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Chapter 5.

Dissipation, Dispersion, and Group Velocity

5.1. Dispersion relations

5.2. Dissipation

5.3. Dispersion and group velocity
5.4. Modified equations

5.5. Stability in /P norms

5.6. Notes and references

Things fall apart; the center cannot hold;
Mere anarchy is loosed upon the world.

— W. B. Y eats, The Second Coming (190-)
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It would be a fine thing if discrete models calculated solutions to partial
differential equations exactly, but of course they do not. In fact in general they
could not, even in principle, since the solution depends on an infinite amount
of initial data. Instead, the best we can hope for is that the errors introduced
by discretization will be small when those initial data are reasonably well-
behaved.

This chapter is devoted to understanding the behavior of numerical errors.
From truncation analysis we may have a bound on the magnitude of discretiza-
tion errors, depending on the step sizes h and k, but much more can be said,
for the behavior of discretization errors exhibits great regularity, which can be
quantified by the notions of numerical dissipation and dispersion. Rounding
errors too, though introduced essentially at random, propagate in the same
predictable ways.

So long as we can estimate the magnitude of the discretization and round-
ing errors, what is the point in trying to investigate their behavior in more
detail? There are several answers to this question. One is that it is a good idea
to train the eye: a practitioner familiar with artificial numerical effects is less
likely to mistake spurious features of a numerical solution for mathematical or
physical reality. Another is that in certain situations it may be advantageous
to design schemes with special properties—low dissipation, for example, or
low dispersion. A third is that in more complicated circumstances, the mag-
nitude of global errors may depend on the behavior of local errors in ways
that ordinary analysis of discretization and rounding errors cannot predict. In
particular, we shall see in the next chapter that the stability of boundary con-
ditions for hyperbolic partial differential equations depends upon phenomena
of numerical dispersion.

One might say that this chapter is built around an irony: finite difference
approximations have a more complicated “physics” than the equations they are
designed to simulate. The irony is no paradox, however, for finite differences
are used not because the numbers they generate have simple properties, but
because those numbers are simple to compute.
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5.1. Dispersion relations

Any time-dependent scalar, linear partial differential equation with con-
stant coefficients on an unbounded space domain admits plane wave solutions

u(z,t) = ¢l(Ertwt) £eR, (5.1.1)

where £ is the wave number and w is the frequency. (Vector differential
equations admit similar modes multiplied by a constant vector; the extension
to multiple space dimensions is described at the end of this section.) For each
&, not all values of w can be taken in (5.1.1). Instead, the PDE imposes a
relationship between £ and w,

w=w(§), (5.1.2)

which is known as the dispersion relation, mentioned already in §3.1. In
general each wave number & corresponds to m frequencies w, where m is the
order of the differential equation with respect to ¢, and that is why (5.1.2) is
called a relation rather than a function. For most purposes it is appropriate
to restrict attention to values of ¢ that are real, in which case w may be real or
complex, depending on the PDE. The wave (5.1.1) decays as t — 0o if Im w > 0,
and grows if Im w < 0.

For example, here again are the dispersion relations for the model equa-
tions of §3.1, and also for the second-order wave equation:

Up = Uy : w=E¢, (5.1.3)
Uy =y, :  wP=E2 Pe., w==E, (5.1.4)
Up =y iw=—¢2, (5.1.5)
Up = Uy w=—&2 (5.1.6)

These relations are plotted in Figure 5.1.1. Notice the double-valuedness of
the dispersion relation for u, =wu,,, and the dashed curve indicating complex
values for u, =u,,,.

More general solutions to these partial differential equations can be ob-
tained by superimposing plane waves (5.1.1), so long as each component sat-
isfies the dispersion relation; the mathematics behind such Fourier synthesis

xrxr’
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(b) Upp = Ugy

(d) Uy = iuxx

Figure 5.1.1. Dispersion relations for four model partial differential
equations. The dashed curve in (¢) is a reminder that w is complex.
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was described in Chapter 2, and examples were given in §3.1. For a PDE of
first order in ¢, the result is

1

u(z,t) = py

/ e O (£) de. (5.1.7)
—00

Since most partial differential equations of practical importance have variable
coefficients, nonlinearity, or boundary conditions, it is rare that this integral
representation is exactly applicable, but it may still provide insight into local
behavior.

Discrete approximations to differential equations also admit plane wave
solutions (5.1.1), at least if the grid is uniform, and so they too have dispersion
relations. To begin with, let us discretize in x only so as to obtain a semidis-
crete formula. Here are the dispersion relations for the standard centered
semidiscretizations of (5.1.3)—(5.1.6):

1
uy =g : w:%sinfh, (5.1.8)
4 . 5&h
Uy =05 U wzzﬁsmz?, (5.1.9)
. 4 . ,&h
Up =0y U: zw:—msmz?, (5.1.10)
4 h
Up =16 U : w:—ﬁsin2%. (5.1.11)

These formulas are obtained by substituting (5.1.1) into the finite difference
formulas with x = x,. In keeping with the results of §2.2, each dispersion
relation is 27/h-periodic in &, and it is natural to take £ € [—7/h,7/h] as
a fundamental domain. The dispersion relations are plotted in Figure 5.1.2,
superimposed upon dotted curves from Figure 5.1.1 for comparison.

Stop for a moment to compare the continuous and semidiscrete curves in
Figure 5.1.2. In each case the semidiscrete dispersion relation is an accurate
approximation when & is small, which corresponds to many grid points per
wavelength. (The number of points per spatial wavelength for the wave (5.1.1)
is 27 /€h.) In general, the dispersion relation for a partial differential equation
is a polynomial relation between £ and w, while a discrete model amounts to
a trigonometric approximation. Although other design principles are possible,
the standard discrete approximations are chosen so that the trigonometric
function matches the polynomial to as high a degree as possible at the origin
¢ =w=0. To illustrate this idea, Figure 5.1.3 plots dispersion relations for the
standard semidiscrete finite difference approximations to u; = u, and u, = iu,,
of orders 2, 4, and 6. The formulas were given in §3.3.
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Figure 5.1.2. Dispersion relations for centered semidiscrete approx-

imations to the four model partial differential equations. Each func-
tion is 27 /h-periodic in &; the plots show the fundamental domain
Ee€[—n/h,m/hl.
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(a) Up = Uy (b) Up = iumm
Figure 5.1.3. Dispersion relations for semidiscrete centered differ-
ence approximations to u; = u, and u; = iu,, of orders 2, 4, 6.

Now let us turn to fully discrete finite difference formulas: discrete in time
as well as space. The possibilities become numerous. For example, substituting

the plane wave
v = pi6Tjtwtn) _ i(€jh+wnk)

into the leap frog approximation of u, =u,, yields the dispersion relation

eiwk - e—iwk — )\(ezfx - e—iﬁm),

where A\ =k/h, that is,
sin wk = A sin&h. (5.1.12)

Similarly, the Crank-Nicolson approximation of u; = u,, has the dispersion
relation -
ik _ 1 _ o(e™"+1) [eigh_2+6i£h]

2 Y

which reduces to

k h
itan% = —2asin2%. (5.1.13)
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These dispersion relations are 27 /h-periodic in ¢ and 27/k-periodic in w.
With the use of inverse trigonometric functions it is possible to solve such
equations for w, so as to exhibit the functional dependence explicitly, but the
resulting formulas are less appealing and often harder to work with. Equations
like (5.1.12) and (5.1.13) have a certain elegance—one sees at a glance that
the time and space derivatives have been replaced by trigonometric analogs.

Tables 5.1.1 and 5.1.2* consider once again the various finite difference
approximations to u; = u, and u; = u,, that appeared in Tables 3.2.1/3.2.2
and 4.4.1/4.4.2. In each case the dispersion relation is both listed and plotted.
Since h and k are independent parameters, there is now a range of possible
plots; we have arbitrarily taken A =k/h=0.5 in the first table and o =k/h? =
0.5 in the second. That is why each plot occupies a rectangle of aspect ratio 2
in wave number space.f Notice that the multistep (leap frog) formulas contain
two branches of w values.

For partial differential equations in several space dimensions, the notion of
dispersion relation generalizes just as §2.6 would suggest: a plane wave takes
the form

u(z,t)=e&e+t)  ceR, (5.1.14)
where £ and x are vectors, and (5.1.2) becomes a scalar function (or relation)
of a vector argument. For example, the wave equation

Upp = Ugg + uyy
has the dispersion relation

w? =€ 472, (5.1.15)
if the vector £ is written (£,7n), so that the lines of constant w in the (&, 7)

plane are concentric circles. On the other hand the leap frog approximation
1 -1 2
v =20t = A (v i ol i — 4u),
appropriate to a uniform grid with h = Az = Ay, has the dispersion relation

h h
= A2[sin? % +sin? %] (5.1.16)
which is plotted in Figure 5.1.4 for A~ 0. Once again the dispersion relation

is accurate for small wave numbers but diverges dramatically elsewhere.

wk
sin? =

EXERCISES

> 5.1.1. What are the coefficients as trigonometric functions of the dispersion relations plotted
in Figure 5.1.37

> 5.1.2.  Sketch the dispersion relation for the leap frog model of u, =u, with A > 1-—say,
A =2. How is the instability of this finite difference formula reflected in your sketch?

*Not yet written.

tanalogous to a Brillouin zone in crystallography (C. Kittel, Introduction to Solid State Physics,
Wiley, 1976).
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BE, = Backward Euler

CN, = Crank-Nicolson

LF = Leap Frog

BOX, = Box

LF4 = 4th-order Leap Frog

LXF = Lax-Friedrichs

UW = Upwind

LW = Lax-Wendroff

Table 5.1.1. Dispersion relations for various finite difference approx-
imations to u, = u, with A=%/h=0.5. See Tables 3.2.1 and 4.4.1.
The dashed lines indicate the slope dw/d¢ at isolated points where w

is real.

TREFETHEN 1994 -

—i(1—e~ k) = \sin £h

2 tan 4 = X sin ¢h

sin wk = Asin &£h

tan%’“:)\tan%

sin wk = 3\ sin Eh— £\ sin 26

ek = cos Eh+i)sin Eh

eiwk _ 1= )\(eigh —1)

. awk o . . - 2€h
—i(e™F —1) = A sin Eh+2iA? sin §2—
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Figure 5.1.4. Dispersion relation for the leap frog model of u;,; =
Uy + 1y, in the limit A — 0. The region shown is the domain [~ /h,
7/h)? of the (&,n) plane. The concentric curves are lines of constant
w for wh=11 i

Z,i,..., 4

5.2. Dissipation

Even though a partial differential equation may conserve energy in the L? norm, its
finite difference models will often lose energy as t increases, especially in the wave numbers
comparable to the grid size. This property is numerical dissipation, and it is often advan-
tageous, since it tends to combat instability and unwanted oscillations. In fact, artificial
dissipation* is often added to otherwise nondissipative formulas to achieve those ends. An
example of this kind appeared in Exercise 3.2.1.

To make the matter quantitative, suppose we have a linear partial differential equation
or finite difference approximation that admits waves (5.1.1) with w given by a dispersion
relation (5.1.2). Since & is assumed to be real, it follows that the wave has absolute value

|ei(£z+wt)| — g~ tImw (5_2_1)

*In computational fluid dynamics one encounters the more dramatic term artificial viscosity.
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as a function of ¢, and thus decays exponentially if Imw > 0. By Parseval’s equality, the L?
norm of a superposition of waves (5.1.1) is determined by a superposition of such factors:

1
0l = o= e Oy (e) . (5.2.2)

As an extreme case the heat equation u, =u,,, with dispersion relation w =i£?, dissipates
nonzero wave numbers strongly—and indeed it does nothing else; at time ¢, only wave
numbers & = O(v/t) remain with close to their initial amplitudes. But it is principally the
dissipation introduced by finite difference formulas that we are concerned with here.

The following definitions are standard:

A finite difference formula is nondissipative if Imw =0 for all £. It is dissipative if
Imw >0 for all £#0. It is dissipative of order 2r if w satisfies

Tmwk >y, (ER), e,  [e"F] <1—yy(€h)* (5.2.3)
for some constants v; > 0. In each of these statements, £ varies over the interval

[-7/h,w/h], and w represents all possible values w corresponding to a given . For
problems in multiple space dimensions, (£h) is replaced by ||£h|| in any norm.

For example, the leap frog and Crank-Nicolson models of u, = u, are nondissipative,
while the upwind and Lax-Wendroff formulas are dissipative.

Dissipative and nondissipative are mutually exclusive, but not exhaustive: a finite
difference formula can be neither dissipative nor nondissipative. See Exercise 5.2.1.

According to the definition, no consistent finite difference approximation of u, =u, +u
could be dissipative, but customary usage would probably use the term dissipative sometimes
for such a problem anyway. One could modify the definition to account for this by including
a term O(k) in (5.2.3).

A more serious problem with these standard definitions arises in the case of multistep
formulas, for which each ¢ corresponds to several values of w. In such cases the definition
of dissipative, for example, should be interpreted as requiring Imw > 0 for every value of w
that corresponds to some £ #0. The difficulty arises because for multistep formulas, that
condition ensures only that the formula dissipates oscillations in space, not in time. For
example, the leap frog model becomes dissipative if a small term such as kd, v™ is added
to it, according to our definitions, yet the resulting formula still admits the wave (5.1.1)
with £ =0, w=m/h, which is sawtoothed in time. To exclude possibilities of that kind it is
sometimes desirable to use a stronger definition:

A finite difference formula is totally dissipative if it is dissipative and in addition,
Imw =0 implies w =0.

EXERCISES

> 5.2.1. Determine whether each of the following models of u, = u, is nondissipative, dissi-
pative, or neither. If it is dissipative, determine the order of dissipativity.
(a) Lax-Wendroff, (b) Backward Euler, (¢) Fourth-order leap frog, (d) Box, (e¢) Upwind.
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5.3. Dispersion and group velocity

[This section is not yet properly written. The next few pages contain a few remarks, followed by
an extract from my paper “Dispersion, dissipation, and stability.”]

The general idea. Whereas dissipation leads to decay of a wave form, dispersion leads
to its gradual separation into a train of oscillations. This phenomenon is a good deal less
obvious intuitively, for it depends upon constructive and destructive interference of Fourier
components. It is of central importance in finite difference modeling, because although many
partial differential equations are nondispersive, their discrete approximations are almost
invariably dispersive. (Spectral methods are an exception.)

Caution. Phase and group velocity analysis depend upon the problem being linear and
nondissipative—i.e., w must be real when £ is real. (However, similar predictions hold if
there is a sufficiently slight amount of dissipation.)

Phase velocity. Suppose that a PDE or finite difference formula admits a solution
eiwt+€x) Tt’s then a triviality to see that any individual “wave crest” of this wave, i.e., a
point moving in such a way that the quantity inside the parentheses has a constant value
(the phase), moves at the velocity

Phase velocity: c¢({,w)= _2, (5.3.1)

§

Group velocity. However, early in the twentieth century it was realized that wave
energy propagates at a different velocity,

dw

Group velocity: ¢, ({,w)= _d_f'

(5.3.2)
The algebraic meaning of this expression is that we differentiate the dispersion relation with
respect to €. (In a plot in {&-w space, ¢ is minus the slope of the line through (¢,w) and
the origin, and c, is minus the slope of the line tangent to the dispersion relation at ({,w).)
The physical meaning is that, for example, a wave packet—a smooth envelope times an
oscillatory carrier wave with parameters (£, w)—will move approximately at the velocity Cy-
The same goes for a wave front and for any other signal that can carry information.

Dispersive vs. nondispersive systems. If the dispersion relation is linear, i.e., w =
const-&, then (5.3.1) and (5.3.2) are equal and the system is nondispersive. If the dispersion
relation is nonlinear, the system is dispersive. Finite difference formulas are almost always
dispersive, since their dispersion relations are periodic and therefore nonlinear. (However,
see Exercise 5.3.2.)

Precise meaning of group velocity. The meaning of group velocity can be made precise
in various asymptotic fashions, for example by considering the limit ¢t - co. The mathemat-
ics behind this is usually a stationary phase or steepest descent argument.

Simple explanations of group velocity. There are a number of intuitive ways to under-
stand where the derivative (5.3.2) comes from. One is to superimpose two waves with nearby
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parameters (§;,w;) and (&,,w,). It is then readily seen that the superposition consists of a
smooth envelope times a carrier wave at frequency 1 (w; +w,) and wave number (& +§&,),
and the envelope moves at velocity —(w, —w;)/(§, —&;), which approaches (5.3.2) in the
limit & — &, wy, — w;. Another approach is to take a pure exponential e!(“t4%)  with &
and w real, and change ¢ slightly to a complex value £ +iA¢ “in order to visualize which
way the envelope is moving.” If the effect on w is to make it change to w+iAw, it is readily
calculated that the resulting evanescent wave has an envelope that moves laterally at the
velocity —Aw/A&, and this again approaches (5.3.2) in the limit A{ —0, Aw—0. A third,
more “PDE-style” explanation is based upon advection of local wave number according to
a simple hyperbolic equation with coefficient c,; see Lighthill.

Group velocity in multiple dimensions. If there are several space dimensions, the group

velocity becomes the gradient of w with respect to the vector &, i.e., ¢, = —ng.

Phase and group velocities on a grid. There is another sense in which group velocity
has more physical meaning than phase velocity on a finite difference grid: the former is
well-defined, but the latter is not. On a periodic grid, any Fourier mode can be represented
in terms of infinitely many possible choices of £ and w that are indistinguishable physically,
and according to (5.3.1), each choice gives a different phase velocity. What’s going on here
is that naturally one can’t tell how fast a pure complex exponential wave is moving if one
sees it at only intermittent points in space or time, for one wave crest is indistinguishable
from another. By contrast, the group velocity is well-defined, since it depends only on the
slope, which is a local property; formula (5.3.2) has the same periodicity as the dispersion
relation itself.

Computation of a group velocity on a grid. To compute the group velocity for a
finite difference formula, differentiate the dispersion relation implicitly and then solve for
Cy= —dw/d¢. For example, the wave equation u, =u, has c= c, = —1for all {. For the leap
frog approximation the dispersion relation is sinwk = Asinw¢, which implies k coswkdw =

hA coswéd€, and since k= h, c,(§,w) = —coséh/ coswk.

Parasitic waves. Many finite difference formulas admit parasitic waves as solutions, i.e.,
waves that are sawtoothed with respect to space or time. These correspond to { =+x/h,
w==x7/k, or both. It is common for such waves to have group velocities opposite in sign
to what is correct physically. In the example of the leap frog formula, all four parasitic
modes 1, (—1)7, (=1)", and (—1)7*™ are possible, with group velocities —1, 1, 1, and —1,
respectively.

Spurious wiggles near interfaces and boundaries. It is common to observe spurious
wiggles in a finite difference calculation, and they appear most often near boundaries, in-
terfaces, or discontinuities in the solution itself. The explanation of where they appear is
usually a matter of group velocity. Typically a smooth wave has passed through the discon-
tinuity and generated a small reflected wave of parasitic form, which propagates backwards
into the domain because its group velocity has the wrong sign. More on this in the next
chapter.

Waves in crystals. Dispersion relations for vibrations in crystals are also periodic with
respect to £. As a result, sound waves in crystals exhibit dispersive effects much like those
associated with finite difference formulas, including the existence of positive and negative
group velocities.
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Figure 5.3.1. Dispersion under the leap frog model of u, =u, with A=0.5. The
lower mesh is twice as fine as the upper.
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EXERCISES

> 5.3.1. The Box formula.
(a) Write out the BOX,, formula of Table 3.2.1 in terms of v}, v?,, etc.
(b) Determine the dispersion relation (expressed in as simple a form as possible).
(c) Sketch the dispersion relation.
(d) Determine the group velocity as a function of ¢ and w.

> 5.3.2. Schrédinger equation.
(a) Calculate and plot the dispersion relation for the Crank-Nicolson model of u, =iu,, of
Exercise 3.2.1(f).
(b) Calculate the group velocity. How does it compare to the group velocity for the equation
Uy = tu,, itself?

> 5.3.3. A paradox. Find the resolution of the following apparent paradox, and be precise in
stating where the mistake is. Draw a sketch of an appropriate dispersion relation to explain
your answer.

One the one hand, if we solve u, =u, by the leap frog formula with A =1, the results will
be exact, and in particular, no dispersion will take place.

On the other hand, as discussed above, the dispersion relation on any discrete grid must be
periodic, hence nonlinear—and so dispersion must take place after all.
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