.1 and of linear multistep formulas in §1.5.

It is easiest to begin with an example and then describe the general situation.

EXAMPLE 3.6.1. Leap frog for u, =u,. The leap frog formula (3.2.2) is

U?Jrl = 1)?71 —|—)\(U]T.L+1 —’U;L_l). (361)

Let w™ ={wf} be the vector-valued grid function defined by

o}
w? = : (3.6.2)
! (vy—1>

Then the leap frog formula can be rewritten as

vt -\ 0\ (v, 0 1 v} A0\ (v
n - —1 + 1 n—1 + n—1 ’
v} 0 0/ \v ] 0/ \v] 0 0/ \wi

=3

]

that is,
w?“ =W tagwi +aqwi g,
where
-2 0 0 1 A0 (3.6.3)
a_q = , g = , = . .6.
' 0 0 10 "\ o
Equivalently,
w't = axw™,

where a is the infinite sequence of 2 x 2 matrices with a, =h 'a_, (§2.5). For w" € (¢;)N
(the set of N-vector sequences with each component sequence in ¢ ), we then have

wFL(€) = a(€)wn(£).

As described in §2.6, all of these transforms are defined componentwise. From (3.6.3) we

get
. B 2iAsinéh 1 364
a(e) = , NE (3.6.4)
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This is the amplification matrix a(¢) or G(&) for leap frog, and values at later time steps
are given by
w" 2= [a(&)]"w,-

In general, an arbitrary explicit or implicit, scalar or vector multistep
formula (3.2.15) can be reduced to the one-step form (3.5.20), where each v;
is an N-vector and each 3, or v, is an N x N matrix, for a suitable value N.
The same formula can also be written in the form (3.5.21), if B and A are
infinite Toeplitz matrices whose elements are N x N matrices (i.e., A and B
are tensors), or in the form (3.5.22), if a and b are sequences of N x N matrices.
The condition (3.5.26) becomes

Solvability Assumption for implicit vector one-step finite difference for-
mulas:

det b(€)#0  for €€ [—n/h,n/h]. (3.6.5)

The amplification matrix for the finite difference formula is

G(&) = [b(E)] M [a(¢)], (3.6.6)

and as before, the finite difference formula defines a bounded linear operator
on sequences of N-vectors in (¢3)":
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FOURIER ANALYSIS OF
IMPLICIT VECTOR ONE-STEP FINITE DIFFERENCE FORMULAS

Theorem 3.5. If the solvability assumption (3.6.5) holds, the implicit
vector finite difference formula (3.5.20) defines a bounded linear operator
S: ()N — ()N, with

15" = 116" lloo < ([[Glloe)™  for =0, (3.6.6)

where G(€) = [b(€)] " a(€). Ifv° € (1) and v = S™°, then

() = (G€)™O(€), (3.6.7)
= o [ e, (3.09

and
o™ < (1Gloo)™ 10°1- (3.6.9)

In (3.6.6) and (3.6.9), ||G||» is the natural extension of (3.5.4) to the matrix-
valued case: it denotes the maximum

Gl = a G ,
Gl i= _ max G

where the norm on the right is the matrix 2-norm (largest singular value) of
an N x N matrix. The formula ||S™||=||S||" is no longer valid in general for
vector finite difference formulas.

EXERCISES

> 3.6.1. Amplification matrices. Calculate the amplification matrices for the (a) DuFort-
Frankel and (b) fourth-order leap frog formulas of §3.2. Be sure to describe precisely what
one-step vector finite difference formula your amplification matrix is based upon.
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