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1. Introduction

What if all you had to do to solve an ODE were just to write it down?1 That is
the line we will follow in this book. Our emphasis is not just on the mathematics
of ODEs, but on how the solutions behave. Do they blow up, decay, oscillate?
Are there rapid transitions where they flip from one state to another? Does the
behavior change if a coefficient is perturbed or a new term is added? And how
can such variety be deployed to explain the world around us? We shall not just
talk about these matters but explore them in action.

ODEs are among the core topics of mathematics, with applications so ubiq-
uitous that listing examples almost seems inappropriate. (Heat conduction,
chemical reactions, chaos, population dynamics, deformations of a beam, ra-
dioactivity, bifurcation theory, stability theory, differential geometry, quantum
mechanics, economics, finance, infectious diseases, nerve signals, vibrations,
optics, waves, dynamics of networks, special functions, ballistics, planetary
dynamics, . . . .) ODEs are everywhere.

To solve ODEs by writing them down, we will use Chebfun, an open-source
MATLAB package that is freely available at www.chebfun.org. In MATLAB,
you type x = A\b to solve the system of equations Ax = b, where A is a matrix
and x and b are vectors. In Chebfun, analogously, you type y = L\f to solve the
ODE Ly = f , where L is a linear or nonlinear differential operator with initial
or boundary conditions and y and f are functions. We will obtain solutions
this way on nearly every page, presenting them with hundreds of computer-
generated plots without discussing the algorithms Chebfun uses to make this

1ODE stands for ordinary differential equation, as the reader presumably knows already.

1
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2 Exploring ODEs

possible.2 This is not a book about numerical analysis or computer science. It
is a book about ODEs.

Many textbooks on ODEs concentrate on linear problems, because nonlinear
ones are rarely analytically solvable. Here, with analytical solutions playing a
lesser role, we will be able to give a more balanced treatment and fully appreciate
the remarkable effects that come with nonlinearity.

Let’s get started with the most basic initial-value problem (IVP),3

y′ + y = 0, t ∈ [0, 3], y(0) = 1. (1.1)

We have written this in the standard notation of this book, with t as the in-
dependent variable, y the dependent variable, and y′ = dy/dt.4 Note that
although y and y′ are functions of t, we usually do not write them out fully as
y(t) and y′(t). You can quickly check that a solution to (1.1) is the function
y(t) = exp(−t), and moreover, it is easily proved that this solution is unique (see
Chapter 2). To calculate it with Chebfun, we make a “chebop” that encodes the
differential operator of (1.1), which we call L. First we prescribe the interval.

L = chebop(0,3);

Next we prescribe the differential operator y �→ y′ + y, which is written in
the form of a MATLAB anonymous function of t and y, with diff denoting
differentiation with respect to t.

L.op = @(t,y) diff(y) + y;

Finally we set the initial condition with L.lbc, which stands for “left boundary
condition.”

L.lbc = 1;

(A boundary condition at the right would be specified with L.rbc.) We can
now solve (1.1).

y = L\0;

As expected, the solution is e−t.5

2To learn about Chebfun and its ODE algorithms, see Appendix A and www.chebfun.org.
3Throughout this book, some terms are set in italics, while other particularly important

ones are set in boldface. To review a chapter, a good way to start is to read the items in
italics and boldface and also the chapter summary at the end. Almost all emphasized terms
can be found in the index.

4For boundary-value problems, which are usually associated with space instead of time, we
will change t to x. Some books also make a distinction between y′ for a space derivative and
ẏ for a time derivative, but we shall not do this.

5Throughout this book, the Chebfun code segments listed are sufficient to reproduce the
mathematical essence of each figure, but MATLAB formatting commands like title, axis,
and ’linewidth’ have been removed. Users wanting to see formatting details can download
the M-files for each chapter of the book from www.chebfun.org.
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The problem we have just solved can be classified by the following properties.

F First-order (the highest-order derivative is y′)
L Linear (there are no terms like y2, exp(y), or yy′)
A Autonomous (the equation, though not the solution, is independent of t)

S Scalar (there is just one dependent variable y rather than u, v, w, . . .)

H Homogeneous (the right-hand side is zero6)

I Initial-value problem (not a boundary-value or eigenvalue problem)

Note that these letters spell the easily remembered word FLASHI. In this book,
we will use this word occasionally to encode some of the properties of a problem.
If we state that a problem is, say, of type FlaShi, that means that it is a first-
order scalar problem, since the letters F and S are capitalized. On the other hand
since l, a, h, and i are in lowercase, the problem is nonlinear, nonautonomous,
inhomogeneous, and a boundary-value or eigenvalue problem rather than an
IVP. In the chapters ahead, we will vary all of these properties and explore
in the process a great variety of phenomena. The FLASHI classification will
help add structure to the discussion. Sometimes one considers an ODE without
specifying initial or boundary conditions, and in this case the I drops away to
give just FLASH.

Here is a FLASH classification of the theorems in this book.

Linear, first-order, scalar
FLASH: Thm. 2.1 (separation of variables)
FLASh: Thm. 2.4 (integrating factor)
FLaSH: Thm. 2.2 (separation of variables)
FLaSh: Thm. 2.3 (integrating factor), Thm. 19.1 (periodic)

Nonlinear, first-order, scalar
FlASH: Thm. 3.2 (separation of variables)

6When we say “the right-hand side is zero,” we really mean that the equation contains no
nonzero terms that do not involve y. Of course it doesn’t matter mathematically whether a
term appears on the left or the right of an equation. For nonlinear ODEs, the property of
homogeneity does not always have much meaning.
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4 Exploring ODEs

FlaSH: Thm. 3.1 (separation of variables)

FlaSh: Thms. 11.1 and 11.3 (Picard iteration)

Linear, first-order, system

FLAsH: Thm. 14.1 (matrix exponential)

FLAsh: Thm. 14.2 (matrix exponential), Thm. 14.3 (variation of parameters)

FLash: Thm. 19.2 (periodic)

Nonlinear, first-order, system

FlAsH: Thm. 14.4 (linearization), Thm. 15.1 (stability)

Flash: Thms. 11.2 and 11.3 (Picard iteration)

Second-order

fLASH: Thm. 4.1 (solution formula)

fLaSH: Thm. 7.1 (eigenproblems), Thm. 19.3 (Hill’s eq.)

f lASH: Thm. 14.5 (linearization)

As an illustration of a nonlinear ODE, here is an example of type f lASHI,
the second-order equation known as the van der Pol equation:

0.3y′′ − (1− y2)y′ + y = 0, t ∈ [0, 20], y(0) = 1, y′(0) = 0. (1.2)

(The coefficient 0.3 is included to make the solution more interesting.) Because
y′′ is present, the equation is of second rather than first order (hence f not F),
and it is nonlinear because of the coefficient 1 − y2 multiplying y′ (hence l
not L). Here are the interval and the operator, which we name N instead of L as
a reminder that it is nonlinear.

N = chebop(0,20);

N.op = @(t,y) 0.3*diff(y,2) - (1-y^2)*diff(y) + y;

Problem (1.1) had just a single boundary condition, but in (1.2), since it is
a second-order equation, there are two. For a simple scalar problem like this,
Chebfun permits one to prescribe y and y′ at a point by supplying a vector of
two numbers.

N.lbc = [1;0];

Here is the solution.7

y = N\0; plot(y)

7Readers viewing these pages in color will note that solutions to linear IVPs are usually
plotted in green and solutions to nonlinear ones in dark green. Starting in Chapter 5, we will
likewise plot solutions to linear BVPs in blue and solutions to nonlinear ones in dark blue.
The distinctions between linear and nonlinear equations and between IVPs and BVPs are
important, and the colors will serve as a quiet reminder.
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Chebfun gives us ready access to the properties of a computed solution y
(which is represented as a “chebfun,” with a lowercase c since this is a func-
tion rather than the name of the software system). For example, here are the
positions of the local maxima of y.

[mval,mpos] = max(y,'local'); mpos'

ans =

0 3.1651 7.2375 11.3101 15.3826 19.4552

By taking differences of successive maxima, we see that this van der Pol oscil-
lation is settling down to a periodic function with period 4.0725,

diff(mpos)'

ans =

3.1651 4.0725 4.0725 4.0725 4.0725

This book is aimed at everyone who is interested in ODEs. If you are an
undergraduate taking a course from one of the big texts like Boyce and DiPrima
or Edwards and Penney, this is your lightweight companion. (The hard copy
from SIAM is inexpensive, and the online version is free.) If you are a graduate
student working in any of the mathematical sciences, this may be just the book
to take your understanding to the next level. Whoever you are, we aim to
increase your appreciation of this fundamental subject.

What does it mean to “solve” an ODE? One kind of solution would be
an exact explicit formula, also known as an analytical solution. Advantages of
analytical solutions include perfect accuracy, generality, explicit dependence on
parameters, theoretical insight, and the absence of restriction to a particular
range of values of t. The trouble is, most ODE problems, including almost
all nonlinear ones, can’t be solved analytically. Another kind of solution is
a numerical one obtained on a computer. The great advantage of numerical
solutions is that they can be obtained for virtually any ODE. That’s not the
only advantage, however. Another is that numbers are a compact and universal
currency, so that by examining results obtained numerically, one can apply
one’s analysis to a problem at hand or check how one ODE solution compares
to another. It is not always obvious how to compare two exact formulas, but
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6 Exploring ODEs

we always know how to compare two numbers, whether explicitly as numbers
or visually in a plot.

Among the huge variety of interesting ODEs, there are five that keep reap-
pearing over and over in this book:

Second-order linear oscillator. Simple harmonic motion, or with damping.

Van der Pol equation. Nonlinear oscillator, with solutions on a limit cycle.

Nonlinear pendulum. Large-amplitude, with a periodic phase space.

Lorenz equations. Archetypal chaotic system, with three coupled variables.

Linear system. y′ = Ay, with solutions exp(tA)y0.

Many other equations will also be mentioned, including the Airy, Belousov–
Zhabotinsky, Bernoulli, Bessel, Blasius, Bratu, Brusselator, Carrier, Duffing,
Hénon–Heiles, Hill, logistic, Lotka–Volterra, Mathieu, n-body, Oregonator,
Painlevé, and Rössler equations.

Easy computer exploration brings new perspectives on ODEs, and we believe
we have found distinctive treatments of most of the topics presented in this
book, which we hope will blend clarity for beginners with unexpected insights
for experts. Here are some items worthy of note in each chapter.

1. Introduction. The “FLASHI” classification.
2. First-order scalar linear ODEs. Fig. 2.3: smooth vs. bang-bang forcing.
3. First-order scalar nonlinear ODEs. Scalarization by complex arithmetic.
4. Second-order ODEs and damping. Ex. 4.1: elliptical/nonelliptical orbits.
5. Boundary-value problems. Fig. 5.9: side conditions.
6. Eigenvalues of linear BVPs. Fig. 6.2: eigenvalues via response curve.
7. Variable coefficients and adjoints. Automated computation of adjoints.
8. Resonance. Periodic forcing gives periodic solutions, if there is damping.
9. Second-order equations in the phase plane. BVPs as well as IVPs.
10. Systems of equations. SIR epidemiology models in 6 lines of code.
11. The fundamental existence theorem. Picard iteration on the computer.
12. Random functions and random ODEs. Stochastics via smooth functions.
13. Chaos. Transient chaos in the 3-body problem.
14. Linearization. Figures showing that, locally, any ODE behaves linearly.
15. Stable and unstable fixed points. Application to transition to turbulence.
16. Multiple solutions of nonlinear BVPs. Shooting to find multiple solutions.
17. Bifurcation. Fig. 17.18: tracking hysteresis as a parameter varies.
18. Continuation and path-following. Fig. 18.13: numerical bifurcation.
19. Periodic ODEs. Application showing the origin of band gaps.
20. Boundary and interior layers. Plots showing asymptotics in action.
21. Into the complex plane. Analytic continuation of real solutions.
22. Time-dependent PDEs. How ODEs arise from PDEs as t → ∞.

Readers will also find many phenomena explored in the exercises that do not
appear in other textbooks.

Any book on ODEs faces the question of how much space to give to applica-
tions. As a structure that we hope will prove appealing, we follow the pattern
that each chapter ends with a 2–4 page item designated as an Application. This
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1. Introduction 7

is followed in turn by a few sentences about history, a mention of our favorite
reference, and the exercises for that chapter.

With the help of Chebfun, can we really solve any ODE just by writing
it down? No, of course not. Examples can readily be devised that defeat
this method for reasons including singularities, scaling, stiffness, positivity con-
straints, or sheer computational scale, and a page about such challenges can
be found at the end of Appendix A. Nevertheless, we have been gratified in
writing this book to find how easy it has been to explore almost any topic.

Applications in this book

Chapter 2. Elimination of caffeine from the bloodstream.
Chapter 3. Classic pursuit problems.
Chapter 4. Skydiver.
Chapter 5. Beam theory and the strength of spaghetti.
Chapter 6. Eigenstates of the Schrödinger equation.
Chapter 7. Adjoints and optimization.
Chapter 8. Moon, sun, and tides.
Chapter 9. Nonlinear pendulum.

Chapter 10. SIR model for epidemics.
Chapter 11. Designer nonuniqueness.
Chapter 12. Metastability, radioactivity, and tunneling.
Chapter 13. Chaos in a food web.
Chapter 14. Linearized Lorenz trajectories.
Chapter 15. Transition to turbulence in a pipe.
Chapter 16. Sending a spacecraft to a destination.
Chapter 17. FitzHugh–Nagumo equations of neural signals.
Chapter 18. Arrhenius chemical reaction.
Chapter 19. Band gaps and forbidden frequencies.
Chapter 20. Why is New York hotter than San Francisco?
Chapter 21. Jacobi sine function.
Chapter 22. Solitons and the KdV equation.

History. Many of the great mathematicians of the past were involved
in establishing the subject of ODEs, starting around 1670, including Newton,
Leibniz, Johann and Jacob Bernoulli, Riccati, Clairaut, Euler, d’Alembert, La-
grange, Gauss, and Cauchy. Stepping forward to 100 or so years ago, some other
key figures were Poincaré, Picard, Lyapunov, Painlevé, and Goursat.

Our favorite reference. For a charismatic tour of the whole subject of
ODEs with a historical emphasis, see Chapter I of Hairer, Nørsett, and Wanner,
Solving Ordinary Differential Equations I, Second Revised Edition, Springer-
Verlag, 1993.

Acknowledgments. Many people have helped us in preparing this book,
and we can acknowledge just a few: David Allwright, Patrick Farrell, Abdul-
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8 Exploring ODEs

Lateef Haji-Ali, Nick Hale, Des Higham, Hrothgar, Aurya Javeed, and Tadashi
Tokieda. Michael Rawson was a lively participant in a course at NYU that
class-tested the book in autumn 2016. We are particularly grateful to Abinand
Gopal, Matt Meyers, Niels Møller, and Adam Stinchcombe for reading the entire
manuscript at a late stage and offering many helpful suggestions.

Summary of Chapter 1. ODEs can rarely be solved analytically, but
they can always be solved numerically, and Chebfun provides a convenient
tool for doing this. This book explores all kinds of ODE problems, from
the elementary to the advanced, both initial-value problems (IVPs) and
boundary-value problems (BVPs). ODE problems can be classified by a
schema with mnemonic FLASHI: F=first-order, L=linear, A=autonomous,
S=scalar, H=homogeneous, I=IVP.

A note on exercises. The exercises in this book mix the theoretical and the compu-
tational, and the labels of computational exercises are underlined. If you are asked,
say, to “find a value” of a solution, a computational result is usually expected unless
it is explicitly stated that it should be analytical. As a rule, give computed results
to 6 digits of accuracy. For theoretical problems, though your final solution should be
analytical, you may sometimes find computational explorations helpful along the way.

Exercise 1.1. Local extrema of van der Pol oscillation. In the van der Pol example
(1.2), you can find the local maxima with max(y,'local'), and similarly for minima
with min; you can find both minima and maxima at once with minandmax. How close is
the first local minimum value (at t ≈ 1.2) to its asymptotic value for t → ∞? Likewise
for the first local maximum (at t ≈ 3.2)?

Exercise 1.2. Classification of ODE problems. Classify the following ODE problems
according to the FLASHI scheme.

(a) y′ = sin(t)− y, t ∈ [0, 100], y(0) = 1.

(b) y′ = sin(t)− y3, t ∈ [0, 100], y(0) = 1.

(c) (Nonlinear pendulum equation) y′′ = − sin(y), t ∈ [0, 10], y(0) = y(10) = 2.

(d) (Advection-diffusion equation) 0.02y′′ + y′ + y = 0, t ∈ [0, 1], y(0) = 0, y(1) = 1.

(e) (Airy equation) 0.02y′′ − ty = 0, t ∈ [−5, 5], y(−5) = 1, y(5) = 0.

(f) (Harmonic oscillator) u′ = v, v′ = −u, t ∈ [0, 100], u(0) = 1, v(0) = 0.

(g) u′ = u2v, v′ = −uv2, t ∈ [0, 2], u(0) = 1, v(0) = 0.

(h) (Bessel equation) t2y′′ + ty′ + (t2 − 4)y = 0, t ∈ [0, 8], y(0) = 0, y(8) = 1.

(i) 0.1y′′ + yy′ = y, t ∈ [−1, 1], y(−1) = −2, y(1) = 1.

(j) (Lotka–Volterra equations) u′ = u(1−v), v′ = v(u−1), t ∈ [0, 10], u(0) = v(0) = 1.

(k) (Blasius equation) y′′′ + 0.5yy′′ = 0, t ∈ [0, 10], y(0) = y′(0) = 0, y′(10) = 1.

Exercise 1.3. Airy equation. Plot the solution y of the problem of Exercise 1.2(e)
and report its maximum value. Letting k denote the coefficient 0.02, do the same
with k = 0.002. Now make a plot of max(y) as a function of k for the values k =
0.001, 0.002, . . . , 0.039, 0.040. (We shall explore such effects in Chapter 6.)

Exercise 1.4. Solution with rapid transient. Plot the solution y of the problem of
Exercise 1.2(i), and give its maximum slope s = maxt∈[−1,1] y

′(t). Do the same with
the coefficient 0.1 reduced to 1/20, 1/40, and 1/80.
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1. Introduction 9

Exercise 1.5. Reduction to first-order system. (a) Show how the IVP of Exercise 1.2(f)
can be rewritten as a second-order scalar IVP involving just the dependent variable u.
What are the initial conditions for this IVP? (b) Conversely, show how the third-order
IVP of Exercise 1.2(k) can be rewritten as a first-order system involving three variables
u, v, and w. Any higher-order ODE problem can be rewritten as a first-order problem
like this, and numerical software for IVPs often requires the problem to be expressed
in first-order form.

Exercise 1.6. How Chebfun represents functions. Chebfun normally represents solu-
tions y(t) to ODEs by polynomial approximations, typically with an accuracy of about
10 digits, whose degree n may be quite high. The polynomials can be interpreted as
interpolants through a sufficiently large number n+ 1 of samples at Chebyshev points
defined by tj = cos(πj/n), 0 ≤ j ≤ n for t ∈ [−1, 1], or linearly transplanted to a
different interval [a, b]. (a) Let y be the computed solution of the problem (1.1). Exe-
cute length(y) to find the number n + 1 for this function, and plot(y,'.-') to see
the associated Chebyshev points. (b) Do the same for the computed solution of the
van der Pol problem (1.2). Approximately speaking (say, to within 10%), how many
interpolation points are there on average per wavelength?

Exercise 1.7. How Chebfun represents periodic functions. Chebfun also has a rep-
resentation for periodic functions that takes advantage of the periodicity, based on
trigonometric polynomials (i.e., Fourier series) rather than ordinary algebraic polyno-
mials. Periodic solutions arise naturally in ODEs with periodic coefficients (see Chap-
ter 19). (a) Construct an ordinary chebfun for f(t) = (1.1 − cos(πt))−1, t ∈ [−1, 1]
with the command chebfun('1/(1.1-cos(pi*x))'). What is its length? (b) How
does the length change if you use chebfun('1/(1.1-cos(pi*x))','trig')? (In an
appropriate limit, the ratio of the two lengths approaches π/2.)

Copyright © 2018 Society for Industrial and Applied Mathematics
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2. First-order scalar linear ODEs

Problem (1.1) of the last chapter could be regarded as the prototype of all
ODEs. Slightly generalized, it takes the form

y′ − ay = 0, y(0) = y0,

where a and y0 are constants. This problem has the solution

y(t) = y0e
at,

which is as good an argument as any for why the number e = 2.71828 . . . is
important. Let us make it a theorem (the proof is in the paragraphs following).

Theorem 2.1. Solution of first-order linear autonomous scalar ho-
mogeneous IVP (FLASHI). The problem

y′ − ay = 0, y(0) = y0, (2.1)

where a and y0 are constants, has the unique solution

y(t) = y0e
at. (2.2)

Here are images for eleven values of a from −10 to 10, showing exponential
growth for a > 0, exponential decay for a < 0, and a constant solution for a = 0.

L = chebop(0,1); L.lbc = 1;

for a = -10:2:10

L.op = @(t,y) diff(y) - a*y;

y = L\0; plot(y), hold on

end

11
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We can derive (2.2) by writing (2.1) as

dy

dt
= ay,

or equivalently if y �= 0
dy

y
= adt.

(If y(t) = 0 for some t then y(t) = 0 for all t, a case readily handled separately.)
Note that the last step has separated the y and t terms onto the two sides
of the equation: we say that (2.1) is separable, and this technique is called
separation of variables. We now integrate both sides of the equation to get

log |y| = at+ c

for some constant c, or, after exponentiating both sides,

y(t) = Ceat

with C = ec if y > 0 and C = −ec if y < 0 (a similar adjustment works if y is
complex). Taking C = y0 gives (2.2). Moreover, the solution is unique, since
any solution y(t) must be of the form Ceat by the reasoning just given, and only
C = y0 will match the initial condition.

If a > 0, then y(t) increases exponentially with t, whereas if a < 0 it decreases
exponentially. This simple distinction between exponential growth and decay
of solutions to (2.1) is the starting point of the theory of stability of dynamical
systems, a recurring theme in the second half of this book.8

Equation (2.1) is autonomous (coefficients independent of t) and homoge-
neous (zero right-hand side). Nothing much changes if we make the problem
nonautonomous: we still obtain a solution via the method of separation of vari-
ables. What this means is that, instead of a constant coefficient a, we allow a
variable coefficient function a(t):

y′ − a(t)y = 0, y(0) = y0. (2.3)

8If a is a complex number α + iβ, which makes perfectly good sense mathematically and
changes none of the formulas, then since eat = eαt(cos βt + i sinβt), we have exponential
increase for α > 0 and exponential decrease for α < 0. In both cases the solution oscillates as
well as growing or decaying.
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2. First-order scalar linear ODEs 13

We separate variables as before to get

dy

y
= a(t)dt,

which implies

log |y(t)| =
∫ t

0

a(s)ds+ c,

or equivalently

y(t) = C exp
(∫ t

0

a(s)ds
)

(2.4)

for constants c and C = ±ec. Since the integral takes the value 0 for t = 0, the
right constant is C = y0.

In the derivation just made we have tacitly assumed a is continuous. How-
ever, the integrals in (2.4) and the equation above it make sense more generally,
for example, if a is just piecewise continuous. We use this term in its standard
sense to refer to a function that is continuous apart from at most a finite set
of finite jump discontinuities. With this in mind, the following theorem and
Theorem 2.3 are stated for piecewise continuous functions, on the understand-
ing that a solution to a piecewise continuous ODE is defined to be a continuous
function that is differentiable and satisfies the ODE everywhere except at the
points of discontinuity.

Theorem 2.2. Solution of first-order linear scalar homogeneous
IVP (FLaSHI). The problem

y′ − a(t)y = 0, y(0) = y0, (2.5)

where y0 is a constant and a(t) is a continuous or piecewise continuous function,
has the unique solution

y(t) = y0 exp
(∫ t

0

a(s)ds
)
. (2.6)

As an example, consider

y′ = sin(t2)y, t ∈ [0, 8], y(0) = 1. (2.7)

A numerical solution gives an elegant oscillatory curve.

L = chebop(0,8); L.op = @(t,y) diff(y) - sin(t^2)*y; L.lbc = 1;

y = L\0; plot(y)
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For an example with a coefficient that is only piecewise continuous, suppose
we replace sin(t2) by sign(sin(t2)):

y′ = sign(sin(t2))y, t ∈ [0, 8], y(0) = 1. (2.8)

This corresponds to a “bang-bang” situation in which the system is pushed one
way and then the other, always with amplitude 1. Here is the solution.

L.op = @(t,y) diff(y) - sign(sin(t^2))*y;

y = L\0; plot(y)
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It is striking how this curve resembles the earlier one in form, though the vertical
scale has changed considerably. Actually, this second example is mathematically
simpler than the first, since it consists of nothing but an alternation of segments
of exponential growth Cet and exponential decay Ce−t.

Our problem is still homogeneous. We are about to take the next step and
introduce a nonzero right-hand side. Before doing this, however, let us examine
the significance of homogeneity from an abstract point of view. Suppose we
consider the ODE (2.5) without a boundary condition,

y′ − a(t)y = 0, t ∈ [0, d]. (2.9)

By the reasoning above, the solutions of this equation consist precisely of all
functions of the form C exp(

∫ t

0 a(s)ds) for any constant C. In other words,
the set of solutions of (2.9) is a vector space of dimension 1 spanned by the
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basis function exp(
∫ t

0
a(s)ds).9 This conclusion applies to any first-order linear,

scalar, homogeneous ODE. The boundary condition of an IVP selects one
function out of the vector space. Later we shall see that a second-order linear,
scalar, homogeneous ODE has a vector space of solutions of dimension 2, third-
order gives dimension 3, and so on.

Now let us modify (2.9) to make the ODE inhomogeneous,

y′ − a(t)y = g(t), t ∈ [0, d], (2.10)

for some function g(t). Suppose that somehow or other we find a function yp(t)
that satisfies (2.10). The subscript p stands for “particular”: a solution to a
linear inhomogeneous ODE is called a particular solution. Now let yh, with h
standing for “homogeneous,” be any nonzero solution to the homogeneous ODE
(2.9), such as exp(

∫ t

0
a(s)ds) from Theorem 2.2. Then for any constant C, the

function

yp + Cyh (2.11)

is another solution to (2.10). This is called the general solution to (2.10).
In the language of vector spaces, we can say that the set of solutions to the
inhomogeneous ODE (2.10) is an affine space, which means a vector space shifted
by the addition of a constant vector (namely yp).

We have just presented the general framework for solving a first-order linear
scalar inhomogeneous IVP: find a particular solution yp, then apply Theorem 2.2
to find a nonzero solution yh to the homogeneous problem. The solutions to
the inhomogeneous problem are then all the functions of the form yp +Cyh for
any constant C, and we pick C to match the initial condition. Beginning in
Chapter 4 we shall extend the same idea to higher-order ODEs and systems of
linear ODEs.

How do we find a particular solution yp? There is a mechanical procedure
that in principle achieves this: multiplication by a function known as an inte-
grating factor. (We shall see two pages along that, in practice, this approach
may be more cumbersome than necessary; the easier alternative is called the
method of undetermined coefficients.) Define

h(t) =

∫ t

0

a(s)ds.

Then the product rule for differentiation gives

[e−h(t)y(t)]′ = e−h(t)[y′(t)− y(t)h′(t)],

and since h′(t) = a(t), (2.10) reduces this to

[e−h(t)y(t)]′ = e−h(t)g(t).

9We are using the idea of a vector space in its standard abstract sense. A vector in this
space is a function y(t).
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16 Exploring ODEs

The function e−h(t) is the integrating factor. We can integrate both sides to get

e−h(t)y(t)− y(0) =

∫ t

0

e−h(s)g(s)ds,

that is,

y(t) = eh(t)y(0) + eh(t)
∫ t

0

e−h(s)g(s)ds.

Let us formulate this conclusion as a theorem. The derivation above can be
regarded as a proof, at least apart from the statement of uniqueness. Alterna-
tively, one could substitute (2.13) into (2.12) and verify that it is a solution.

Theorem 2.3. Solution of first-order linear scalar inhomogeneous
IVP (FLaShI). The problem

y′ − a(t)y = g(t), y(0) = y0, (2.12)

where y0 is a constant and a(t) and g(t) are continuous or piecewise continuous
functions, has the unique solution

y(t) = y0 exp
(∫ t

0

a(s)ds
)
+

∫ t

0

g(s) exp
(∫ t

s

a(r)dr
)
ds. (2.13)

Equation (2.13) has an intuitive interpretation. We know from Theorem 2.2
that the influence of an initial condition in the homogeneous equation (2.5) is

y0 exp(
∫ t

0 a(s)ds). The idea behind (2.13) is that, at each time s, the right-hand
side g(s), as it were, “injects a small amount of initial condition” at that point.
Each such injection produces a contribution for t > s, and the second integral
in (2.13) adds up those contributions. So inhomogeneous problems are like
homogeneous ones, but with lots of little initial conditions — a continuum of
initial conditions — along the way.10 This way of thinking leads to the method
known as variation of constants or variation of parameters, which can be used
to give a different proof of Theorem 2.3 and also applies to ODEs of higher
order.

To illustrate these developments, let us consider an IVP that looks a bit like
the first nontrivial example of this chapter, (2.7). Instead of taking sin(t2) as
an oscillating coefficient on the y term, we put it as an inhomogeneous forcing
function on the right-hand side:

y′ + y = sin(t2), t ∈ [0, 8], y(0) = 0. (2.14)

Here is the solution, a curve that decays toward zero while being forced alter-
nately up and down.

10This idea can be made precise by the use of the Dirac delta function, though we shall not
do that in this book. Engineers call the influence of a signal injected at a point the impulse
response.
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L = chebop(0,8); L.op = @(t,y) diff(y) + y; L.lbc = 0;

t = chebfun('t',[0 8]); g = sin(t^2);

y = L\g; plot(y)
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As with the transition from (2.7) to (2.8), we can see the same effect more
cleanly if we replace sin(t2) by sign(sin(t2)):

y′ + y = sign(sin(t2)), t ∈ [0, 8], y(0) = 0. (2.15)

L.op = @(t,y) diff(y) + y; g = sign(sin(t^2));

y = L\g; plot(y)
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Everywhere on this “Sydney Opera House” there is exponential decay towards 0,
though after the first few time units, the amplitude is small enough that the
curve is dominated by the right-hand side, not the decay.

Here is another example. If g(t) = 0, the IVP

y′ − cos(t) = −10(y − sin(t)) + g(t), t ∈ [0, 15], y(0) = 0 (2.16)

has solution y(t) = sin(t), as can be directly verified. Suppose now we introduce
a forcing function g that consists of a train of upward impulses located where t
is close to an odd integer. Sydney Opera House turns into Batman.

L = chebop(0,16); L.op = @(t,y) diff(y) - cos(t) + 10*(y-sin(t));

L.lbc = 0; t = chebfun('t',[0 16]);

g = 10*(abs((t+1)/2-round((t+1)/2))<.05);

y = L\g; plot(y)
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We mentioned before Theorem 2.3 that although the method of integrating
factors provides a general formula for finding a particular solution of a first-order
linear scalar inhomogeneous IVP, in many cases a simpler method is available.
This is the method of undetermined coefficients, and it consists of guess-
ing the form of the solution, then substituting to find coefficients.11 Often this
idea works easily when the right-hand side contains exponentials, because ex-
ponentials are preserved under differentiation. Sines, cosines, and polynomials
in the right-hand side are also often treatable in this way. (The method is not
restricted to first-order equations.)

For example, suppose we have the problem

y′ + y = exp(3t). (2.17)

Knowing that differentiation preserves a term involving exp(3t), we consider the
trial solution

y(t) = A exp(3t).

Inserting this in (2.17) gives

(3A+A) exp(3t) = exp(3t),

from which we see that a particular solution of (2.17) is

yp(t) =
1
4 exp(3t).

The general solution of (2.17) is accordingly

y(t) = 1
4 exp(3t) + C exp(−t). (2.18)

As another example, consider the equation

y′ + ty = t exp(t2). (2.19)

The experienced eye will note that differentiating w(t) = a exp(t2) gives w′ =
2tw, so w will satisfy (2.19) if 2tw + tw = (t/a)w, that is, a = 1/3. Thus
exp(t2)/3 is a particular solution, and the general solution is

y(t) =
1

3
et

2

+ Ce−t2/2. (2.20)

11Some textbooks call it the method of judicious guessing.
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2. First-order scalar linear ODEs 19

Further examples of the method of undetermined coefficients are explored in
Exercise 2.2.

For equations like these that are simple enough to solve exactly, an alter-
native method may be to do it in an automated way on the computer. If you
type certain problems into WolframAlpha, the solution appears quickly. Such
an approach might succeed for many of the exercises to be found in elementary
ODE textbooks, though it will be less successful for the higher-order, nonlinear,
and behavioral investigations that are the bigger part of this field — let alone
for conceptual understanding.

Theorem 2.2 concerns the special case of Theorem 2.3 in which the problem
is homogeneous, i.e., the right-hand side is zero. Another important special case
occurs when the problem is autonomous, with no explicit dependence on t. Here
is a theorem recording the solution in that case.

Theorem 2.4. Solution of first-order linear scalar autonomous IVP
(FLAShI). The problem

y′ − ay = g, y(0) = y0, (2.21)

where y0, a, and g are constants, has the unique solution

y(t) = y0e
at +

g

a

[
eat − 1

]
, (2.22)

or y(t) = y0 + gt if a = 0.

Application: elimination of caffeine from the bloodstream

If you drink a cup of coffee or a glass of wine, the body absorbs a dose
of caffeine or alcohol that takes some time to clear away. The details of how
this happens involve a complicated interplay of many organs and processes,
but a differential equation model may capture the overall behavior. Here is a
model of the elimination of caffeine adapted from R. Newton et al., “Plasma
and salivary pharmacokinetics of caffeine in man,” European Journal of Clinical
Pharmacology 21 (1981), pp. 45–52. It falls in the category of models known as
first-order pharmacokinetics.

The essential point is that to a reasonable approximation, when you’re not
drinking more coffee, the caffeine level c(t) in your blood is governed by the
equation

c′ = −kc,

where k is a positive rate constant. This means that c(t) will decay exponen-
tially, and the decay rate is often expressed as a half-life t1/2, defined by

e−kt1/2 =
1

2
, t1/2 =

log(2)

k
.
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20 Exploring ODEs

Experiments show that a 300 mg oral dose of caffeine, such as might be
found in a large mug of drip-brewed coffee, creates a concentration of about
8 μg/mL in the blood plasma. This boost is followed by first-order kinetics
with a half-life t1/2 of about 6 hours, although the rate can vary a great deal
from person to person. Here we compute the rate constant k from the half-life
t1/2 and then define an ODE accordingly, with t representing time in hours over
a 24-hour period:

t12 = 6; k = log(2)/t12; L = chebop(@(t,c) diff(c)+k*c,[-2,24]);

We will assume that 300 mg of caffeine will be ingested over half an hour,
increasing the caffeine concentration at a rate of 16 (μg/mL)/hr. Suppose coffee
is consumed at 7:00, 10:00, and 15:00. Here is the intake schedule with time
measured from the first cup.

t = chebfun('t',[-2,24]);

coffee = @(t0) 16*(t > t0)*(t < t0+0.5);

intake = coffee(0) + coffee(3) + coffee(8); plot(intake)
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Here is the caffeine level during the 24-hour period.

L.lbc = 0; c = L\intake; hold on, plot(c)
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As you can see, 24 hours is not long enough to clear the caffeine from the
bloodstream. For the case of three cups per day repeated periodically, see
Exercise 19.7.
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2. First-order scalar linear ODEs 21

History. Separation of variables goes back to Leibniz and Johann Bernoulli
in the 1690s. Integrating factors were introduced a few years later by Euler and
Lagrange.

Our favorite reference. It is hard to find much to say about first-
order scalar linear ODEs. Noting, however, that a theme in this subject is time
scales of growth and decay processes, we draw attention to the fascinating Time
in Powers of Ten: Natural Phenomena and their Timescales by ’t Hooft and
Vandoren, World Scientific, 2014.

Summary of Chapter 2. A first-order linear scalar ODE has a one-
dimensional affine space of solutions of the form yp +Cyh, and if an initial
condition is specified, it has the unique solution given by Theorem 2.3,
which can be derived by multiplying by an integrating factor. In the special
case where the problem is homogeneous, we have yp = 0, and the solution
to the IVP is given by Theorem 2.2, which can be derived by separation of
variables.

Exercise 2.1. Separation of variables. Use separation of variables to find general
solutions to (a) y′ = ey+t, (b) y′ = ty + y + t + 1, (c) y′ = (t2 + 2)/y. Confirm
your answers with WolframAlpha or some other computational tool. Which of these
equations are linear?

Exercise 2.2. Method of undetermined coefficients. Use the method of undetermined
coefficients to find general solutions to (a) y′ = y + et (try y = atet), (b) y′ =
y + t sin(t) (try y = a sin(t) + bt sin(t) + c cos(t) + dt cos(t)), (c) y′ = 2y + et + 1, (d)
y′ = 1− 2ty (Dawson’s integral). Confirm your answers with WolframAlpha or some
other computational tool.

Exercise 2.3. Interchanging variables to make a problem linear. (a) Although the
differential equation y′ = y/(t + y) is nonlinear, show that it becomes linear if it
is rewritten as an equation for dt/dy rather than dy/dt. Solve this linear equation
analytically by determining an appropriate integrating factor, and thereby also solve
the original nonlinear equation. (b) If y(0) = 1, what is y(1)? Find the solution
numerically or analytically. (An analytical solution involves a special function known
as the Lambert W-function.)

Exercise 2.4. Choosing a coefficient. Suppose y0 = 1 in (2.5). Give a function a(t)
such that the solution y(t) has y(1) = 2.

Exercise 2.5. No changes of sign. Consider an IVP (2.5) for which y0 and a(t) are
real (i.e., not complex). Show that the solution y(t) is positive for all t, negative for
all t, or zero for all t. What’s the strongest analogous result you can state in the case
where a(t) is permitted to be complex?

Exercise 2.6. Local extrema of an oscillation. Let t50 denote the point where the
solution of y′ = − cos(10/(1 − t)), y(0) = 1, achieves its 50th local maximum (in
Chebfun, [a,b] = max(y,'local')). (a) Determine t50 and y(t50) numerically, and
plot y(t) for 0 ≤ t ≤ t50. (b) Confirm the exact value of t50 analytically.

Exercise 2.7. Adjusting Batman’s ears. (a) Use max(y{6,8}) to calculate the maxi-
mum value of y(t) in the interval [6, 8] for the problem of Figure 2.6. (b) What happens
to the plot, and to this maximum value, if the impulse is made 3 times as wide with
1/3 the amplitude? (c) What if it is 1/3 as wide with 3 times the amplitude?
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Exercise 2.8. Temperature of a dead body. It was observed in 1894 that a human body
after death cools at a rate that is “nearly proportional to the difference between the
body and the surroundings.” (This heat transfer principle is known as Newton’s law
of cooling. The quote comes from de Saram, Webster, and Kathirgamatamby, “Post-
mortem temperature and the time of death,” Journal of Criminal Law, Criminology,
and Police Science 64 (1955), pp. 562–577.) Let’s assume that the cooling rate is
−βθ(t), where θ(t) is the difference between body and surrounding temperature, and
β is an empirical constant. De Saram et al. measured the temperatures of 41 executed
prisoners to test this model. In one case the body temperature was 97.8◦F at 11
AM and 96.2◦F at 1 PM. The room temperature was held at 86.4◦F. (a) Use the
temperature readings to find a numerical value for β. (b) By assuming that at the
time of death the body temperature was 98.6◦F, determine an approximate time of
death.

Exercise 2.9. Heaviside function. Many of the examples of this chapter involve
ODEs forced by discontinuous right-hand sides. Another way to formulate such
problems is with the step function or Heaviside function H(t), which takes
the value 0 for t < 0 and 1 for t > 0; the value at t = 0 is 0.5. Ex-
ecute the instructions L = chebop(0,2), L.op = @(t,y) diff(y)+y, L.lbc = 1,

t = chebfun('t',[0,2]), f = heaviside(t-1), y = L\f. Write down the IVP that
is being solved here, plot the solution y just computed, and derive an exact formula
for this function. How accurate is the computed value y(2)?

Exercise 2.10. An ODE from Newton ( 1671) and Taylor series approximations. One
of the first IVPs ever considered was the equation y′ = 1 − 3t + y + t2 + ty with
initial condition y(0) = 0, presented by Isaac Newton in 1671. Newton solved this by
using what we now call a Taylor series, obtaining the representation y(t) = t − t2 +
t3/3− t4/6+ t5/30− t6/45+ · · · . What is the maximum difference between this 6-term
approximation and the true solution on the intervals (a) [0, 0.5], (b) [0, 1], (c) [0, 2],
and (d) [0, 4]? Give the numbers and also plot the absolute value of the error as a
function of t on a log-log scale. Comment on the plot.

Exercise 2.11. Equation with sensitive solutions. Consider the equation y′ + ty = f(t)
for t ∈ [−4, 4] with y(−4) = 0. (a) What is maxt∈[−4,4] y(t) if f(t) = sin(t)? What
does this change to if f(t) = sin(0.85t)? (b) What term in the formulas of Theorem 2.3
makes it possible for these numbers to vary so greatly?

Exercise 2.12. Thiele’s equation for life insurance. Simple life insurance is purchased
for a length of time T and costs the insured party a fixed premium P per year. If
the insured dies during the term of the policy, the insurer must pay a benefit of S.
Otherwise, the insured receives nothing. The insurer is required to keep money in
reserve for this policy in order to be able to pay out all the claims likely to result
from a pooled group of individuals. This is done via the Thiele differential equation,
first derived in 1875 and published in 1910. Let V (t) for 0 ≤ t ≤ T be the amount
of reserve needed for a policy purchased at time t = 0. Thiele’s equation is V ′ =
P + δV (t)−μ(t)(S−V (t)), where δ is the force of interest (the interest rate) and μ(t)
is the force of mortality (the probability of a person dying per unit time). When the
policy expires, no reserve is needed, so V (T ) = 0.12 (a) Plot the solution V (t) for
μ(t) = 0.007(t+5), δ = 0.03, P = 800, S = 1e6, and T = 25. (b) What is the maximal

12The property of a time-dependent equation being governed by a final condition rather than
an initial condition arises commonly in financial modeling. The famous example involving a
PDE is the Black–Scholes equation.
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2. First-order scalar linear ODEs 23

value of V (t)? Is it less than or equal to S? Interpret this inequality financially.
(c) Assuming δ ≥ 0, prove that any solution of the ODE problem will satisfy this
inequality.

Exercise 2.13. Without the method of undetermined coefficients. Solve (2.17) using
Theorem 2.3.
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3. First-order scalar nonlinear ODEs

The first thing to do with nonlinear problems is enjoy them. The chances are
you can’t solve a particular nonlinear ODE analytically, but there is a wonderful
variety of effects to explore. Incidentally, a change of notation applies here:
mathematicians usually write a linear differential operator without parentheses,
y �→ Ly, but a nonlinear one with parentheses, y �→ N(y). The change of letters
from L to N is also a reminder of nonlinearity.

For example, here is a basic linear IVP, really just an integral since y appears
only in the term y′:

y′ = 3cos(t), y(0) = 0. (3.1)

Its solution is the sine wave y(t) = 3sin(t).

N = chebop(0,20); N.lbc = 0; N.op = @(t,y) diff(y);

rhs = chebfun('3*cos(t)',[0,20]);

y = N\rhs; plot(y)
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26 Exploring ODEs

What happens if we add a nonlinear function of y to the operator? For example,
let us construct an ODE that behaves like (3.1) when y has a small amplitude
but “shuts off” as |y| increases. An example of such an equation is

y′ + |y|2y = 3 cos(t), y(0) = 0. (3.2)

(We write |y|2y instead of y3 to suggest the idea of an amplitude-dependent
coefficient |y|2 multiplying the usual y term.) The next plot shows the new
solution superimposed on the previous one. Note that the curves are about the
same at first, but diverge as the amplitudes grow larger.

N.op = @(t,y) diff(y) + y^3;

y2 = N\rhs; plot([y y2])
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Here is a variant of the same nonlinear idea. Suppose that instead of a
“penalty” for large values of |y| we impose a “barrier,” preventing |y| from
reaching the value 1. Here is an equation with a logarithmic barrier:

y′ − 1

2
log(1− |y|)y = 3 cos(t). (3.3)

The solution is smooth, though it doesn’t look it (see Exercise 3.1), and confined
to values −1 < y < 1.

N.op = @(t,y) diff(y) - 0.5*log(1-abs(y))*y;

y3 = N\rhs; plot([y y3])
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3. First-order scalar nonlinear ODEs 27

Examples like these, scalar problems of first order, are rather limited. The
variety will grow in later chapters when we come to problems of higher order or
with multiple variables.

Both (3.2) and (3.3) are written with nonlinearities of the form g(y)y for
some function g (equal to |y|2 and −0.5 log(1 − |y|), respectively). This form
suggests the idea that, locally, a nonlinear ODE should behave approximately
linearly. Near any time t ≈ t0, it should be possible to approximate the solution
by the solution of a linear equation derived, say, by series expansion. This is
indeed the case, at least if the coefficients are continuous, and the idea will be
made precise in Chapter 14.

For a few special classes of first-order nonlinear ODEs, analytical solutions
are available. The most important category of such problems are the separable
equations. In the last chapter we solved y′ = a(t)y by writing it as

dy

y
= a(t)dt.

If we generalize y−1 to a continuous function b(y) that does not change sign, we
get the equation

b(y)dy = a(t)dt,

and the two sides can be integrated as before to get a solution at least locally.
We record the result as a theorem.

Theorem 3.1. Solution of first-order separable scalar homogeneous
IVP (FlaSHI). Let a(t) be a continuous function of t and let b(y) be a contin-
uous nonzero function of y. A solution y(t) of the problem

b(y)dy = a(t)dt, y(0) = y0 (3.4)

satisfies the equation ∫ y

y0

b(x)dx =

∫ t

0

a(s)ds. (3.5)

Equation (3.4) has the form y′ = f(t, y) (of type FlaSH), but not every
equation y′ = f(t, y) can be separated in this way. However, another case
where separation is possible is if f is independent of t.

Theorem 3.2. Solution of first-order autonomous separable scalar
homogeneous IVP (FlASHI). Let b(y) be a continuous nonzero function of y.
A solution y(t) of the problem

b(y)dy = dt, y(0) = y0 (3.6)

satisfies the equation ∫ y

y0

b(x)dx = t.

Similarly y′ = f(t, y) is separable if f is independent of y — it is just an integral.

Copyright © 2018 Society for Industrial and Applied Mathematics



28 Exploring ODEs

A prototypical example of a problem of the form (3.6) is the ODE

y′ = yα, (3.7)

where α is a constant. Dividing by yα gives dy/yα = dt and hence

y1−α

1− α
= t− tb

for some constant tb (the letter b stands for “blowup”). This simplifies to

y =
[
(1− α)(t− tb)

]1/(1−α)
. (3.8)

For α > 1, this solution exhibits a phenomenon of mathematical and physical
interest, blowup in finite time. For a specific illustration, consider the IVP

y′ = y2, y(0) = 1. (3.9)

From (3.8) with α = 2, we see that the solution is

y =
1

1− t
, (3.10)

which diverges to ∞ at tb = 1. Here is a plot of the solution up to the point
where it reaches the value 100.

N = chebop(0,1); N.op = @(t,y) diff(y) - y^2;

N.lbc = 1; N.maxnorm = 100;

y = N\0; plot(y)

hold on, plot([1 1],[0 120],'--')
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Behaviorally, (3.9) and (3.10) are rich in potential applications and inter-
pretations. The ODE (3.9) describes a process where y increases not just in
proportion to its current amplitude, but faster. For example, one can imag-
ine that y(t) represents the temperature at time t of a smoldering haystack that
smolders faster as it gets hotter. The singularity at t = 1 corresponds to the hay
catching fire — spontaneous combustion or “thermal runaway.” (This simple
idea is refined in the Application of Chapter 18.)
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Now let us vary the problem slightly and replace (3.9) by

y′ = y + y2, y(0) = 1. (3.11)

Since the values of y′ are now bigger, we expect that blowup will occur again
and it will happen sooner. Again a solution can be obtained by separation of
variables. We write

dy

y + y2
= dt,

and integration gives

log

(
y

1 + y

)
= t− tb,

that is,
y

1 + y
= et−tb ,

or equivalently

y =
1

etb−t − 1
. (3.12)

With the initial condition y(0) = 1, we have tb = log 2, confirming that, as
predicted, the blowup is earlier than in (3.10).

N.op = @(t,y) diff(y) - y - y^2;

y = N\0; plot(y)

hold on, plot(log(2)*[1 1],[0 120],'--')
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We solved (3.11) by separation of variables. As it happens, this is a special
case of a more general class of ODEs that can also be solved analytically. A
Bernoulli equation13 is an ODE of the form

y′ = a(t)y + b(t)yp, (3.13)

where p is a constant and a(t) and b(t) are given functions of t. (If p = 0, the
problem is linear, and if p = 1 it is linear and homogeneous. We assume p is
not 0 or 1.) If a or b is nonconstant, then separation of variables will not work

13Named after Jacob Bernoulli, the brother of Johann and uncle of Daniel.
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for (3.13), but there is a different approach that still succeeds. Let us multiply
by y−p to get

y′y−p = a(t)y1−p + b(t).

If we now make the substitution

u = y1−p, u′ = (1− p)y−py′,

the equation becomes (1− p)−1u′ = a(t)u + b(t), that is,

u′ = (1− p)a(t)u + (1− p)b(t).

This is a linear ODE, which can accordingly be solved by an integrating factor
as described in Theorem 2.3, or by the method of undetermined coefficients.

For example, let us generalize the blowup problems (3.9) and (3.11) a little
further. Consider the ODE

y′ = y + ty2, y(0) = y0. (3.14)

Comparing with (3.11), we see that for y0 = 1 the amplification will be weaker
here for t ∈ [0, 1), so we can expect blowup at a time tb > log 2. Dividing by y2

converts the equation to

y′

y2
=

1

y
+ t, y(0) = y0,

and the change of variables u = y−1 converts this to

u′ + u = −t, u(0) = u0 =
1

y0
.

Applying Theorem 2.3 or the method of undetermined coefficients, we find that
the solution of this IVP is

u(t) = 1− t+ e−t(u0 − 1),

that is,

y(t) =
1

1− t+ e−t(y−1
0 − 1)

. (3.15)

Examining (3.15), we see that y0 = 1, as in (3.9) and (3.11), is a special
case in which the exponential term does not appear. For y0 = 1, therefore, the
blowup occurs at exactly the same time tb = 1 as in (3.10). Larger y0 brings
blowup sooner, and smaller y0 defers it to later. Here are solutions up to t = 1
or y = 100, whichever comes first, for initial values y0 = 0.90, 0.91, . . . , 1.00.

N.op = @(t,y) diff(y) - y - t*y^2;

for y0 = 0.90:.01:1

N.lbc = y0; y = N\0; plot(y), hold on

end
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We have explored at some length the phenomenon of blowup of solutions to
an ODE. Physically, blowup in finite time corresponds to an explosion or an-
other feedback process running out of control. Mathematically, it illustrates the
phenomenon of nonexistence of solutions to certain nonlinear ODE problems.
Because of the blowup at tb = 1, for example, there exists no solution to the
problem (3.9) on the interval [0, 2].14 There is a well-established general theory
of existence and uniqueness of solutions to ODE IVPs, presented in Chapter 11.
The fundamental result of this theory asserts that the IVP

y′ = f(t, y), t ∈ [0,∞), y(0) = y0

is guaranteed to have a unique solution if f is continuous with respect to t and
Lipschitz continuous with respect to y.15

From the ODE (3.7) with α < 1, we can develop an example of nonunique-
ness that has a beautiful physical interpretation. Consider (3.7) with α = 1/2,

y′ = y1/2, y(0) = 0. (3.16)

From (3.8) we obtain the solution

y(t) =
1

4
t2.

An equally valid solution, however, is y(t) = 0, and this is the one that Chebfun
will compute. Alternatively, a solution to (3.16) might “get going” at any time
t0 ≥ 0:

y(t) =

{
0, t ≤ t0,
1
4 (t− t0)

2, t ≥ t0.

Thus there are not just two possible solutions but an infinite family. Here is a
plot of four of them.

14In Chebfun, if the computed solution hits the limit N.maxnorm, then all further values are
set to NaN — not-a-number.

15This means that there exists a constant C such that, for all t and y1, y2 in the range
of interest, |f(t, y2) − f(t, y1)| ≤ C|y2 − y1|. Note that (3.9) loses Lipschitz continuity as
|y| → ∞, implying that existence of solutions to this problem can fail only if |y| diverges.

Copyright © 2018 Society for Industrial and Applied Mathematics



32 Exploring ODEs

t = chebfun('t',[0 6]);

for t0 = 0:3

t = chebfun('t',[0, t0+2.6]);

y = 0.25*(t-t0)^2*(t>t0); plot(y), hold on

end
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If y ≥ y0 for some constant y0 > 0, then the right-hand side of (3.16) is
Lipschitz continuous with respect to y. This implies that uniqueness can fail for
this problem only at points with y = 0, though for any value of t. In Chapter 11
we shall see examples where uniqueness fails at isolated points such as y = t = 0.

We mentioned a physical interpretation, and this involves the leaky bucket
problem. Suppose a bucket of water has a hole in the bottom, so the water
flows out. After a certain time, all the water will be gone, and then the bucket
remains empty for all time. Here is the nonuniqueness effect in the words of
Corless and Jankowski:16

Given an empty bucket, there’s no way to tell when it was full — if
it ever was.

The connection with (3.16) is provided by Torricelli’s Law of 1643 (Exercise
3.12). If y > 0 is the height of water in a leaky bucket, then y decreases at a
rate governed by the equation

y′ = −Cy1/2

for an appropriate constant C. This means that if we take t to be time measured
backward from the present, the equation is

y′ = Cy1/2,

which is essentially (3.16). So Figure 3.7, with time reversed, can be interpreted
as a picture of the leaky bucket.

The last chapter was linear and this one is nonlinear, but both have been
restricted to scalar problems of first order. Before turning to higher-order prob-
lems and systems of equations, we want to illustrate an invaluable trick for

16See “Variations on a theme of Euler,” SIAM Review 58 (2016), pp. 775–792. Nonunique-
ness for the leaky bucket is also discussed, among other places, in volume 1 of Hubbard and
West, Differential Equations: A Dynamical Systems Approach.
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simplifying computations involving particles in a plane: the use of complex
arithmetic. A particle moving in the x-y plane has two coordinates, x(t) and
y(t). This suggests an ODE with two dependent variables, but if we define
z(t) = x(t) + iy(t), we have just a single, scalar complex variable z(t). This can
be remarkably convenient. One reason is that many particle interactions depend
on distances between points in the plane, and a distance in the x-y plane can
be regarded as the absolute value of a complex number.

Our Application illustrates this use of a complex variable.

Application: classic pursuit problems

Suppose an antelope runs with speed 1 along the vertical line x = 1, starting
at (1, 0) and going in the positive y-direction. A lioness starts at (0, 0) and
pursues the antelope, always moving directly toward the antelope at a fixed
speed C.17 What path does the lioness follow, and when and where does she
catch the antelope?

The antelope’s path is given as the function a(t) = 1 + it; the unknown in
this problem is the path of the lioness. In complex arithmetic, we can regard
this as a function z(t) given by the IVP

z′ = C
a(t)− z(t)

|a(t)− z(t)| , z(0) = 0. (3.17)

Here is a plot showing the lioness’s track up to time t = 4 for C = 0.5, 1,
and 1.1.

tmax = 4; a = chebfun('1+1i*t',[0 tmax]);

N = chebop(0,tmax); N.lbc = 0; CC = [.5 1 1.1];

for j = 1:3

C = CC(j); N.op = @(t,z) diff(z) - C*(a(t)-z)/abs(a(t)-z);

subplot(1,3,j), plot(a,':'), hold on, plot(a(end),'.')

z = N\0; arrowplot(z)

end
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17The cast of characters is variable, as described in P. J. Nahin, Chases and Escapes: The
Mathematics of Pursuit and Evasion, Princeton, 2006. One may have a dog chasing a rabbit,
a hawk chasing a sparrow, or, in the original treatment by Pierre Bouguer in 1732, a pirate
ship chasing a merchant ship.
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With C = 0.5, the lioness will obviously never catch the antelope, which
soon sprints out of reach. With C = 1, she still never quite makes the catch.
The separation distance is 0.50000015 at t = 4, converging exponentially to 1/2
as t → ∞. For any C > 1, on the other hand, the catch will take place. We have
stopped this experiment before that point since there is a singularity involved.

Of course, the antelope may zig-zag. Here is another run with C = 0.5 and 1
in which she makes a 90◦ right turn at t = 2. As t → ∞ in the latter case, the
separation distance approaches 0.2653 . . . .

a = chebfun({'1+1i*t','-1+2i+t'},[0 2 4]);

N = chebop(0,tmax); N.lbc = 0; CC = [.5 1];

for j = 1:2

C = CC(j); N.op = @(t,z) diff(z) - C*(a(t)-z)/abs(a(t)-z);

subplot(1,2,j), plot(a,':'), hold on, plot(a(end),'.')

z = N\0; arrowplot(z)

end
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This pursuit problem has only a single unknown trajectory, making it a
scalar problem in complex arithmetic and thus fitting the theme of this chapter.
The main use of complex arithmetic, however, is for tracking systems of multiple
particles in the plane, and we shall use this method to compute planar orbits
of planets in Chapter 13 and electrons in Exercises 13.5 and 19.4, as well as
looking at a multiparticle pursuit problem in Exercise 10.1.

History. Nonlinear equations have been part of the study of ODEs from
the beginning. For the first thirty years or so, until about 1700, the equations
were of first order. Then higher-order equations joined the discussion.

Our favorite reference. Even if you don’t read German, the book Dif-
ferentialgleichungen: Lösungsmethoden und Lösungen by Erich Kamke (Springer
Fachmedien Wiesbaden, 1977) is extraordinary. This book, which appeared in
many editions starting in 1942, features a collection of 1600 numbered exam-
ples of ODEs with their solutions — the first 576 of them, filling 103 pages,
corresponding to first-order equations. It is a monument to the knowledge of
ODEs accumulated during their first 300 years and a poignant indication of how
different the world was before computers.
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Summary of Chapter 3. Some first-order nonlinear ODEs can be solved
by separation of variables, and Bernoulli equations, of the form y′ = a(t)y+
b(t)yp, can be solved by the change of variables u = y1−p. Most other
first-order nonlinear problems cannot be solved analytically. The ODE
y′ = f(t, y) has a unique solution for all t if f is continuous with respect
to t and Lipschitz continuous with respect to y. If these conditions do not
hold, existence and/or uniqueness may fail.

Exercise 3.1. Smoothness of the solution to the barrier problem. Despite appearances
in Figure 3.3, the solution y(t) of (3.3) is smooth. Confirm this by plotting y, y′, and
y′′. What are the minimum and maximum values of these three functions over the
interval [1, 20] (to exclude initial transients)? (You can use a command like y{1,20}

to restrict a chebfun to a subinterval.)

Exercise 3.2. Analytical solutions via clever substitutions. One method used by experts
in analytical solution of ODEs is to change variables. Find the general solutions of the
following problems analytically using the substitutions indicated: (a) y′ = et−y − et

(u = ey), (b) ty′ = y(log(ty)− 1) (u = ty), (c) 2tyy′ = y2 − t (u = y2).

Exercise 3.3. A solution with compact support. Consider the IVP y′ = −ty/|y|1/2,
y(0) = 1, where |y|1/2 represents the positive branch of the square root. (a) Find
analytically the (unique) solution for t ∈ [0, 1]. (b) Find analytically the (unique)
solution for t ∈ [0,∞).

Exercise 3.4. Spherical flame in microgravity. (Adapted from section 7.9 of C. B.
Moler, Numerical Computing with MATLAB, SIAM, 2008. A video of a growing flame
sphere in microgravity can be found at https://goo.gl/nQ5Vxd.) In the absence
of gravity, a flame takes a nearly spherical shape. Oxygen, which fuels the flame,
enters the sphere at a rate proportional to its surface area. Combustion consumes the
oxygen at a rate proportional to the volume. In appropriate units the radius r(t) is
approximately governed by the ODE dr/dt = r2 − r3. We assume that r(0) = r0. (a)
Show that the solution satisfies the implicit equation log(r/(1− r))−1/r = t+C, and
give a formula for C in terms of the initial condition. (b) Show that the time th at
which r takes the value 1/2 is approximately 1/r0 as r0 → 0. (Note: 1/x dominates
log x as x → 0.) (c) On one graph, plot numerically obtained solutions for 0 ≤ t ≤ 1500
and r0 = 10−1, 10−2, 10−3. As in Exercise 3.1, plot a zoom of the figure for r0 = 10−3

to confirm that, despite appearances, this solution is smooth.

Exercise 3.5. Multiple routes to the same solution. Consider the ODE y′ + sin(y) = 0.
(a) Find the general solution analytically using separation of variables. (b) Find it
again by interchanging the independent and dependent variables as in Exercise 2.3.

Exercise 3.6. Some nonlinear problems. Suppose y(0) = 1. Determine y(1) analyti-
cally if (a) y′ = y3/2et, (b) (t+ 1)y′ + 3y = 0, (c) yy′ = t.

Exercise 3.7. Fixed points and stability. A number y∗ is a fixed point of an au-
tonomous ODE y′ = f(y) if f(y∗) = 0; it is stable if f ′(y∗) < 0 and unstable if
f ′(y∗) > 0. Find all fixed points and determine their stability or instability for (a)
y′ = y+ y2 (eq. (3.11)), (b) y′ = y2 − 1, (c) y′ = y− y2 (the logistic equation; see also
Exercises 3.15 and 3.16), and (d) y′ = sin(y).

Exercise 3.8. Stable and unstable fixed points. (a) Now explore equation (c) of the
last exercise on the computer by making a plot of the trajectories emanating from
y(0) = −1,−0.8, . . . , 1.8, 2 on the interval t ∈ [0, 4]. You will need to use the N.maxnorm
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feature since otherwise some curves will blow up. (b) Similarly, explore equation (d) of
the last exercise with a plot of the trajectories emanating from y(0) = −15,−14, . . . , 15
on the interval t ∈ [0, 4].

Exercise 3.9. Ghost of a fixed point. Plot the solution of y′ = 1 − a sin(y), y(0) = 0
for t ∈ [0, 200] with a = 0.9, 0.99, and 0.999. In each case use roots(y-2*pi) to
determine the value of t for which y(t) = 2π.

Exercise 3.10. The Lambert W function. (a) The Lambert W function is a function
W (t) defined by the functional equation W (tet) = t. It satisfies the differential equa-
tion W ′(t) = W (t)/(t + tW (t)) and takes the value W (e) = 1, where e = 2.718 . . . .
Use this information to solve an ODE to compute the value W (1). (b) The number
just computed probably matches the exact value of W (1) (readily found on the Web)
to about 10 digits of accuracy, because that is Chebfun’s default accuracy for ODE so-
lutions. To get more digits, execute cheboppref.setDefaults('ivpAbsTol',1e-14)

before making the calculation (try chebfunpref and cheboppref and see Chapter 8 of
the Chebfun Guide for more information). How accurate is the new value? Afterwards,
return to the usual defaults by executing cheboppref.setDefaults('factory').

Exercise 3.11. Antelope on a circle or square. As in Figs. 3.8 and 3.9, suppose a lion
begins at z = 0 at t = 0 and chases the antelope with equal speeds, i.e., C = 1 in
(3.17). (a) Suppose the antelope runs around the unit circle with position a(t) = eit.
Plot the lion’s trajectory over the interval t ∈ [0, 2π]. Plot the distance between the
two animals as a function of t. At roughly what time t will the distance fall below
0.01? (b) Suppose the antelope runs around the unit square, which you can construct
with a = 1 + cumsum(round(exp(pi*.25i*(t+2))/sqrt(2))) if t is a chebfun for t
defined over the time interval of interest. Plot the lion’s trajectory over the interval
t ∈ [0, 8]. Again plot the distance as a function of t and estimate when this will fall
below 0.01.

Exercise 3.12. The leaky bucket problem — Torricelli’s law (1643). A cylindrical tank
has a hole at the bottom. Water flows out, making the height y(t) of the water decrease
from its initial value y0 to 0 after a certain time. Derive the ODE for this process by
considering energy, as follows. The water in the tank has a certain potential energy
determined by y(t) and hence decreasing at a rate determined by y and y′. As water
leaves the hole, this is converted to an equal amount of kinetic energy determined by
y′ and hence increasing at a rate determined by y′. By balancing these two, explain
why the ODE has the form y′ = −Cy1/2. Solve the equation analytically and show
that y(t) = 0 is reached at a finite time t. If t0 is doubled, what effect will this have
on the drainage time?

Exercise 3.13. Blowup equation with a complex coefficient. Consider equation (3.9)
except with a complex coefficient: y′ = Cy2, y(0) = 1, where C is a constant with a
nonzero imaginary part. (a) Write down the analytical solution, valid for all t. (b)
Plot the solutions corresponding to C = 1 + 1i and C = 1 + 0.1i.

Exercise 3.14. Complex nonlinear oscillator. The equation y′ = iy + 0.1(1 − |y|2)y
might be regarded as a kind of complex, first-order analogue of the van der Pol equa-
tion. (a) Compute and plot the solution for y(0) = 0.1 and t ∈ [0, 100]. (b) Use
roots(real(y)) to determine the period of the oscillation, and explain why this is the
value that appears.

Exercise 3.15. Logistic equation. Positive solutions of y′ = y grow exponentially, but
positive solutions of y′ = (1−y/Y )y, where Y > 0 is a constant known as the carrying
capacity, asymptote to y = Y as t → ∞. (a) Solve the equation analytically for
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y(0) = y0. (b) Solve it numerically with Y = 5 for t ∈ [0, 5] and make a plot of
trajectories with y0 = −5,−4, . . . , 10. (This equation was derived by Pierre-François
Verhulst in the 1830s as a model of population growth after he read Malthus’s Essay
on the Principle of Population.)

Exercise 3.16. Logistic equation with harvesting. Suppose a population is naturally
governed by logistic growth but is regularly harvested, obeying y′ = y(1− y/Y )−H
for positive constants Y and H . (a) Show theoretically that the existence of a steady
real solution satisfying y′ = 0 requires H < Y/4. (b) Using Chebfun, plot solutions
over [0, 11] for y0 = 5, Y = 5, and H = 0.75, 1, 1.25, 1.5. How do you interpret the
solution with H = 1.5?

Exercise 3.17. Blowup equation with a t-dependent correction. Positive solutions of
y′ = y2 blow up to ∞ in finite time, but y′ = y2 − t2 has different behavior. Plot
solutions for t ∈ [−2, 2] with y(−2) = y0 = −2,−1.9,−1.8, . . . , 2. (Use N.maxnorm =

3.) Describe in words what trajectories appear to look like as t → ∞ as a function of
y0 ∈ [−2, 2]. Approximately what is the critical value of y0 in this interval?
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4. Second-order ODEs and damped oscillations

The most famous of all ODEs is of order two — Newton’s second law of motion,
force equals mass times acceleration:

F = ma.

What makes this a second-order equation is that acceleration is the second
derivative of position with respect to time. Following the standard notation of
this book, we can rename a as y′′ and solve for it to get

y′′ =
F (t, y)

m
. (4.1)

This particular form of Newton’s law describes a mass m moving along a line
with position y(t) at time t and subject to a force F that may depend on t
and/or y(t).

Staying with 17th century England for a moment, a famous choice of F is
Hooke’s law,

F (t, y) = −by, (4.2)

where b is a positive constant. This applies for example to a spring stretched a
distance y beyond its rest position. Combining (4.1) and (4.2) gives the ODE

y′′ = −by

m
.

We shall write this in a standard form that will also be useful in later chapters
by defining

ω =

√
b

m
.

39
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The equation becomes

y′′ + ω2y = 0. (4.3)

This is the most basic of all second-order ODEs, the second-order analogue of
(1.1), and it governs simple harmonic motion. As a second-order equation, it
has a two-dimensional space of solutions spanned by the functions

sin(ωt), cos(ωt).

Note that these functions are periodic, with period T given by the formula

T =
2π

ω
. (4.4)

The number ω is the frequency.18 The general solution of (4.3) can be written19

A sin(ωt) +B cos(ωt). (4.5)

Other representations of this space of solutions are also useful, such as

A sin(ωt+ φ), (4.6)

where φ is an phase shift, or the complex exponentials expression20

Aeiωt +Be−iωt, (4.7)

where A and B may also be complex. This form is particularly useful when
one wishes to consider the generalization to situations in which ω is complex,
corresponding to a constant ω2 in (4.2) that is negative or complex. From (4.7)
it can be seen that in this case solutions to (4.1) contain components that grow
and decay exponentially with t.

Here for example is a solution of (4.3) with ω = 1 and initial conditions
y(0) = 1, y′(0) = 0. We know this solution exactly: it is y(t) = cos(t). The
number displayed in the figure title confirms that the period is 2π.

L = chebop(0,60); L.op = @(t,y) diff(y,2) + y; L.lbc = [1;0];

y = L\0; plot(y)

[~,maxima] = max(y,'local'); T = maxima(3) - maxima(2);

18One must be careful to distinguish this angular frequency, representing radians per unit
time, from the quantity 1/T , also called frequency, which represents cycles per unit time.
The musical note A above middle C corresponds to 440 Hz, which is an angular frequency of
≈ 2765 radians per second.

19When the independent variable is x rather than t, ω is replaced by k, known as the wave
number. In this case sin(ωt) and cos(ωt) become sin(kx) and cos(kx).

20Mathematicians generally prefer the complex exponentials representation for linear prob-
lems, where sines and cosines can be obtained by appropriate superpositions. For nonlinear
problems, superposition is not available, and it is generally necessary to stay with real vari-
ables.
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In this book we are always free to experiment. For example, what if we make
the problem nonlinear by replacing y by y5? The equation becomes

y′′ + y5 = 0. (4.8)

A figure shows that the solution is again a periodic oscillation of amplitude 1,
but the period is 34% longer:

L.op = @(t,y) diff(y,2) + y^5;

y = L\0; plot(y)

[~,maxima] = max(y,'local'); T = maxima(3) - maxima(2);
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The reason the period has increased is easy to see: |y5| is smaller than |y| for
|y| < 1, so this nonlinear spring has a weaker restoring force than the linear
one and oscillates more slowly. The shape of the oscillation has also changed,
coming closer to a sawtoothed alternation of straight segments. We are closer
to a “bang-bang” situation, with most of the acceleration, hence most of the
curvature, appearing for y ≈ ±1.

As another experiment, let us return to the original linear problem (4.3) but
add a small term involving the first derivative, giving an equation associated
with damped oscillation,21

y′′ + 0.1y′ + ω2y = 0. (4.9)

21In the van der Pol equation (1.2), we saw a similar oscillator except with nonlinear damp-
ing: positive damping for |y| > 1, negative for |y| < 1.
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Physically, this corresponds to an additional applied force that is proportional
to velocity and in the opposite direction, slowing motions down. Here is the
result, again with ω = 1 and y(0) = 1, y′(0) = 0.

L.op = @(t,y) diff(y,2) + 0.1*diff(y) + y;

y = L\0; plot(y)

[~,maxima] = max(y,'local'); T = maxima(3) - maxima(2);
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Note from the number displayed in the figure title that the “period” is greater
than 2π, but only about 1% greater; we shall explain this in a moment. Strictly
speaking, this solution is not periodic, but the maxima are still separated by
fixed intervals. We shall see in (4.13) that y is equal to a periodic function times
a decaying exponential.

Few subjects are more vital to practical engineering than the damping of
oscillations.22 In cars and aircraft, vibrations with frequencies on the order of
hundreds or thousands of hertz must be damped to keep sound levels tolera-
ble. In bridges and buildings, vibrations with frequencies closer to 1–5 hertz
must be damped to avoid catastrophic failures in storms and earthquakes. The
mathematics of this kind of engineering is well advanced, relying heavily on
finite-element simulations on large computers. One of the world’s most famous
damping devices must be the 660-ton steel pendulum suspended from the 92nd
to the 87th floor of the skyscraper Taipei 101 in Taiwan. This damper has be-
come a tourist attraction and even has its own mascot, known as the Damper
Baby.

It is interesting to consider the implications of linearity and nonlinearity in
the three problems we have examined so far. The shape of the first solution, for
the linear problem (4.3), is scale independent: if the initial condition is doubled,
the solution will double too. The second solution, for the nonlinear problem
(4.8), is scale dependent: if the initial condition is doubled, the solution will
change shape as well as amplitude, developing even sharper sawtooths. The
third solution, for the linear damped oscillator (4.9), is the most interesting
from this point of view. Again, linearity implies scale independence, so that
doubling the data will double the solution. What is new is that, since the

22Standard texts on the analysis of vibration include L. Meirovitch, Elements of Vibration
Analysis, and S. S. Rao, Mechanical Vibrations.
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wave is decaying as a function of t, the scale independence has a substantive
implication: as t varies, the amplitude can change but not the shape. Thus
it follows from linearity that the crests of the wave solution to (4.9) must be
separated by fixed intervals, and hence that the decay must be exponential.

Let us consider now the mathematics of a general problem of this form,
a second-order constant-coefficient scalar linear homogeneous differential equa-
tion,

y′′ + εy′ + ω2y = 0, (4.10)

where ε and ω are constants. (Since no initial or boundary conditions have
been specified, the classification of (4.10) is fLASH.) As mentioned in the in-
troduction, this is one of the five most important equations of this book, and
it will keep reappearing in various contexts. In applications ε will usually be
nonnegative, although mathematically ε < 0 and ε > 0 are really the same story
— for negating ε is equivalent to negating t, that is, time reversal. None of the
formulas or theorems care whether ε is positive or negative.

Motivated by (4.7), let us look for a solution to (4.10) of the form

y(t) = ert

for a constant r. Inserting this trial solution in (4.10) gives the condition

r2 + εr + ω2 = 0,

which is a quadratic equation with roots

r = −ε

2
±
√

ε2

4
− ω2. (4.11)

We call these the characteristic roots of (4.10). Equivalently, we could write

r = −ε

2
± i

√
ω2 − ε2

4
. (4.12)

The product of r− and r+ is always ω2, independently of the value of ε.
For simplicity, let us suppose that ε and ω are real. Then the formula (4.12)

is the more useful one if ε2/4 < ω2, i.e., ε < 2ω, which we call the underdamped
or subcritically damped case. The factor i reveals that solutions are oscillatory.
In particular, if ε = 0, (4.12) reproduces the solutions y = exp(±iωt) of (4.7).
For ε > 0, we get exponentially decaying solutions of the form

y(t) = e−εt/2 exp

(
±it

√
ω2 − ε2

4

)
. (4.13)

This formula explains the decaying wave seen in the solution to (4.9). With
ε = 0.1, the decay rate is e−t/20, as we can confirm by adding dashed lines to
the figure.
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ep = 0.1; envelope = chebfun(@(t) exp(-ep*t/2),[0 60]);

hold on, plot([envelope, -envelope],'--')
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Formula (4.13) also explains the slight increase of the period T above 2π we
have noted. Adapting (4.4), we see that the period of the decaying wave (or
more precisely of its oscillatory factor) is now

T = 2π

/√
ω2 − ε2

4
. (4.14)

Thus damping slows down the frequency of oscillation. It is the squaring of ε
in this formula that explains why the modification to T in our experiment has
been so slight. To leading order, the addition of linear damping does not change
the frequency of an oscillating system; the change of frequency is at the second
order.23 An evaluation of (4.14) confirms the value of T reported in the caption
of Figure 4.3:

om = 1; T = 2*pi/sqrt(om^2 - ep^2/4)

T = 6.2911

Continuing with the assumption that ε and ω2 in (4.10) are real, suppose
on the other hand ε2/4 > ω2, i.e., ε > 2ω, the overdamped or supercritically
damped case. Now (4.11) becomes more useful than (4.12), and we see that the
solutions to (4.10) do not oscillate but grow or decay exponentially. If ε > 0
and ω2 > 0, they both decay, though at different rates.

Equation (4.10) is a second-order linear equation, and that is why it has two
linearly independent solutions and requires two initial conditions to determine
a unique solution.24 If the two values r+ and r− of (4.11) or (4.12) are distinct,
then the general solution to (4.10) is

y(t) = Aer+t +Ber−t. (4.15)

23For this reason engineers often begin an analysis of frequency of vibrations of machines and
structures by ignoring damping. The same insensitivity of frequency to damping benefited
watchmakers in the days of watches with balance springs, a design method going back to
Hooke himself.

24Recall that in any vector space, two vectors v and w are linearly independent if Av+Bw =
0 holds only with A = B = 0. Here, our vectors are functions y(t).
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If ω2 = ε2/4, however, or ε = 2ω, then r+ and r− are the same. This is the
critically damped case, and we have to look elsewhere to find a second linearly
independent solution of the ODE. A suitable choice is y(t) = tert, as can
be verified by substituting this function directly in (4.10). In this case we
accordingly get the general solution

y(t) = (A+Bt)ert. (4.16)

Here is a theorem to summarize these observations.

Theorem 4.1. Solution of second-order linear scalar constant-
coefficient ODE (fLASH). The equation

y′′ + εy′ + ω2y = 0 (4.17)

has a two-dimensional vector space of solutions. For ε < 2ω (subcritical damp-
ing) the general solution is

y(t) = e−εt/2
[
A sin

(
t
√
ω2 − ε2/4

)
+B cos

(
t
√
ω2 − ε2/4

)]
, (4.18)

for ε > 2ω (supercritical damping) it is

y(t) = A exp
(−εt/2 + t

√
ε2/4− ω2

)
+B exp

(−εt/2− t
√
ε2/4− ω2

)
, (4.19)

and for ε = 2ω (critical damping) it is

y(t) = (A+Bt) exp
(−εt/2

)
. (4.20)

Proof. The solutions described are certainly linearly independent, so all that
must be proved is that the dimension of the space of solutions is not greater
than 2. This can be derived from the uniqueness statement of Theorem 11.2 if
the second-order scalar problem (4.17) is written as a first-order problem in two
variables.

Here are three images showing solutions of (4.17) with subcritical, critical,
and supercritical damping. Critical damping is plainly the fastest.

L = chebop(0,20); L.lbc = [1;0]; om = 1; epep = [0.1 2 10];

for j = 1:3

subplot(1,3,j); ep = epep(j);

L.op = @(t,y) diff(y,2) + ep*diff(y) + om^2*y;

y = L\0; plot(y)

r1 = -ep/2 + sqrt(ep^2/4-om^2); r2 = -ep/2 - sqrt(ep^2/4-om^2);

end
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One of the most important and interesting aspects of oscillatory systems is
their response to external inputs — the inhomogeneous variant of (4.17). This
will be the subject of Chapter 8.

Application: skydiver

Here is an example adapted from D. B. Meade, “ODE models for the
parachute problem,” SIAM Review 40 (1998), pp. 327–332.

If there were no air resistance, a falling skydiver would experience only the
force of gravity: h′′(t) = −g, where h is height above the earth and g = 9.8.
(We use MKS units, i.e., meters-kilograms-seconds.) The speed of fall would
increase linearly and the height would decrease quadratically.

However, the air resistance quickly becomes significant as the skydiver’s
speed increases. The atmosphere creates a force called drag that opposes grav-
ity. For reasons of fluid mechanics that we will not go into, this force can be
reasonably modeled as FD = kv2, where v = h′ is the velocity and k (in units
kg/m) depends on properties of the air and the skydiver.25 The gravity and
drag forces are in balance when they have equal magnitudes, giving the condi-
tion mg = kv2, where m is the mass of the skydiver. Since there is no net force
on the skydiver under this condition, the velocity will not change, and this value
vT = −√mg/k is known as the terminal velocity.

If we express Newton’s law for the skydiver in terms of the velocity, we have

v′ =
kv2

m
− g = g

(
v2

v2T
− 1

)
,

which is separable. Integration leads to

v(t) = −vT tanh

(
gt

vT
+ C

)
25Thus the drag force here is different from that of (4.17), which depends just linearly on

the velocity. As a rule one sees linear drag for bodies moving slowly through a fluid (laminar
flow) and quadratic drag at higher speeds (turbulent flow).
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for an arbitrary constant C. Since this is an explicit function of t, v can be
integrated again to get h(t), but we will omit that result here and move to
numerical solutions for simplicity. A reasonable approximation is vT ≈ 55 m/s
for the standard “belly-down” position in free fall. This enables us to calculate
height and velocity for a dive starting at 4 km altitude.

g = 9.8; vT = 55; h0 = 4000;

L = chebop(@(t,h) diff(h,2)-g*(diff(h)^2/vT^2 - 1),[0 75]);

L.lbc = [h0;0]; hfree = L\0; plot(diff(hfree))
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Terminal velocity is reached in about 15 seconds.
The reason skydivers need parachutes is that, without them, their terminal

velocities would be terminal! The function of a parachute is to greatly increase
the drag and thereby induce a much smaller terminal velocity, which we may
take to be, say, 10 m/s. A typical altitude at which to open the parachute is
h = 800 m, which occurs for our model at the time

tp = roots(hfree-800)

tp = 62.0719

So our skydiver can enjoy a whole minute of free fall. Then, with the parachute
open, the second phase of her dive is given by

vT = 10; h0 = 800;

L = chebop(@(t,h) diff(h,2)-g*(diff(h)^2/vT^2 - 1),tp+[0 90]);

L.lbc = [hfree(tp);deriv(hfree,tp)];

hchute = L\0; plot(diff(hchute))
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The dive ends with h = 0, at time

t0 = roots(hchute)

t0 = 140.8692

We can plot the entire course of the dive by concatenating the two phases.

h = join(hfree{0,tp},hchute); plot(h)
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Taking the derivative gives the velocity as a function of time.

plot(diff(h))
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History. Much of this chapter goes back to the brilliant 17th century rivals
Robert Hooke, Christiaan Huygens, and Isaac Newton. The names of Hooke
and Newton are associated with the two most famous force laws for F in the
equation F (y) = my′′. Hooke’s law puts F (y) proportional to y, leading to
simple harmonic motion and elasticity. Huygens studied such oscillations too
and was the inventor of the pendulum clock. Newton’s law for gravity puts
F (y) proportional to y−2, leading to elliptical orbits and cosmology. When y is
effectively constant, as with gravity at the surface of the earth, so is the force F
— the situation experienced by our skydiver and also by an apple falling from
Newton’s tree.
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Our favorite reference. For a salutary view of how ODEs meet reality,
see J. C. Dixon, The Shock Absorber Handbook, 2nd ed., Wiley, 2007. Chapter 2,
on vibration theory, presents the material we have discussed in the vivid context
of behavior of motor vehicles. To optimize comfort, passenger cars are usually
designed in the underdamped regime, whereas to optimize handling, race cars
are closer to critically damped.

Summary of Chapter 4. The scalar, linear, autonomous second-order
ODE y′′ + εy′ + ω2y = 0 has a two-dimensional vector space of solutions.
If ω is real and ε > 0, all solutions decay exponentially. For ε < 2ω (subcrit-
ical damping), the solution is an oscillatory function times an exponential
envelope, and for ε > 2ω (supercritical damping) it is a superposition of
two exponentials with different time constants.

Exercise 4.1. Hooke and Newton elliptical orbits. Taking y(t) to be complex as usual
for tracking orbits in a plane, we can write y′′ = −y|y|p−1 for the classic problem of a
point orbiting in a central field. Produce seven plots showing the orbits over t ∈ [0, 40]
emanating from the initial conditions y(0) = 1, y′(0) = 0.5i for p = −2,−1.5,−1, . . . , 1;
in each case use axis([-1 1 -1 1]), axis square. The case p = 1 corresponds to
Hooke’s law, and the orbit is an ellipse with center y = 0. The case p = −2 corresponds
to Newton’s law of gravitation, and the orbit is an ellipse with one focus at y = 0.
(V. I. Arnol’d uses the terms Hooke ellipse and Newton ellipse. If the ellipses are
viewed as sets in the complex plane, then the square of a Hooke ellipse is a Newton
ellipse.)

Exercise 4.2. Kepler’s equal-area law. For a particle in an elliptical orbit in an
inverse-square field, the area swept out per unit time is constant. (a) If y(t)
is an orbit computed as in Exercise 4.1, show mathematically why the command
A = cumsum(imag(diff(y)*conj(y))) computes a chebfun representing the area A(t)
swept out as a function of time t (cumsum is Chebfun’s indefinite integral operator).
(b) Perform this calculation and plot the result (with p = −2 for the inverse-square
force). What is A(40)?

Exercise 4.3. Exact equations. Sometimes an ODE is a derivative of an equation of
lower order. For example, the equation y′′ + ty′ + y = 0 can be written (y′ + ty)′ = 0.
Use this observation to find the analytical solution to this ODE (a) in general, and
(b) with y(0) = 1, y′(0) = 1.

Exercise 4.4. Falling to earth. Suppose Earth is a uniform sphere of mass M and
radius R, and a small body of mass m � M is initially motionless at a height h(0) = h0

above the surface and attracted downward by the gravitational force F = GmM/(R+
h)2, where G is the universal gravitational constant. (a) Write down an ODE IVP
whose solution gives h(t) as a function of t. (b) Solve it analytically to get a formula
for tc, the time at which the body hits the surface. (c) Rewrite this formula in terms
of explicit numbers using the approximate values M = 6 × 1024 kg, R = 6 × 106 m,
and G = 6× 10−11m3kg−1s−2. (d) What height h0 leads to tc = 1 minute?

Exercise 4.5. Second solution for critical damping. Confirm analytically that y(t) =
tert is a solution of (4.10) in the critically damped case ε = 2ω.

Exercise 4.6. Critical damping example. (a) What value ω = ωc in (4.9) gives critical
damping? (b) Fix ω at this critical value and compute solutions with the ε parameter
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0.1 of (4.9) taking values 0.09, 0.1, and 0.11. Superimpose semilogy plots of |y(t)|
against t for these three choices. Comment on why one of the three curves has a shape
different from the others, and on why two of them have nearly the same slope.

Exercise 4.7. A weak nonlinear spring. Suppose a particle with rest position y = 0 is
subject to an asymmetric restoring force y′′ = −y exp(−y). (a) Plot y(t) for t ∈ [0, 200]
for initial conditions y(0) = 0 and y′(0) = 0.5, 1, and 1.5. (b) Define the idea of an
“escape velocity” for this system for trajectories beginning at y = 0. Based on the
experiments of (a), and other experiments if you wish, what can you say about its
numerical value? (c) By thinking in terms of kinetic and potential energy, determine
the escape velocity analytically. (The potential energy can be defined as the work
required to bring the particle in from ∞, where work is defined as an integral of force
times distance.)

Exercise 4.8. Acceleration of the skydiver. Repeat the calculation for the skydiver
application and plot the acceleration as a function of time. What is the maximum
acceleration in MKS units, and as a multiple of the gravitational acceleration g? This
number is unrealistically large, and would probably kill the skydiver. Explain in a
general way what kind of effects you think have been omitted from the model that in
practice would make the acceleration not so extreme.

Exercise 4.9. Hard nonlinearity. Most springs get stiffer at high displacements. To
see the effect on the period T , compute and plot T for the equation y′′+y+y3 = 0 for
solutions with initial velocity y′(0) = 0 and initial amplitudes y(0) = 0.0, 0.1, . . . , 5.
Explain why the period changes as y(0) increases.

Exercise 4.10. Friction and sliding of a penny. A penny of mass 1 sits at position
y(t), starting motionless at y(0) = 0, on a wooden board inclined at angle θ from the
horizontal. The board is slowly tilted up according to θ = 0.1t for t ∈ [0, 10]. The
gravitational force downward on the penny can be resolved into ft = sin(θ) in the y
direction along the board and fn = cos(θ) normal to the board. Meanwhile there is
a frictional force ff = −μkfn on the penny, where μk = 0.5 is a coefficient of kinetic
friction, so long as the penny is sliding. On the other hand if ft ≤ μsfn, where μs = 1
is a coefficient of static friction, then the penny is stationary, with ff = −ft. (a)
Formulate this problem as an IVP in Chebfun and compute and plot the solution y(t).
Where is the penny at t = 10? How many times continuously differentiable is the
trajectory y(t)? (b) Repeat both parts of (a) under the assumption μs = μk = 0.5.

Exercise 4.11. Nondimensionalization. Show how, by introducing a variable u equal to
a suitable multiple of y, the equation y′′+ay′+by = 0 can be reduced to u′′+εu′+u = 0.
What is ε in terms of a and b?
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Now it is time to open the big door that will double the richness of our study
of ODEs. With second- and higher-order equations, since they need more than
one boundary condition, we have the prospect of not just IVPs but also BVPs,
that is, boundary-value problems.

Boundary-value problems are everywhere in the sciences. Broadly speaking,
ODEs whose independent variables represent time are usually IVPs modeling
dynamics. ODEs whose independent variables represent space are usually BVPs
modeling equilibria.26 These differences are fundamental, and in this book we
will usually change the independent variable from t to x when working with a
BVP. In particular, y′ and y′′ will now denote dy/dx and d2y/dx2 instead of
dy/dt and d2y/dt2. As mentioned in a footnote in Chapter 1, we will also plot
solutions of BVPs in blue instead of green.

As our first example of a BVP, here is the solution of

y′′ = −y, x ∈ [0, 60], y(0) = 1, y(60) = 0. (5.1)

The value of y at x = 0 is specified, but not its derivative. A solution is found
to match the value of y specified at the other end of the interval.

L = chebop(0,60); L.op = @(x,y) diff(y,2) + y;

L.lbc = 1; L.rbc = 0;

y = L\0; plot(y)

26Of course, there are exceptions. A notable area where BVPs arise with a time variable is
control theory, in which the engineer seeks to make a system attain certain function values at
certain times. The Application of Chapter 16 is in this category.

51
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Here is the solution to another BVP, in which the condition at the right
involves the derivative y′ rather than the value of y itself,

y′′ = −y, x ∈ [0, 60], y(0) = 1, y′(60) = 0. (5.2)

A condition involving y is called aDirichlet condition, and a condition involving
y′ is called a Neumann condition. A condition that mixes both y and y′ is
called a Robin condition. (To specify a Robin condition in Chebfun, such as
y′(60)− y(60) = 1, for example, we could write L.rbc = @(y) diff(y)-y-1.)

L.rbc = 'neumann';

y = L\0; plot(y)
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The significance of boundary conditions becomes more striking if we look at
equation (4.10) with ω2 < 0, where one solution exponentially grows and the
other exponentially decays. To illustrate, we revert to the Dirichlet condition
of (5.1) and take ε = 0, ω2 = −1 in (4.10),

y′′ = y, x ∈ [0, 60], y(0) = y(60) = 1. (5.3)

Note that the solution shown below is close to zero except near the endpoints,
where it is far from zero in two regions known as boundary layers. Here we
begin to see strongly the difference between IVPs and BVPs. This curve in
principle might have been the solution of an IVP if the initial data had been
chosen just right, but such a solution would hardly be likely to arise in practice.
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On the contrary, from the curve it is clear that this solution is probably being
driven by conditions imposed at the two ends. We shall consider boundary
layers in detail in Chapter 20.

L.op = @(x,y) diff(y,2) - y;

L.lbc = 1; L.rbc = 1;

y = L\0; plot(y)
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For the problem above, the characteristic roots (4.11)–(4.12) are r± = ±1.
The solution we have plotted can be approximated very closely as

y(x) ≈ e−x + ex−60. (5.4)

See Exercise 5.1.
Suppose we are given a second-order constant-coefficient scalar linear homo-

geneous ODE BVP of the form (4.10). To solve it, following Theorem 4.1, we
would look for a function in the vector space spanned by er+x and er−x, or erx

and xerx in the critically damped case, that satisfies the boundary conditions.
Just as in the last chapter, a small variation of this approach applies to an
inhomogeneous problem of the form

y′′ + εy′ + ω2y = f(x), (5.5)

where f is a given forcing function. If we can find a particular solution yp to
(5.5), then the general solution is obtained by adding elements from this two-
dimensional vector space. When f is simple, a particular solution can often be
obtained by inspection or the method of undetermined coefficients.

Here is an example. Suppose we put the linear function f(x) = (x− 20)/20
on the right-hand side of (5.3),

y′′ = y + (x− 20)/20, x ∈ [0, 60], y(0) = y(60) = 0. (5.6)

A particular solution to this equation is yp(x) = −(x − 20)/20, and from here
one can readily obtain a formula for the solution plotted below (Exercise 5.2).

L.op = @(x,y) diff(y,2) - y; L.lbc = 0; L.rbc = 0;

rhs = chebfun('(x-20)/20',[0 60]);

y = L\rhs; plot(y)
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For a nonlinear variation, let us change the term y in (5.6) to y3,

y′′ = y3 + (x− 20)/20, x ∈ [0, 60], y(0) = y(60) = 0. (5.7)

The resulting curve is an interesting variation on Figure 5.4. The zero of y(x)
near x = 20, incidentally, is not exactly at x = 20, more like 19.99999999985.

L.op = @(x,y) diff(y,2) - y^3;

y = L\rhs; plot(y)
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Returning to linear problems, let us explore some of the variety of boundary
conditions that may arise. Here is an advection-diffusion equation:

0.02y′′ + y′ + y = 0, x ∈ [0, 1]. (5.8)

First let us solve it with two Dirichlet boundary conditions y(0) = 0, y(1) = 1.

L = chebop(0,1); L.op = @(x,y) 0.02*diff(y,2) + diff(y) + y;

L.lbc = 0; L.rbc = 1;

y = L\0; plot(y)
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Next we change the right boundary condition to Neumann form, y′(1) = 1.

L.rbc = @(u) diff(u)-1;

y = L\0; plot(y)
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Here we couple the two endpoints with the conditions y(0) = 1, y′(1) = −y′(0).

L.lbc = 1; L.rbc = []; L.bc = @(x,y) deriv(y,1) + deriv(y,0);

y = L\0; plot(y)
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Not all “boundary” conditions must be based at the boundaries. For ex-

ample, we might seek a solution with y(0) = 1 and
∫ 1

0
y(x)dx = 0, so that y

has mean zero. A nonstandard condition like this is sometimes called a side
condition.
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L.bc = @(x,y) sum(y);

y = L\0; plot(y)
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So far we have considered second-order equations. With equations of third
order or higher, there is the possibility of mixing boundary and interior condi-
tions. For example, here is the solution to a third-order problem with boundary
conditions at three distinct points, marked by dots in the plot for emphasis.

y′′′ + y = 1, x ∈ [0, 2], y(0) = 0, y(1) = y(2) = 1. (5.9)

L = chebop(0,2); L.op = @(x,y) diff(y,3) + y;

L.lbc = 0; L.rbc = 1; L.bc = @(x,y) y(1)-1;

y = L\1; plot(y), hold on, plot(0:2,y(0:2),'.')
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Throughout this discussion we have avoided mentioning existence and
uniqueness. This is because these matters are not straightforward for BVPs,
even linear ones, because of the possible presence of eigenvalues. This will be the
subject of the next chapter. For nonlinear BVPs there are further nonunique-
ness possibilities that are both interesting and scientifically important, as we
will explore in Chapters 16–18. As an example of nonuniqueness in a nonlinear
BVP, consider the solution that Chebfun finds to the nonlinear equation

1

2
y′′ + y2 = 1, x ∈ [−1, 1], y(−1) = y(1) = 0. (5.10)
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N = chebop(-1,1); N.op = @(x,y) .5*diff(y,2) + y^2;

N.lbc = 0; N.rbc = 0;

y = N\1; plot(y)
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If we ask Chebfun to look for a solution starting from the initial guess y(x) =
cos(πx/2) rather than its default initial guess y(x) = 0, however, a different and
equally valid solution is found, which we superimpose on the same plot.

N.init = chebfun('cos(pi*x/2)');

y = N\1; hold on, plot(y)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

2.5

Does (5.10) have exactly these two solutions, or are there more? There is no
general theorem that gives an answer to such questions, but we shall make some
progress on them in Chapter 16.

Application: beam theory and the strength of spaghetti

In physics and engineering an idealized string can sustain a tension but has
no stiffness — no resistance to bending — and this leads to second-order ODEs.
This is where we would start, say, in studying the sounds produced by a guitar.
An idealized beam, on the other hand, has stiffness and resists bending, even
though we still model it as a one-dimensional object. This leads to fourth-order
ODEs, and the same equations apply to the girders of the Eiffel tower as to a
piece of dried spaghetti.
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In the simplest setting, omitting dimensional constants and assuming in-
finitesimal deflections, the equation takes the form

y′′′′(x) = f(x), (5.11)

where f(x) is the vertical force applied at position x along a beam and y(x) is
the vertical deflection at that point. The derivatives of y can be interpreted as
follows:

y(x) and y′(x): position and slope,

y′′(x): bending moment, whose square is energy density,

y′′′(x): vertical force,
y′′′′(x): force density.

In a time-dependent problem, a nonzero value of y′′′′(x) would be associated with
vertical acceleration −y′′′′(x), but we are considering here the static problem.
Equation (5.11) represents the condition that the force caused by the bending
of the beam is balanced by an external force f(x), so there is no acceleration.

For example, suppose a beam of length 2 and weight density 1 is clamped
at x = ±1,

y′′′′ = −1, y(−1) = y′(−1) = y(1) = y′(1) = 0. (5.12)

An image shows that the beam sags a little in the middle (the deflection is
1/24). We plot y with a thicker line to suggest stiffness. This and the next
few calculations, incidentally, can be done on paper (Exercise 5.4), though that
would change if complications were introduced such as variable coefficients.

L = chebop(-1,1); L.op = @(x,y) diff(y,4);

L.lbc = [0;0]; L.rbc = [0;0];

y = L\-1; d1 = norm(y,inf); plot(y)
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Next, instead of clamping the beam at x = 1, let us fix the position there
but not the slope. In such a case one has what is called a natural boundary
condition, y′′(1) = 0. The deflection of the beam at the midpoint doubles, and
the maximum deflection, which is now located to the right of the midpoint,
increases by a factor of about 2.079. (The exact maximal deflection is (39 +
55

√
33)/4096.)
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L.rbc = @(y) [y; diff(y,2)];

y = L\-1; d2 = norm(y,inf); plot(y)
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Alternatively, we can let both ends be free. Symmetry is restored, and the
maximum deflection is in the middle again, with value 5/24.

L.lbc = @(y) [y; diff(y,2)];

y = L\-1; d3 = norm(y,inf); plot(y)
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This brings us to the spaghetti problem. Here in Oxford, we bought a pack
of spaghetti at a local newsagent. We taped some pennies27 to the end of a
piece, making a cantilever that can be modeled as a massless beam clamped at
x = 0 with a weight w applied at x = d:

y′′′′ = 0, y(0) = y′(0) = y′′(d) = 0, y′′′(d) = w. (5.13)

d = 2; L = chebop(0,d); L.op = @(x,y) diff(y,4);

L.lbc = [0; 0]; L.rbc = @(y) [diff(y,2); diff(y,3)-0.1];

y = L\0; d4 = norm(y,inf); plot(y)

penny = d+1i*(y(end)-.01)+.08*(chebfun('exp(1i*t)',[0, 2*pi])-1i);

hold on, fill(real(penny),imag(penny))

27Conveniently for our experiment, the British 2p coin weighs exactly the same as two
pennies.
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We could have measured these deflections for various cantilever lengths d and
numbers of pennies, but it seemed more fun to investigate, for a given number
of pennies, what is the length of cantilever at which the spaghetti breaks? With
up to four pennies no breaking occurs — at 26 cm, the piece of spaghetti is too
short. But for 5, 6, . . . , 16 pennies we found these breaking lengths in cm:

d = [17.1 14.6 12.9 8.8 9.0 7.5 6.7 6.6 5.2 5.3 4.7 4.4];

Here is a plot of the data, showing how the breaking weight decreases as the
length d increases.

xx = linspace(4.7,17.5); plot(xx,80./xx), hold on

plot(d,5:16,'.')
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As the red line shows, the relationship appears to be inverse linear, and we
explain this as follows. A piece of spaghetti breaks when its curvature |y′′(x)|
exceeds a critical value for some x. From calculation or analysis of (5.13), one
finds that, as a function of d, y scales as wd3, where w again is the weight. This
means that y′ scales as wd2, and y′′ scales as wd. If wd is to remain bounded
as d → ∞, we must have w = O(d−1).

Returning from spaghetti to mathematics for a moment, it is interesting to
note that the solutions of u′′′′ = 0 are precisely the polynomials of degree ≤ 3.
Thus the study of idealized beams with no body forces f(x) is equivalent to the
study of cubic polynomials that satisfy various boundary conditions. This con-
nection is famous in numerical analysis, where the classic wooden flexible rulers
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used for designing shapes in the aircraft and shipbuilding industries evolved into
the mathematical splines used all across computational science and engineering.

History. Beam theory goes back to Euler and Jacob Bernoulli in the mid-
18th century. It was later that the explicit study of boundary-value problems
became a field of mathematics in its own right with the investigations of Sturm–
Liouville problems in the 1830s by Charles Sturm and Joseph Liouville. French
mathematics had a period of extraordinary productivity following the French
Revolution and Napoleonic wars, with leading figures including Fourier (born
1768), Poisson (1781), Cauchy (1789), Sturm (1803), and Liouville (1809).

Our favorite reference. A standard work among numerical analysts is
Ascher, Mattheij, and Russell, Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations, SIAM, 1995 (first published in 1988). Its
appealing concrete style is well established by Section I.2 on p. 7, which begins,
“In this section we have collected 22 instances of BVPs which arise in a variety
of application areas.”

Summary of Chapter 5. When an ODE is of order d ≥ 2, it will nor-
mally have a d-dimensional solution space, making it possible for different
boundary conditions to be specified at different points. In the simplest case
d = 2, we get a two-point boundary-value problem. Problems of elasticity
and solid mechanics lead to fourth-order equations. Existence and unique-
ness of solutions are not as straightforward for BVPs, even linear ones, as
for IVPs. Nonlinear BVPs may have multiple solutions.

Exercise 5.1. BVPs and IVPs.28 (a) Determine analytically the exact solution to
(5.3). How much does it differ from the approximation (5.4)? (b) As remarked in
the text, though a curve may be “obviously” the solution to a BVP, in principle it
could equally have been the solution to an IVP. For this problem (5.3), what initial
condition on y′(0) would be needed to achieve the same solution? (c) If that initial
condition is multiplied by 0.99, is the resulting value y(60) less than or greater than
Avogadro’s number?

Exercise 5.2. Exact solution to (5.6). (a) Derive a formula for the exact solution to
(5.6). (b) Do the same for the case where the right-hand side is changed to (x −
20)2/400.

Exercise 5.3. Sixth-order BVP. The ODE y(6) − ay′ + y = 0, x ∈ [−4, 4], where
a ∈ [0, 2] is a parameter, has boundary conditions y(−4) = y′(−4) = y′′(−4) = 0,
y(4) = 1, y′(4) = y′′(4) = 0. If y(0) = 0, what is a?

Exercise 5.4. Exact beam formulas. Find exact formulas for the solutions presented
in Figures (a) 5.13, (b) 5.15, and (c) 5.14. The reason for this ordering is that the
solutions of Figures 5.13 and 5.15 are simpler because of symmetry.

Exercise 5.5. Exact spaghetti formula. Find an exact formula for the solution plotted
in Figure 5.16.

28This exercise is related to the numerical method for solving ODE BVPs known as shooting,
and highlights some of the challenges of that method. We shall say more about shooting in
Chapter 16.
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Exercise 5.6. Cubic and quartic dependence. It is readily confirmed that on an interval
of length d, the deflections of Figures 5.13–5.15 scale as O(d4), whereas in Figure 5.16,
as noted in the text, it is O(d3). Thus for large enough d the clamped beam will sag
more than the cantilever. Yet the clamped beam is supported at both ends, so surely
it should bend less. Resolve this paradox.

Exercise 5.7. Blasius equation. A classic nonlinear BVP due to Blasius is 2y′′′+yy′′ =
0, y(0) = y′(0) = 0, y′(∞) = 1. Solve this with Chebfun, replacing ∞ by 10. Plot
the result and report the values of y′′(0) and y(10) − 10, both of which are good
approximations to what one would get on [0,∞). (For more information see J. P. Boyd,
“The Blasius function in the complex plane,” Experimental Mathematics 8 (1999),
pp. 381–394.)

Exercise 5.8. Eliminating inhomogeneous boundary conditions. Suppose we have a
linear inhomogeneous BVP with inhomogeneous boundary data. To be specific, let us
say it is a second-order problem Ly = f , y(0) = α, y(1) = β. (a) Let y1 and y2 be two
linearly independent solutions to the homogeneous problem and let yleft, yinner, and
yright be particular solutions with f = β = 0, α = β = 0, and f = α = 0, respectively.
Write expressions for a particular solution of the BVP and for the general solution.
(b) A different approach is as follows. Let Y be any smooth function that satisfies
Y (0) = α and Y (1) = β; Y does not have to satisfy the differential equation. Show
how the general solution of the BVP can be derived using Y .

Exercise 5.9. Water droplet. The height of the surface of a water droplet satisfies
y′′ = (y − 1)(1 + (y′)2)1.5 with y(±1) = 0. What is the height at the midpoint x = 0?

Exercise 5.10. Nonlinear problems and Newton iteration. Chebfun solves linear BVPs
by solving linear systems of equations obtained by discretizing in x, as described in
Appendix A. For nonlinear BVPs, there is an additional Newton iteration involved,
discussed in Appendix A and also briefly in Chapter 16. (a) Rerun the problem of
equation (5.3) and Figure 5.3 using tic and toc to measure how long the computation
takes. (As with all timing experiments, do this several times to make sure the numbers
have settled down.) Plot the solution y on a semilog scale and also report the length
of the chebfun as in Exercise 1.6. (b) Now do the same calculations again but with
the right-hand side of (5.3) changed from y to y1.01, and superimpose the new solution
curve y on the same plot. How is the computing time affected? How is the length of
the chebfun affected? (c) Show the outputs that result when L is executed without
a semicolon for these two computations. Note the indication that in part (b), Cheb-
fun has determined that the operator is nonlinear and must be treated by different
numerical methods.
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The first BVP of the last chapter, equation (5.1), can be written

y′′ + by = 0, x ∈ [0, 60], y(0) = 1, y(60) = 0 (6.1)

with b = 1, and the solution had amplitude about 3.3. Look what happens if b
is reduced by just 1%, to 0.99.

b = 0.99; L = chebop(0,60); L.op = @(x,y) diff(y,2) + b*y;

L.lbc = 1; L.rbc = 0;

y = L\0; plot(y)
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The amplitude has increased to 111.3! With b = 0.9897, it is about 16606,
and with b = (19π/60)2 ≈ 0.98970199, it reaches “infinity”: the BVP has no
solution.

63
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What is happening is that the solution depends on a division by a number
that is close to zero. In this chapter we will explore the mathematics of situations
like this. For a simple problem like (6.1), the algebra is elementary, but the
implications, including the phenomenon of resonance for time-dependent partial
differential equations (see Chapter 22), are far-reaching.

Let’s begin with the elementary algebra. From equation (4.5), we know that
the general solution of (6.1) is

y(x) = A sin(kx) +B cos(kx)

with k =
√
b. The boundary conditions in (6.1) correspond to the equations

B = 1, A sin(60
√
b) +B cos(60

√
b) = 0.

This can be regarded as a 2× 2 matrix problem for the unknowns A and B, an
especially easy one since the first equation is trivial. The solution is

B = 1, A = − cot(60
√
b),

where cotx = cosx/ sinx as always. Here is the value of A for b = 0.99.

b = 0.99; A = -cot(60*sqrt(b))

A = -111.2836

And here it is for b = 0.9897.

b = 0.9897; A = -cot(60*sqrt(b))

A = 1.6606e+04

With b = (19π/60)2, we get 60
√
b = 19π, and the cotangent is infinite. Likewise

it would be infinite with b = (jπ/60)2 for any positive integer j.
We are seeing here the phenomenon of eigenvalues of a differential operator

with boundary conditions. To frame the matter more generally, let L be the
linear operator L : y �→ y′′ on [0, 60] and let us consider the problem

Ly = y′′ = λy + f, x ∈ [0, 60], y(0) = α, y(60) = β, (6.2)

where λ is a given number and f is a function of x. It is clear that regardless
of the choices of f , α, and β there can be no unique solution of (6.2) if there
exists a nonzero function v(t) that satisfies the homogeneous equation

Lv = v′′ = λv, v(0) = v(60) = 0. (6.3)

The reason is that any multiple of v could be added to y, and the result would
still satisfy (6.2). Such a function is called an eigenfunction of L, and λ is
the corresponding eigenvalue. Another way to say it is that an eigenvalue
of a linear operator L is a number λ such that the operator L − λI, acting
on functions satisfying the homogeneous boundary conditions, has a nontrivial
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nullspace. (Here I denotes the identity operator, mapping a function y to itself.)
An eigenfunction v of L is a nonzero function in this nullspace. Note that any
nonzero multiple of an eigenfunction is also an eigenfunction for the same λ.

Let’s do an experiment to scan systematically for eigenvalues of the oper-
ator L of (6.2). Since λ is the negative of b in (6.1), the eigenvalues will be
negative numbers, and the smallest will be quite close to zero. Here we ar-
bitrarily pick boundary conditions y(0) = e and y(60) = π and the forcing
function f(x) = exp(−(x − 10)2), and we solve the ODE successively with
λ = −0.03000,−0.02998,−0.02996, . . . , 0. For each value of λ we plot a dot
representing maxx∈[0,60] |y(x)|.
f = chebfun('exp(-(x-10)^2)',[0 60]); L.lbc = exp(1); L.rbc = pi;

for lambda = -0.03:.0002:0

L.op = @(x,y) diff(y,2) - lambda*y;

y = L\f; plot(lambda,norm(y,inf),'.'), hold on

end
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The evidence is clear: there are three eigenvalues of L in this range, lying near
−0.003, −0.01, and −0.025. Here are plots of the solutions y(x) for these values
of λ.

f = chebfun('exp(-(x-10)^2)',[0 60]); llam = [-.003 -.01 -.025];

for j = 1:3

lambda = llam(j); L.op = @(x,y) diff(y,2) - lambda*y;

subplot(1,3,j), plot(L\f)

end
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The amplitudes of all three functions are on the order of 100, and we could
have made them larger by estimating the eigenvalues more accurately. Just
as the three values of λ approximate the first three eigenvalues of L (i.e., the
three smallest eigenvalues in absolute value), the three functions approximate
multiples of the corresponding eigenfunctions. Note that these curves have 1, 2,
and 3 humps, respectively, separated by 0, 1, and 2 interior zeros, called nodes.
The property that the jth eigenfunction of L has exactly j − 1 nodes is typical
of eigenfunctions for a wide range of differential operators.29

Eigenvalues and eigenfunctions are much too important for us to have to find
them by “scanning values of λ”! Chebfun computes these quantities directly
with the eigs command. We can find the first five eigenvalues of L like this.

L.op = @(x,y) diff(y,2); sort(eigs(L,5),'descend')'

ans =

-0.0027 -0.0110 -0.0247 -0.0439 -0.0685

To get eigenfunctions as well as eigenvalues we can type

[V,D] = eigs(L,5); llam = diag(D);

[llam,ii] = sort(llam,'descend'); V = V(:,ii);

A plot of the first three eigenfunctions shows convincing approximations of
multiples of the curves above.30

for j = 1:3

subplot(1,3,j), plot(V(:,j))

end
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From these images it appears that the jth eigenfunction consists of the sine
function scaled so that exactly j lobes, i.e., j/2 periods, fit in the interval [0, 60],

vj(t) = sin(jπt/60), j = 1, 2, . . . . (6.4)

29In particular this holds for the self-adjoint equation (p(x)y′)′ + q(x)y = λy on an interval
[a, b] with homogeneous Dirichlet, Neumann, or Robin boundary conditions, where p′ and q
are continuous real functions and p(x) > 0. Such problems are the subject of Sturm–Liouville
theory.

30As mentioned earlier, eigenfunctions are only defined up to multiplicative constants.
Those returned by Chebfun are scaled to have square integral equal to 1, a normalization
that determines their shape apart from an arbitrary choice of sign.
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Substituting this trial solution in (6.3) confirms that it is indeed an eigenfunc-
tion. The associated eigenvalue comes out as

λj = −(jπ/60)2, j = 1, 2, . . . , (6.5)

and this formula enables us to confirm the five numbers computed above,

-((1:5)*pi/60).^2

ans =

-0.0027 -0.0110 -0.0247 -0.0439 -0.0685

The eigenfunctions of L are orthogonal, which means that the number

aij =

∫ 60

0

vi(x)vj(x)dx (6.6)

is zero whenever i �= j.31 To see why, consider two arbitrary functions vi and vj
satisfying the homogeneous boundary conditions. Using integration by parts,
we compute∫ 60

0

(Lvi(x))vj(x)dx =

∫ 60

0

v′′i (x)vj(x)dx = −
∫ 60

0

v′i(x)v
′
j(x)dx,

where we have discarded boundary terms that are zero because of the boundary
conditions on vj . A second integration by parts exploiting the zero boundary
conditions on vi shows that this is equal to∫ 60

0

vi(x)v
′′
j (x)dx =

∫ 60

0

vi(x)(Lvj(x))dx.

Thus we have ∫ 60

0

(Lvi)vjdx =

∫ 60

0

vi(Lvj)dx. (6.7)

An operator satisfying this property for arbitrary functions vi and vj is said
to be self-adjoint. Now suppose vi and vj are eigenfunctions of a self-adjoint
operator L corresponding to eigenvalues λi and λj with λi �= λj . Then (6.7)
becomes

λi

∫ 60

0

vivjdx = λj

∫ 60

0

vivjdx,

and if λi �= λj , this implies that vi and vj must be orthogonal. We shall repeat
this calculation in greater generality for Theorem 7.1 in the next chapter.

Let us verify orthogonality numerically for the operator L of (6.2). The
object V computed above by eigs is a quasimatrix of dimensions ∞× 5, whose
five “columns” are the functions v1, . . . , v5. The object VTV is the product of
the 5×∞ transpose of V with V itself, that is, the 5× 5 matrix of entries aij
defined by (6.6), 1 ≤ i, j ≤ 5, known as a Gram matrix. Orthogonality of the
eigenfunctions is confirmed by the fact that this matrix has zero entries off the
diagonal.

31Eigenvectors of real symmetric matrices are also orthogonal when they correspond to
distinct eigenvalues. The proofs are closely related.
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A = V'*V

A =

1.0000 0.0000 0.0000 0.0000 -0.0000

0.0000 1.0000 0.0000 -0.0000 -0.0000

0.0000 0.0000 1.0000 -0.0000 0.0000

0.0000 -0.0000 -0.0000 1.0000 -0.0000

-0.0000 -0.0000 0.0000 -0.0000 1.0000

The fact that the entries on the diagonal are equal to 1, making A the identity
matrix, indicates that the eigenfunctions are not just orthogonal but orthonor-
mal, a consequence of the normalization mentioned in footnote 30 (p. 66).

Eigenvalue problems are associated with homogeneous boundary conditions,
because they are all about identifying nontrivial solutions of the homogeneous
problem. It does not make sense, for example, to specify v(0) = 1 for an
eigenvalue problem. A variation that does make sense, however, is to change
a homogeneous boundary condition from Dirichlet to Neumann form. For ex-
ample, here is what happens if we change the right-hand boundary condition of
(6.3) from v(60) = 0 to v′(60) = 0.

L.rbc = 'neumann'; sort(eigs(L,5),'descend')'

ans =

-0.0007 -0.0062 -0.0171 -0.0336 -0.0555

The eigenfunctions have zero slope at the right boundary.

[V,D] = eigs(L,5); llam = diag(D);

[llam,ii] = sort(llam,'descend'); V = V(:,ii);

for j = 1:3

subplot(1,3,j), plot(V(:,j))

end
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The images reveal 1/2, 3/2, 5/2, . . . lobes of the sine function scaled to [0, 60],
suggesting the general formula

vj(x) = sin((j − 1
2 )πx/60), j = 1, 2, 3, . . . . (6.8)
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As before, substitution confirms that these are eigenfunctions, with eigenvalues

λj = −((j − 1
2 )π/60)

2, j = 1, 2, . . . . (6.9)

The numbers match properly,

-((0.5:4.5)*pi/60).^2

ans =

-0.0007 -0.0062 -0.0171 -0.0336 -0.0555

Again the eigenfunctions are orthonormal,

V = chebfun(V); A = V'*V

A =

1.0000 0.0000 0.0000 -0.0000 -0.0000

0.0000 1.0000 0.0000 -0.0000 -0.0000

0.0000 0.0000 1.0000 -0.0000 -0.0000

-0.0000 -0.0000 -0.0000 1.0000 -0.0000

-0.0000 -0.0000 -0.0000 -0.0000 1.0000

Eigenfunctions of differential operators are not always orthogonal. For ex-
ample, here is an advection-diffusion problem adapted from equation (4.9):

Ly = y′′ + 0.1y′, x ∈ [0, 60], y(0) = 1, y′(0) = 0. (6.10)

Unlike the other operators of this chapter, this one is not self-adjoint. Here are
the first four eigenfunctions. Note that the nonzero boundary value specified in
(6.10) is ignored by Chebfun in solving the eigenvalue problem, which is defined
in terms of homogeneous boundary conditions as always.

L = chebop(0,60);

L.op = @(x,y) diff(y,2) + 0.1*diff(y); L.lbc = 1; L.rbc = 0;

[V,D] = eigs(L,5); llam = diag(D);

[llam,ii] = sort(llam,'descend'); V = V(:,ii);

for j = 1:4

subplot(2,2,j), plot(V(:,j))

end
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The matrix of inner products confirms that the eigenfunctions are nonorthogo-
nal.

V = chebfun(V); A = V'*V

A =

1.0000 -0.7644 -0.4227 0.2301 0.1318

-0.7644 1.0000 0.7684 -0.4386 -0.2484

-0.4227 0.7684 1.0000 -0.7759 -0.4520

0.2301 -0.4386 -0.7759 1.0000 0.7802

0.1318 -0.2484 -0.4520 0.7802 1.0000

Here are some higher eigenfunctions, corresponding to eigenvalues λ8, λ16, λ24,
and λ32. The higher the eigenvalue, the more oscillations.

[V,D] = eigs(L,32); llam = diag(D);

[llam,ii] = sort(llam,'descend'); V = V(:,ii);

for j = 1:4

subplot(2,2,j), plot(V(:,8*j))

end
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Application: eigenstates of the Schrödinger equation

One of the biggest scientific discoveries of all time was the Schrödinger equa-
tion of quantum mechanics, in 1926, which in principle reduces much of the sub-
ject of chemistry to self-adjoint eigenvalue calculations. It is from this date that
eigenvalues and eigenfunctions became a universally known tool in the physical
sciences.

The steady-state (time-reduced) 1D Schrödinger equation on a finite or in-
finite interval [−d, d] takes the form

−h2y′′ + V (x)y = λy, x ∈ [−d, d], y(−d) = y(d) = 0, (6.11)

where V (x) is a fixed potential function and h is Planck’s constant. Equation
(6.11) describes what states a particle may occupy, in the quantum theory, if it
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is confined to the given interval and subject to an energy potential V (x) there.
(More precisely, h2 in (6.11) should be h2/8π2μ, where h is the true Planck
constant and μ is the mass of the particle.) The eigenvalue λ corresponds to the
energy of a particle in that state, and its probability density of being at each
point x ∈ [−d, d] is equal to |y(x)|2, where y is the corresponding normalized
eigenfunction.32

The simplest choice of V (x) would be a constant; the corresponding eigen-
functions are sines and cosines. Next simplest is a parabola such as V (x) = x2,
corresponding to a linear restoring force as in a Hookean spring; this is the
quantum harmonic oscillator. Here we use Chebfun to compute the first ten
eigenstates of this problem with h = 0.1, taking d = 3 as a good approximation
to d = ∞. Following a format standard in physics, we show the potential func-
tion as a heavy black curve and plot each eigenfunction raised up by an amount
corresponding to its eigenvalue. Higher curves correspond to higher energies.

x = chebfun('x',[-3 3]); V = x^2; h = 0.1;

L = chebop(-3,3); L.bc = 0; L.op = @(x,y) -h^2*diff(y,2) + V*y;

[W,D] = eigs(L,10); diag(D)'

for k = 1:10, plot(D(k,k)+0.06*W{k}), hold on, end

plot(V)

ans =

0.1000 0.3000 0.5000 0.7000 0.9000

1.1000 1.3000 1.5000 1.7000 1.9000
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0

0.5
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This problem can be solved exactly with Hermite polynomials (for d = ∞); the
eigenvalues are 1, 3, 5, . . . times h, hence 0.1, 0.3, 0.5, . . . for our choice h = 0.1.

The energy levels of systems like this determine the states of atomic and
molecular systems and of the photons they emit or absorb. A photon emitted
by a radiating system will have a wavelength corresponding to the difference

32This is an ODE problem because there is just one particle in one dimension. For n
particles in three dimensions, it would be a PDE in 3n independent variables, far too difficult
in most cases to be solved numerically. That is why we say that Schrödinger’s equation reduces
chemistry to mathematical calculations “in principle.” In practice, chemists have developed
powerful methods for approximating the equations for multiple-particle systems, including
those that led to the Nobel Prize for Kohn and Pople in 1998.
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between two energies, and much of what we know about objects outside our
solar system, including the expanding universe and the Big Bang, comes from
analyzing such wavelengths. Closer to home, the glowing color of a “neon” fabric
comes from the phenomenon of fluorescence, in which the fabric absorbs light
at ultraviolet wavelengths and radiates it away at a wavelength corresponding
to the difference between two quantum energy eigenstates.

Chebfun has a command quantumstates for automating such calculations
(which sets h = 0.1 by default). We illustrate this here with a modified func-
tion V by adding a small peak in the middle, a potential barrier, making V what
is known as a double-well potential.

V = x^2 + 1.5*exp(-(x/.25)^4);

[U,D] = quantumstates(V), eigenvalues = diag(D)'

eigenvalues =

0.4436 0.4459 0.8802 0.8890 1.2743

1.3061 1.6088 1.7053 1.9174 2.0918
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Fig. 6.9. Eigenstates of a double-well potential

The effect on the lower eigenvalues is dramatic if you look at the numbers printed
above: the lower ones now fall in nearly degenerate pairs. This is because the
potential barrier nearly decouples the left and right halves, so that it is approx-
imately as if we had two identical, uncoupled copies of a single-well eigenvalue
problem. The lowest eigenvalue 0.4436 corresponds to an even eigenfunction,
whereas the next lowest, only slightly higher at 0.4459, corresponds to an odd
eigenfunction that is almost equal to the same function multiplied by sign(x).
The third and fourth eigenvalues and eigenfunctions have similar behavior, but
not as pronounced; at this energy level the two wells are less perfectly decou-
pled. This kind of close but inexact agreement of eigenvalues as a result of
approximate but imperfect symmetry, known as line splitting, is of tremendous
importance in physics and led to Nobel Prizes for the Zeeman effect in 1902
(line splitting in a magnetic field) and the Stark effect in 1919 (line splitting in
an electric field).

Further remarkable things happen if we change the potential of Figure 6.9
slightly, moving the barrier to the right a distance 0.01. The eigenvalues, still
in nearly degenerate pairs, do not change very much. The lower eigenfunctions,
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however, change completely. Now they are localized, with the lowest eigenfunc-
tion being concentrated in the bigger well, the next-lowest in the narrower well,
and so on. In Figure 6.10 we plot just these two lowest eigenfunctions in the
two cases of the symmetric-well potential and the slightly asymmetric one.

V2 = x^2 + 1.5*exp(-((x-.01)/.25)^4);

[U2,D] = quantumstates(V2,'noplot'); eigenvalues = diag(D)'

subplot(1,2,1), plot(U(1:2)), subplot(1,2,2), plot(U2(1:2))

eigenvalues =

0.4350 0.4546 0.8713 0.8981 1.2691

1.3114 1.6072 1.7068 1.9171 2.0918
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More advanced phenomena of localization are related to transparency of
glass, insulating properties of ceramics, and further Nobel Prizes. In fact,
it can be argued that eigenvalue problems are related to the Physics Nobel
Prizes of 1902 (Zeeman), 1903 (Becquerel, Curie & Curie), 1907 (Michelson),
1911 (Wien), 1917 (Barkla), 1918 (Planck), 1919 (Stark), 1921 (Einstein), 1922
(Bohr), 1923 (Millikan), 1924 (Siegbahn), 1927 (Compton), 1929 (de Broglie),
1930 (Raman), 1932 (Heisenberg), 1933 (Schrödinger & Dirac), 1943 (Stern),
1944 (Rabi), 1945 (Pauli), 1952 (Bloch & Purcell), 1954 (Born), 1955 (Lamb),
1956 (Schockley, Bardeen & Brattain), 1961 (Mössbauer), 1962 (Landau), 1963
(Wigner, Mayer & Jensen), 1964 (Townes, Basov & Prokhorov), 1965 (Tomon-
ago, Schwinger & Feynman), 1966 (Kastler), . . . .

History. The starting ideas of eigenvalue analysis go back about 200 years
to Fourier, Poisson, Sturm, and Liouville. Sylvester and Cayley were diagonal-
izing matrices in the 1850s, and by the 1880s the analysis of eigenfunctions for
vibrating membranes and the theory of sound was well established. The terms
“eigenvalue” and “spectral theory,” however, seem to have come later, coined
by Hilbert around the turn of the 20th century.

Our favorite reference. Although eigenvalues are everywhere in the
mathematical sciences, it is hard to find discussions of why they matter so
much. What is it about the seemingly arbitrary algebraic property Ly = λy
that demands our attention? Such a discussion can be found in Chapter 1 of
Trefethen and Embree, Spectra and Pseudospectra: The Behavior of Nonnormal
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Matrices and Operators, Princeton University Press, 2005, where four answers
to the question are proposed.

Summary of Chapter 6. A second-order scalar linear ODE Ly =
y′′ + a(x)y′ + b(x)y = f(x) has a two-dimensional affine space of solu-
tions, assuming a, b, and f are continuous or piecewise continuous. For an
IVP Ly = f with two initial conditions, it follows that there exists a unique
solution. For a BVP with two boundary conditions, however, there exists
a unique solution if and only if there is no nonzero solution of the homo-
geneous problem Lv = 0 with homogeneous boundary conditions. Such a
solution is called an eigenfunction of L with eigenvalue 0. More generally,
if λ is a number and v is a nonzero solution of Lv = λv with homogeneous
boundary conditions, then v is an eigenfunction of L with eigenvalue λ.

Exercise 6.1. Generalized eigenfunctions and an approximate delta function. Con-
sider the generalized eigenvalue problem y′′(x) + λFε(x)y(x) = 0 with y(−1) =
y(1) = 0, where Fε(x) is (2ε)−1 for |x| < ε and 0 otherwise. The first k eigen-
values D(1, 1), . . . , D(k, k) and eigenfunctions V {1}, . . . , V {k} can be obtained by
executing [V,D] = eigs(L,M,k) with x = chebfun('x'), F = (abs(x)<ep)/(2*ep),
L = chebop(@(x,y) diff(y,2),[-1 1],0,0), M = chebop(@(x,y) -F(x)*y). (a)
Plot the first eight eigenfunctions with ε = 0.5 and also with ε = 0.1. For plotting
consistency, normalize each one by multiplying it by −1 if it is negative at x = 0.75.
(b) Which eigenfunctions are even and which are odd? How many zeros do they have
in (−1, 1)?

Exercise 6.2. Even and odd eigenfunctions. (a) Prove that if u is a function on [−1, 1]
that is neither even nor odd, then u(x) and u(−x) are linearly independent. (b) Let L
be an “even” linear operator on [−1, 1] in the sense that if L maps u(x) to v(x), then
it maps u(−x) to v(−x). Prove that if v(x) is an eigenfunction of L with eigenvalue λ,
then v(−x) is an eigenfunction of L with the same λ. (c) Assuming the eigenvalues
of L are all of multiplicity one, show that every eigenfunction of L is either even or
odd.

Exercise 6.3. Flute and clarinet. Let p(x, t) denote the deviation from atmospheric
pressure at time t at a distance x along a flute or clarinet of length D that is playing
its lowest note with all its keys closed. A not unreasonable approximation is that p
satisfies the partial differential equation ∂2p/∂t2 = c2∂2p/∂x2, where c is the speed
of sound. A further not unreasonable approximation is that the note will consist of a
superposition of waves p(x, t) = sin(ωjt)vj(x), where vj(x) is the jth eigenfunction of
the differential operator Ly = c2y′′ and the corresponding eigenvalue is −ω2

j . (a) For
a flute, the instrument is open to the atmosphere at both ends and the appropriate
boundary conditions are y(0) = y(D) = 0. Assuming c = 340 m/s and D = 0.66 m,
what would you expect the first three values ω1, ω2, ω3 to be? What frequency in
hertz does ω1 correspond to? What note of the scale is this closest to? (Middle
C is 261.6 Hz and the A above it is 440 Hz.) (b) For a clarinet, it is the velocity
rather than the pressure deviation that is zero at the mouthpiece, and this leads to
boundary conditions y′(0) = y(D) = 0. Answer the same questions as before, now
taking D = 0.60 m. (c) The flute has an octave key that opens a hole about half-
way along, which raises certain notes by an octave. Explain in a general way how this
works, based on attenuation of certain eigenmodes. (The full details are nonlinear, but
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do not worry about this.) (d) The clarinet has a register key that opens a hole about
one-third of the way along, which raises certain notes by an interval of a twelfth, i.e.,
a frequency ratio of approximately 3. Adapt your explanation of part (a) to explain
why the hole is located where it is and why the frequencies are tripled.

Exercise 6.4. Exponential weight. Consider the exponentially weighted eigenvalue
problem y′′ = −λexy on [0, 10] with y(0) = y(10) = 0. Compute the lowest eight
eigenvalues and plot the corresponding eigenfunctions, multiplying each one by −1 if
necessary to ensure y′(0) > 0. (This is actually a generalized eigenvalue problem, as
in Exercise 6.1, so you will need to define two chebops and call, e.g., eigs(L,M,8).)
Which is the first eigenfunction of this problem that is not positive on (0, 5]?

Exercise 6.5. Davies’s complex harmonic oscillator. (a) Use Chebfun to compute the
first four eigenvalues of the problem −y′′ + ix2y = λy on (−∞,∞) with u(±∞) = 0.
For the computation it will suffice to replace ∞ by 8. (b) The eigenvalues of the usual
harmonic oscillator, without the factor i, are well known to be 1, 3, 5, 7, . . . . Use this
fact and a suitable change of variables to explain the result of part (a) analytically.

Exercise 6.6. Robin boundary condition. (a) Use Chebfun to compute the first six
eigenvalues of the problem y′′ = −λy on [0, π] with y(0) = 0 and y(π) = y′(π). Plot
the eigenfunctions. (b) One of the eigenfunctions is quite different from the others.
Explain this by working out the form of the eigenfunctions analytically.

Exercise 6.7. Defective eigenvalue problem. (a) Repeat part (a) of the last problem

with the boundary conditions y(0) = 0 and y′(π) = y′(0), computing the first seven

eigenvalues. Note that the nonzero eigenvalues come in degenerate pairs. (On the

computer the pairs will differ at around the eighth digit, a numerical artifact involving

the square root of machine precision.) (b) In linear algebra we encounter matrices

with defective eigenvalues, meaning that their geometric multiplicity, the number of

linearly independent eigenvectors, is less than their algebraic multiplicity. The simplest

example (in MATLAB notation) is the 2× 2 matrix [0 1; 0 0]. For the ODE of this

problem, we have the same situation. (If you check the eigenfunctions you will find that

they appear to be slightly distinct, with imaginary components around the eighth digit,

but this is again a numerical artifact.) Determine analytically the smallest nonzero

eigenvalue λ in absolute value and an associated eigenfunction v. (c) Although there

is only one linearly independent function v, satisfying (L− λ)v = 0, there is another

linearly independent principal function w such that (L − λ)2w = 0. Find such a

function w analytically.
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7. Variable coefficients and adjoints

In this chapter we focus on second-order problems with variable coefficients.
Locally, near a particular value of x, solutions look like what we’ve seen in
Chapters 4–6, featuring oscillation or exponential growth and decay depending
on the coefficients. Globally, over a wider interval of x values, these structures
can combine in interesting ways.

To begin, let us consider the simplest variable coefficient of all, one that
jumps abruptly from one constant to another:

y′′ − 10 sign(x)y = 0. (7.1)

For x < 0 the coefficient is 10, and for x > 0 it is−10. Thus this is a second-order
ODE with piecewise continuous coefficients, generalizing the first-order such
problems of Chapter 2, and a solution is defined as a function y with a continuous
derivative that satisfies the equation except at the points of discontinuity.33 Here
is the solution on [−10, 10] with boundary conditions y(−10) = y(10) = 1.

L = chebop(-10,10); L.op = @(x,y) diff(y,2) - 10*sign(x)*y;

L.lbc = 1; L.rbc = 1;

y = L\0; plot(y)

33One way to justify this condition is to think of the discontinuous coefficient ODE as the
limit of smooth ODEs with sharper and sharper transitions. The second derivative y′′ cannot
be continuous at x = 0, since it satisfies (7.1).

77
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There is no mystery about this picture. On the left, the ODE is y′′ + 10y =
0, with oscillatory solutions A sin(

√
10x) + B cos(

√
10x). On the right, it is

y′′−10y = 0, with exponentially growing and decaying solutions C exp(
√
10x)+

D exp(−√
10x). The solution makes a continuously differentiable transition

between these behaviors at x = 0 and matches the boundary conditions. Note
in particular the exponential boundary layers to the right of x = 0 and to the
left of x = 10. It is not hard to work out this solution exactly by solving four
equations for the four unknowns A,B,C,D (Exercise 7.1).

Abrupt changes of coefficients arise frequently in applications. Equally im-
portant in practice, and mathematically more interesting, are cases where coef-
ficients change continuously, and the prototypical ODE of this kind is the Airy
equation,

y′′ − xy = 0. (7.2)

Note that 10sign(x) has given way to simply x. Again we have one sign for
x < 0 and another for x > 0, but now with a smooth transition. Here is the
solution with the same domain and boundary conditions as before.

L.op = @(x,y) diff(y,2) - x*y;

y = L\0; plot(y)
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Qualitatively speaking, this image is much like the last one. For x > 0,
the two solutions of the ODE are exponentially growing and decaying, slowly
near x = 0 and faster near x = 10. For x < 0, they are oscillatory, with slow
oscillations near x = 0 and faster ones near x = −10. The point x = 0 where
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the equation changes from one type to another is called a turning point. A
notable difference from the last image is that the amplitude is ten times larger.
This is because, by chance, we are close to an eigenvalue. If the interval had
been [−9.7, 9.7] instead of [−10, 10], the roles would have been reversed, with
the solution to (7.1) having the high amplitude (Exercise 7.3).

The Airy equation arises in applications in optics, quantum mechanics, and
other fields in the analysis of wave effects near interesting edges, including
George Airy’s original application in 1838 related to the colors of the rainbow.34

With almost any ODE, it is generally interesting to reduce the magnitude
of the coefficient of the highest derivative term to see what happens, and specif-
ically to sharpen the separation between local and global behavior. (An ODE
problem with a small leading coefficient is called a singular perturbation
problem; see Chapters 18 and 20.) Here we replace y′′ by 0.01y′′.

L.op = @(x,y) 0.01*diff(y,2) - x*y;

y = L\0; plot(y)
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On the left, instead of 3 or 4 wavelengths, there are now about 35, as can be
verified by Chebfun:

length(max(y{-10,0},'local'))

ans = 35

This increase is by a factor of about 10, that is,
√
100.

Like any second-order linear homogeneous ODE, the Airy equation has a
two-dimensional vector space of solutions. One unique solution in this vector
space (up to a constant factor) has the special property of decaying to 0 as
t → ∞, and a particular normalization of this solution is called the Airy func-
tion Ai(x). The curves we have seen above are almost, but not quite exactly,

34The Airy equation is also a prototype in the theory of asymptotics, where it illustrates
fundamental ideas related to steepest descent contours, asymptotics beyond all orders, and
Stokes lines. One can also think of it as a step toward the subject of multiphysics, which is
concerned with problems and computations coupling physical media of different kinds.
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multiples of Ai(x), or Ai(10x) for the last example. As it happens, there is an
integral representation for Ai(x),

Ai(x) =
1

π

∫ ∞

0

cos
(
xs+

s3

3

)
ds. (7.3)

It can be shown that at x = 0, Ai(x) and its derivative take the values

Ai(0) =
3−2/3

Γ(2/3)
, Ai′(0) =

−3−1/3

Γ(1/3)
, (7.4)

where Γ is the gamma function, and with these two conditions the solution to
(7.2) is specified fully. The standard choice of a second linearly independent
solution, which goes by the label Bi(x), is the solution of (7.2) satisfying

Bi(0) =
3−1/6

Γ(2/3)
, Bi′(0) =

31/6

Γ(1/3)
, (7.5)

which has the integral representation

Bi(x) =
1

π

∫ ∞

0

(
exs−s3/3 + sin(xs+ s3/3)

)
ds. (7.6)

Whereas Ai(x) approaches 0 as x → ∞, Bi(x) approaches ∞. As x → −∞, Ai
and Bi have asymptotically the same amplitude, with a phase difference of π/2,
so that one is approximately zero where the other is approximately extremal.
We can plot these two solutions by solving the ODE as a “middle-value problem”
(this is not a standard term), with y and y′ prescribed by (7.4) and (7.5) at
x = 0.

L = chebop(-10,10); L.op = @(x,y) diff(y,2) - x*y;

g1 = gamma(1/3); g2 = gamma(2/3);

Ai0 = 3^(-2/3)/g2; Aip0 = -3^(-1/3)/g1;

L.bc = @(x,y) [y(0)-Ai0; feval(diff(y)-Aip0,0)];

Ai = L\0; plot(Ai), Bi0 = 3^(-1/6)/g2; Bip0 = 3^(1/6)/g1;

L.bc = @(x,y) [y(0)-Bi0; feval(diff(y)-Bip0,0)];

Bi = L\0; hold on, plot(Bi)
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In applications, turning points of ODEs may arise wherever the nature of
the “physics” changes. Though the variable coefficient at such a point may
not be exactly linear, it will usually be possible to approximate it locally by a
linear function. Consequently the Airy function is relevant to many problems
with turning points. We can illustrate these effects by changing the variable
coefficient of (7.2) to sin(x). Specifically, consider

0.003y′′ − sin(x)y = 1, x ∈ [−4π, 4π], y(−4π) = y(4π) = 0. (7.7)

The solution is charming.

L = chebop(-4*pi,4*pi); L.op = @(x,y) 0.003*diff(y,2)-sin(x)*y;

L.lbc = 0; L.rbc = 0;

y = L\1; plot(y)
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Though one could hardly expect to find an exact formula for such a function, the
essence of the matter is simple enough: oscillation in regions with sin(x) < 0,
exponential growth and decay in regions with sin(x) > 0. Locally near each
turning point, y(x) is approximately equal to a suitably scaled Airy function,
and the approximation would get more precise if the small coefficient 0.003 were
reduced further.

Airy-like equations feature transitions between exponential and oscillatory
behavior. When a first-order term is introduced in a variable-coefficient equa-
tion, new possibilities arise. For example, consider the BVP

0.001y′′ + xy′ + xy = 0, x ∈ [−2, 2], y(−2) = −4, y(2) = 2. (7.8)

The solution features an interior layer at the turning point x = 0, which would
grow sharper if the coefficient 0.001 were further reduced.

L = chebop(-2,2); L.op = @(x,y) .001*diff(y,2)+x*diff(y)+x*y;

L.lbc = -4; L.rbc = 2;

y = L\0; plot(y)
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We shall look at this and other problems with boundary and interior layers in
Chapter 20.

Having explored some ODEs with variable coefficients, we now turn to
an area of ODE theory that is of particular interest when the coefficients
are variable: the notion of an adjoint and the associated property of self-
adjointness.35 Many theoretical properties are related to adjoints, including
whether eigenvalues are real and whether eigenfunctions are orthogonal. Many
practical matters are tied to adjoints too, notably the behavior of solutions with
respect to perturbations and the examination of how the outputs of processes
governed by ODEs depend on the inputs.

Let L be a second-order linear differential operator acting on functions on
[−1, 1]. The coefficients may be variable, so L takes the form

Ly = a(x)y′′ + b(x)y′ + c(x)y,

which as usual we will write more simply as

Ly = ay′′ + by′ + cy. (7.9)

Now we consider the inner product of v and Ly, where v and y are two func-
tions defined on [−1, 1]. For full generality, it is necessary in this business to
include the possibility of complex functions, because even if an operator has real
coefficients, its eigenfunctions and eigenvalues may be complex. Thus the inner
product formula includes a bar over v denoting the complex conjugate:∫ 1

−1

v̄Ly =

∫ 1

−1

av̄y′′ + bv̄y′ + cv̄y.

(We omit the dx factors for simplicity.) If we integrate the first and second
terms by parts, this becomes∫ 1

−1

v̄Ly = (av̄y′ + bv̄y)
∣∣∣1
−1

+

∫ 1

−1

−(av̄)′y′ − (bv̄)′y + cv̄y,

and if we integrate the first term in the integral by parts a second time, we get∫ 1

−1

v̄Ly = (av̄y′ − (av̄)′y + bv̄y)
∣∣∣1
−1

+

∫ 1

−1

(av̄)′′y − (bv̄)′y + cv̄y.

35Not much in the rest of the book depends on this material.
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In other words, ∫ 1

−1

v̄Ly − L∗vy = J(v̄ , y), (7.10)

where L∗ is the formal adjoint of L, defined by

L∗v = (āv)′′ − (b̄v)′ + c̄v, (7.11)

and J(v̄ , y) is the bilinear conjunct or concomitant of v̄ and y,

J(v̄ , y) = (av̄y′ − (av̄)′y + bv̄y)
∣∣∣1
−1

. (7.12)

In words,
∫ 1

−1 v̄Ly is the same as
∫ 1

−1 L
∗vy, apart from boundary effects. Equa-

tion (7.10) is known asGreen’s formula, and it is a univariate prototype of the
multivariate Green’s formulas that one finds in the study of partial differential
equations.

Comparing (7.9) and (7.11), we see that L∗ differs from L in three ways: the
functions are conjugated, the sign of the odd-order derivative term is negated,
and the parentheses have moved so that a and b are differentiated. We can write
out (7.11) fully as

L∗v = āv′′ + (2a′ − b̄)v′ + (a′′ − b′ + c̄)v, (7.13)

and similarly (7.12) can be expanded as

J(v̄ , y) = a(v̄y′ − yv′ ) + (b− a′)v̄y
∣∣∣1
−1

. (7.14)

By taking the adjoint of (7.13), it is readily verified that the formal adjoint of
the formal adjoint is the original operator,

(L∗)∗ = L.

An operator is formally self-adjoint if L∗ = L, and from (7.13) it is readily
verified that if the coefficient functions are real, then this is the case if and only
if a′ = b.

Thus, for example, if Ly = y′′ + y′ + y, we have L∗v = v′′ − v′ + v and
J(v̄ , y) = (v̄y′−yv′+ v̄y) |1−1. Clearly L is not formally self-adjoint since L and
L∗ are different. Taking the arbitrary choices v(x) = exp(x) and y(x) = Ai(x),
here is the left side of (7.10):

L = chebop(-1,1); L.op = @(x,y) diff(y,2) + diff(y) + y;

x = chebfun('x'); v = exp(x); y = airy(x);

v'*(L*y) - y'*(L'*v)

ans = -0.4289

A calculation of J(v̄ , y) confirms that the right side of (7.10) is the same:
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Jfun = @(vb,y) vb.*diff(y) - y.*diff(vb) + vb.*y;

J = @(vb,y) feval(Jfun(vb,y),1) - feval(Jfun(vb,y),-1);

J(conj(v),y)

ans = -0.4289

As a similar example with variable coefficients, for the entirely arbitrary
operator Ly = xy′′ + J0(x)y

′ + sec(x)y, we have L∗v = xv′′ + (2 − J0(x))v
′ +

(sec(x)− J ′
0(x))v and J(v̄ , y) = x(v̄y′ − yv′) + (J0(x)− 1)v̄y |1−1. Here again is

the left side of (7.10),

L.op = @(x,y) x*diff(y,2) + besselj(0,x)*diff(y) + sec(x)*y;

v'*(L*y) - (L'*v)'*y

ans = -1.0412

and here is the right side,

Jfun = @(vb,y) x.*(vb.*diff(y)-y.*diff(vb)) + ...

(besselj(0,x)-1).*vb.*y;

J = @(vb,y) feval(Jfun(vb,y),1) - feval(Jfun(vb,y),-1);

J(conj(v),y)

ans = -1.0412

The word “formally” in the expressions “formal adjoint” and “formally self-
adjoint” means: “apart from boundary conditions.” To speak of a true adjoint
without this qualification, we need to consider not just an operator but a BVP.
Let L together with certain homogeneous boundary conditions define a BVP,
which we will write with a script letter as L. The adjoint BVP L∗ is the
BVP in which L is changed to L∗ and the boundary conditions are changed to
adjoint boundary conditions, which are homogeneous boundary conditions
on v such that the conjunct (7.14) is always zero. There exists a unique set of
adjoint boundary conditions with this property, though we shall not prove this.

For example, suppose a BVP for the operator L of (7.9) has boundary con-
ditions y(−1) = y(1) = 0. Then (7.14) reduces to J(v̄ , y) = a(1)v(1)y′(1) −
a(−1)v(−1)y′(−1). The values of y′(1) and y′(−1) could be anything, so to
ensure J(v̄ , y) = 0 we must assume two conditions:

v(−1) = 0, v(1) = 0,

or equivalently
v(−1) = 0, v(1) = 0.

These are the adjoint boundary conditions.
For another example, if the boundary conditions are y(−1) = y′(1) = 0,

(7.14) reduces to J(v̄ , y) = −a(−1)v(−1)y′(−1) − a(1)y(1)v′(1) + [b(1) −
a′(1)]v(1)y(1) = 0, and this will be zero for all y if the following two condi-
tions hold:

v(−1) = 0, a(1)v′(1) + [b(1)− a′(1)]v(1) = 0,
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or equivalently

v(−1) = 0, a(1)v′(1) + [b(1) − a′(1)]v(1) = 0.

So these are the adjoint boundary conditions. In Chebfun, where each chebop
may have boundary conditions attached, the computed adjoint of a chebop is not
just the formal adjoint but the adjoint BVP, with adjoint boundary conditions.

Suppose L is a BVP and L∗ is its adjoint. Then for any functions y and v
satisfying the BCs of L and L∗, respectively, the right-hand side of (7.10) will
vanish, giving ∫ 1

−1

v̄Ly =

∫ 1

−1

L∗vy. (7.15)

A BVP is self-adjoint if it is the same as its adjoint BVP, i.e.,

∫ 1

−1

v̄Ly =

∫ 1

−1

Lvy, (7.16)

again for any v and y satisfying the appropriate boundary conditions (which are
now the same for both v and y). From this identity we can derive the following
conclusions.

Theorem 7.1. Self-adjoint eigenproblems (fLaSHi). Let L be a self-
adjoint linear homogeneous BVP. Then the eigenvalues of L are real, and the
eigenfunctions corresponding to distinct eigenvalues are orthogonal; i.e., if y

and v are eigenfunctions with eigenvalues λ �= μ, then
∫ 1

−1
v̄y = 0.

Proof. Let y be an eigenfunction of L with eigenvalue λ. Then (7.16) gives

λ

∫ 1

−1

ȳy =

∫ 1

−1

ȳLy =

∫ 1

−1

Lyy = λ̄

∫ 1

−1

ȳy.

Since y is nonzero (part of the definition of an eigenfunction), the integral of
ȳy is nonzero, and thus this identity implies λ = λ̄, which establishes the first
claim. Now let v be another eigenfunction of L with eigenvalue μ �= λ. Then
another calculation of the same pattern gives

λ

∫ 1

−1

v̄y =

∫ 1

−1

v̄Ly =

∫ 1

−1

Lvy = μ

∫ 1

−1

v̄y.

Since μ �= λ, this establishes the claim of orthogonality.

If a self-adjoint operator L has real coefficients, then the eigenfunctions can
be taken to be real, so the complex conjugates in the calculations above can be
dropped.
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Application: adjoints and optimization

Whenever something has to be perturbed, optimized, or designed and there is
a differential equation involved, there’s a good chance there may be a role for the
adjoint. Here we’ll give just a hint of how this may work. An interesting paper
from which to learn more is M. B. Giles and N. A. Pierce, “An introduction to
the adjoint approach to design,” Flow, Turbulence and Combustion 65 (2000),
pp. 393–415.

We show the idea with an artificial example. Suppose y is the solution of

y′′ + sin(x/10)y′ + y = f(x) = exp(−(x− k)2), y(0) = y(100) = 0 (7.17)

for some integer k between 1 and 100, and we want to know, which choice of

k will maximize the integral I(f) =
∫ 100

0
y(x)dx? You can think of this as a

prototype of a problem of finding the maximal lift on an airfoil in various flow
conditions.

The obvious approach is to simply solve all 100 of these BVPs. However,
this will take a while, as we can see by solving just the first 10 of them.

L = chebop(@(x,y) diff(y,2) + sin(x/10)*diff(y) + y, [0 100]);

L.lbc = 0; L.rbc = 0; x = chebfun('x',[0 100]); tic

for k = 1:10

f = exp(-(x-k)^2); y = L\f; disp([k sum(y)])

end

toc

1.0000 -2.2089

2.0000 -1.0548

3.0000 3.2140

4.0000 7.7218

5.0000 8.1427

6.0000 1.6446

7.0000 -9.7058

8.0000 -17.0143

9.0000 -7.1469

10.0000 27.4458

Elapsed time is 2.323716 seconds.

Use of the adjoint enables us to solve one BVP rather than 100 of them. The
key observation is that since I(f) is just a single number that depends linearly
on f (i.e., I is a linear functional), it must be possible to write I in the form

I(f) =

∫ 100

0

vf

for some function v defined on [0, 100]. (This property of linear functionals is
called the Riesz representation theorem. In this application all the functions
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are real, so we dispense with complex conjugates.) In fact, if g is the constant
function 1 on [0, 100], then v is the solution of the adjoint BVP L∗v = g. To
derive this characterization, we note that

I(f) =

∫ 100

0

gy.

Therefore the two equations

Ly = f, L∗v = g (7.18)

imply

I(f) =

∫ 100

0

gy =

∫ 100

0

[L∗v]y =

∫ 100

0

vLy =

∫ 100

0

vf. (7.19)

By taking advantage of this formula, instead of solving 100 ODE BVPs, we can
now evaluate 100 inner products. First we confirm that the first 10 of these give
the same numbers as before.

tic, v = L'\1;

for k = 1:10

f = exp(-(x-k)^2); disp([k v'*f])

end

1.0000 -2.2089

2.0000 -1.0548

3.0000 3.2140

4.0000 7.7218

5.0000 8.1427

6.0000 1.6446

7.0000 -9.7058

8.0000 -17.0143

9.0000 -7.1469

10.0000 27.4458

Next we evaluate all 100 inner products and plot the maximal solution, which
turns out to correspond to k = 32.

tic, v = L'\1; d = [];

for k = 1:100

f = exp(-(x-k)^2); d(k) = v'*f;

end

[maxint, kmax] = max(d), toc

f = exp(-(x-kmax)^2); y = L\f; plot(y)

maxint = 7.2869e+04

kmax = 32

Elapsed time is 1.047531 seconds.
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The function v has an interpretation: it quantifies the effect on I(f) of the
value of f at each x ∈ [0, 100]. Consequently v is also the most efficient shape
that f may take, measured in the 2-norm, if our goal is to maximize I(f).
That is, suppose we want to find a function f with ‖f‖2 = 1 such that I(f) is
maximized. Applying the Cauchy–Schwarz inequality to (7.19) gives

I(f) ≤ ‖v‖2‖f‖2,

with equality if f is a multiple of v. So the maximal value of I(f) for ‖f‖2 = 1
is achieved by the choice f = v/‖v‖2, and the value is equal to ‖v‖2,

maxval = norm(v)

maxval = 1.7303e+05

A plot of v shows that I(f) is most sensitive to the values of f(x) for x ≈ 32,
as is consistent with Figure 7.7.

plot(v)
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History. George Biddell Airy, who used Airy functions in analysis of the
colors of the rainbow in 1838, was one of the leading astronomers and mathe-
matical physicists of the 19th century. As Astronomer Royal in Britain during
1835–1881, nearly half a century, he was largely responsible for the adoption of
the longitude line through Greenwich as the earth’s prime meridian.
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Our favorite reference. Though there are a hundred functional analysis
books that discuss adjoints in the abstract, it is hard to find more down-to-earth
discussions of adjoint differential equations in the style of this book. One source
we like is Max D. Gunzburger, Perspectives in Flow Control and Optimization,
SIAM, 2003. As promised in the title, this book gives fascinating perspectives
on the meaning of adjoints — even in the opening 8 pages.

Summary of Chapter 7. Algebraically, second-order linear ODEs with
variable coefficients have the same structure as those with constant coeffi-
cients: there is a two-dimensional space of solutions, and an IVP can always
be solved but a BVP will have a unique solution if and only if it does not
correspond to an eigenvalue of the associated homogeneous problem. Lo-
cally, solutions approximate solutions of ODEs with constant coefficients,
especially when the coefficient of the second derivative term is small. In-
teresting transitions occur at turning points, where a coefficient changes
sign; the prototype is x = 0 for the Airy equation y′′ − xy = 0. A linear
ODE BVP L has an adjoint L∗ consisting of the formal adjoint operator
together with adjoint boundary conditions. If L is self-adjoint, its eigen-
values are real and its eigenfunctions corresponding to distinct eigenvalues
are orthogonal.

Exercise 7.1. Exact solution of the jump problem (7.1). (a) Determine the exact
solution of (7.1) with y(−10) = y(10) = 1. (b) Determine the eigenvalues of the
corresponding linear operator with boundary conditions y(−10) = y(10) = 0.

Exercise 7.2. An ODE of Euler. Consider the ODE y′′ + (a/t)y′ + (b/t2)y = 0. Show
that it can be reduced to a simpler problem by the substitution τ = log(t) and use
this method to find the general solution.

Exercise 7.3. Dependence on interval length. (a) What is the value of the ratio of
maxx |y(x)| for (7.2) divided by the same quantity for (7.1)? (b) What happens to
this ratio if the interval is changed from [−10, 10] to [−9.7, 9.7]?

Exercise 7.4. Intersection of Ai(x) and Bi(x). Use Chebfun roots to calculate the
value x0 closest to 0 for which Ai(x0) = Bi(x0). In MATLAB you can calculate Ai(x)
and Bi(x) with airy(x) and airy(2,x), respectively.

Exercise 7.5. Airy functions with many oscillations. Solve the Airy equation on
the interval [−D, 0] with boundary conditions y(−D) = 1, y(0) = 0 for D =
10, 20, 40, . . . , 320. Plot the solution in each case and measure how long it takes Cheb-
fun to solve the differential equation. For comparison, measure how long it takes to
construct a chebfun for Ai(x) on [−32, 0] directly from MATLAB’s airy command.

Exercise 7.6. Sine oscillations. The solution of (7.7) shows seven maxima in [−π, 0]
in Figure 7.5. What does the count become if the coefficient 0.003 is reduced by a
factor of 16?

Exercise 7.7. Taylor series solution of Airy equation. Exercise 2.10 mentioned a
classic analytical solution method for linear ODEs, the use of Taylor series. Suppose
y(t) =

∑∞
k=0

akt
k is a convergent Taylor series solution for (7.2) near t = 0. (a)

Show that a2 = a5 = a8 = · · · = 0. (b) Give a formula for a3, a6, a9, . . . in terms of
a0. (c) Give a formula for a4, a7, a10, . . . in terms of a1. (d) Show that the radius of
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convergence of the series is ∞, implying that Airy functions are analytic throughout
the complex t-plane.

Exercise 7.8. Eigenvalues of the Airy operator. (a) Calculate the roots of Ai(x) in
[−10, 10]. (b) Calculate the first six eigenvalues of the Airy operator L : y 	→ y′′ − xy
with homogeneous boundary conditions on [0,∞). (It suffices to replace ∞ by 15.)
(c) Explain this coincidence with an analytical verification. To get the idea it may
help to plot the eigenfunctions.

Exercise 7.9. Legendre equation and polynomials. If n is a nonnegative integer, the
solution to the BVP [(1 − x2)y′]′ + n(n + 1)y = 0, y(−1) = (−1)n, y(1) = 1 has a
special property: it is a polynomial, known as the Legendre polynomial of degree n,
for which the standard notation is Pn. (a) Compute P10 and P40 by solving the BVP
and plot them. You can confirm that your calculation is successful by comparing
these functions with legpoly(10) and legpoly(40). (b) The Legendre polynomials

are orthogonal:
∫ 1

−1
Pm(x)Pn(x)dx is equal to 2/(2n + 1) if m = n and 0 otherwise.

Confirm this numerically by computing the inner products of P10 with itself, P10 with
P40, and P40 with itself. (In Chebfun, the inner product of u and v is u'*v.)

Exercise 7.10. An oscillatory pulse. (a) Plot the solution of 0.01y′′ − 0.01y′ − xy = 1
for x ∈ [−10, 10] with y(−10) = y(10) = 0. Determine (i) the maximum value, (ii)
the width of the highest peak measured at half its height, and (iii) the distance over
which the oscillations decay by a factor of 10. (b) Produce the same plots and numbers
in the three alternative cases where the y′′ coefficient is reduced to 0.005, or the y′

coefficient, or both.

Exercise 7.11. Condition for self-adjointness. (a) Use (7.13) to verify that if the
coefficient functions are real, then the operator L of (7.9) is formally self-adjoint if
and only if a′ = b. (b) What is the analogous condition if the coefficients are complex?

Exercise 7.12. Self-adjoint and nonself-adjoint. Let L be the BVP exy′′+exy′+xy = 0
with boundary conditions y(−1) = y′(1) = 0. (a) Show analytically that L is self-
adjoint. (b) Compute the first six eigenvalues and eigenfunctions of L, showing that
the eigenvalues are real and the eigenfunctions are numerically orthogonal. (c) Show
that if the ODE is changed to exy′′ + y′ + xy = 0, the eigenvalues remain real but the
eigenfunctions are no longer orthogonal, and verify that the eigenvalues of L are the
same as those of L∗. (d) On the other hand, it can be shown by an adaptation of the
argument of Theorem 7.1 that the jth eigenfunction of L∗ is orthogonal to the kth
eigenfunction of L for j 
= k. Verify this numerically.

Exercise 7.13. Optimizations with the adjoint. (a) Repeat the optimization illustrated

in the Application, but maximizing I(f) =
∫ 100

0
xy(x)dx. (b) Repeat again, but

maximizing I(f) =
∫ 50

30
y(x)dx.

Exercise 7.14. Adjoint of Exercise 6.7. Exercise 6.7 explored an ODE eigenvalue
problem with defective eigenvalues, a situation that can arise only if the operator L
involved is nonself-adjoint. Work out analytically the adjoint L∗ for this problem. In
particular, what are the adjoint boundary conditions?
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Certain systems have one or more natural frequencies at which they oscillate.
If you force such a system by an input that oscillates at close to a natural
frequency, the response may be very large in amplitude. In this chapter we
explore this phenomenon.

The basic idea is linear, autonomous, and inhomogeneous. Following (4.3),
consider the ODE of simple harmonic motion,

y′′ + ω2y = f(t), (8.1)

where ω is a real constant. One application of this equation is to a linear
pendulum, where y(t) represents the (small) angle from the vertical at time t.
Here ω2 takes the value g/L, where g is the earth’s gravitational acceleration
and L is the length of the pendulum. Let us imagine that the pendulum is a girl
on a playground swing. The issue to be examined is the response of the swing
to the forcing function f , which we can interpret as the acceleration introduced
by the girl’s mother, who is pushing.

There is really just one bit of physics in (8.1), and that is that the associated
homogeneous equation

y′′ + ω2y = 0 (8.2)

has solutions sin(ωt) and cos(ωt). This is what we mean when we say that
the natural or resonant frequency of (8.1) is ω.36 To focus on the simplest
possible setting, let us look at solutions y(t) driven by the sinusoidal forcing

36As in Chapter 4, what we call a frequency could more fully be called an angular frequency.
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function f(t) = sin(νt) for some ν �= ω,

y′′ + ω2y = sin(νt). (8.3)

As a reminder of this not very standard notation we note

ω = resonant frequency, ν = forcing frequency.

We can solve (8.3) analytically. Inserting the trial solution y(t) = A sin(νt)
gives

(−ν2 + ω2)y =
y

A
,

which implies that a particular solution is

yp(t) =
sin(νt)

ω2 − ν2
.

The general solution is accordingly

y(t) =
sin(νt)

ω2 − ν2
+B sin(ωt) + C cos(ωt) (8.4)

for constants B and C. Note that this is a superposition of sine/cosine waves
of two different frequencies, so in general, y(t) is not periodic.

For example, suppose we take y(0) = y′(0) = 0, giving the IVP

y′′ + ω2y = sin(νt), t ≥ 0, y(0) = y′(0) = 0. (8.5)

Choosing B = −(ν/ω)/(ω2 − ν2) and C = 0 in (8.4) to match the initial
conditions, we get the solution

y(t) =
sin(νt)− (ν/ω) sin(ωt)

ω2 − ν2
. (8.6)

Here is a calculation for t ∈ [0, 200] with ω = 1 and ν = 0.7.

L = chebop(0,200); L.lbc = [0;0]; L.op = @(t,y) diff(y,2) + y;

t = chebfun('t',[0 200]);

f = sin(0.7*t); subplot(2,1,1), plot(f)

y = L\f; subplot(2,1,2), plot(y)
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This solution is an incoherent signal of no great interest. On the other hand,
suppose we take ν = 0.95, a value much closer to ω.

f = sin(0.95*t); subplot(2,1,1), plot(f)

y = L\f; subplot(2,1,2), plot(y)

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

0 20 40 60 80 100 120 140 160 180 200

-20

0

20

Now the response shows great regularity and a high amplitude, about 20, which
builds up over an interval of 60 time units. This is resonance, which we can
define as the pumping of energy into or out of a system by a driving function
oscillating at close to a natural frequency. The mother is pushing the swing at
close to its natural rate. The growth in amplitude occurs so long as her input
is in advance of the phase of the growing oscillation. Eventually, however, after
around time t = 60, the impulses lag behind the phase of the swing and she
starts extracting energy. The cycle goes on in the effect known as beating, with
alternating long stretches of energy injection and energy extraction. (No actual
mother, of course, would be so mechanical.)

All of the above is mathematically correct, and an important base case on
which to build one’s understanding of resonance, but it is physically unrealistic.
If an autonomous system is forced by a periodic signal f(t) = sin(νt), then surely
we would expect it to have a periodic solution y(t) with the same frequency, at
least for large t, after the effect of the initial conditions has died away. Why
hasn’t this happened? The problem is that (8.3) includes no damping, so the
effect of the initial conditions never dies away. We can see this in formulas (8.4)
and (8.6), where B and C take values determined by the initial conditions and
the associated sin(ωt) and cos(ωt) terms persist forever.

The picture changes fundamentally if we add a small amount of damping,
generalizing (8.3) as in (4.10) to

y′′ + εy′ + ω2y = sin(νt) (8.7)

for some small ε > 0. Here is the first example again, but now, with two response
curves shown: the first for (8.3) without damping, the same as before, and the
second for (8.7) with damping coefficient ε = 0.04.

L2 = chebop(0,200); L2.lbc = [0;0];

L2.op = @(t,y) diff(y,2) + 0.04*diff(y) + y;

f = sin(0.7*t); subplot(3,1,1), plot(f)
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y = L\f; subplot(3,1,2), plot(y)

y = L2\f; subplot(3,1,3), plot(y)
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With damping, it is clear that as t → ∞, the solution approaches a periodic
form with frequency ν. By appropriate changes in the earlier formulas, we can
work out the details analytically. It is tempting to start with the trial solution
y(t) = A sin(νt) again, but this will not work because the y′ term will introduce
a cosine. We could get around this with a trial solution containing both a sine
and a cosine, but it is algebraically simpler to combine the two by introducing
complex exponentials. Thus we replace (8.7) by

y′′ + εy′ + ω2y = exp(iνt), (8.8)

and the imaginary part of the solution will correspond to the solution (8.6).
Inserting y(t) = A exp(iνt) gives

(−ν2 + iνε+ ω2)y =
y

A
,

which implies that a particular solution is

yp(t) =
exp(iνt)

ω2 + iνε− ν2
. (8.9)

From equation (4.13) in Chapter 4, it can be deduced that the general solution
to (8.8) will be a linear combination of this function yp(t) with terms decaying
exponentially at the rate exp(−εt/2). This confirms that the general solution
will be asymptotically periodic as t → ∞.

Now we add damping to the second experiment, with ν = 0.95. Again the
response settles down to a periodic form, with somewhat smaller amplitude than
before.

f = sin(0.95*t); subplot(3,1,1), plot(f)

y = L\f; subplot(3,1,2), plot(y)

y = L2\f; subplot(3,1,3), plot(y)
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The relationship between forcing and response in resonance has an element
of phase as well as amplitude. In the trio of images above, say, take a look at
the forcing and response curves at the final time t = 200. We see that all three
curves have a maximum near this point, reflecting the fact that in (8.4), since
ν < ω, the denominator is positive, and in (8.9) it is nearly positive though
slightly complex. Thus the input and the responses are in phase. Suppose we
now change ν to 1.05, a value equally close to ω but larger rather than smaller.
Now the denominators of (8.4) and (8.9) are negative and nearly negative, re-
spectively, and looking near t = 200 in the figure below confirms that the forcing
and response functions have moved out of phase by an angle of π, that is, 180
degrees. This is a basic difference in the physics of the two kinds of resonance
phenomena.

f = sin(1.05*t); subplot(3,1,1), plot(f)

y = L\f; subplot(3,1,2), plot(y)

y = L2\f; subplot(3,1,3), plot(y)
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We can summarize the phase lag situation (for sufficiently small damping ε)
according to whether the forcing frequency is lower or higher than the resonant
frequency:

ν < ω: no phase lag, ν > ω: 180◦ phase lag.

For more precision, see Exercise 8.7.
As ν gets closer to ω, the maximum amplitude of y(t) for the undamped

equation (8.3) increases to ∞, and so does the time scale over which it achieves
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that maximum. If ν = ω exactly, the forcing and the oscillation are synchronized
forever. Energy keeps getting pumped into the system, and the amplitude grows
without limit. This unbounded growth for undamped oscillation corresponds to
a singularity in the formulas (8.4) and (8.6), but not in the IVP itself or its
solution, which shows simply a linear increase with t. In the damped cases, the
growth asymptotes to a fixed amplitude.

f = sin(t); subplot(3,1,1), plot(f)

y = L\f; subplot(3,1,2), plot(y)

y = L2\f; subplot(3,1,3), plot(y)
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The linearly growing solution to an undamped resonant system forced at the
resonant frequency is called a secular solution. In this case we can derive that
the exact solution of (8.5) is

y(t) =
−t cos(ωt)

2ω2
+

sin(ωt)

2ω3
; (8.10)

the term involving t cos(ωt) is the secular one. Secular terms arise whenever
an ODE has an inhomogeneous forcing function that is itself a solution to the
homogeneous problem.

What about the phase lag in this special situation ν = ω? Looking at the
figures near the final time t = 200, we see that, as one might guess, the lag is
now midway between the two cases we have seen before, namely one quarter
of a wavelength, an angle of π/2 or 90◦. We can confirm this algebraically by
noting that in the formula (8.10), although the forcing function is the sine, the
secular term of the response involves the negative of the cosine. In a case with
damping, the 90◦ lag comes from the i in the denominator of (8.9).

The discussion so far has concerned the response of (8.1) or its damped
cousin to a pure sine wave, but of course, not every forcing function will be
so simple. More generally, if f is a function that looks approximately like a
sine wave for a certain range of values of t, we may expect to see approximately
corresponding behavior for a time. Here is an experiment to illustrate. Consider

f(t) = sin((t/100) · t),
a function whose frequency starts at ν = 0 for t = 0 and then increases linearly
to ν = 4 at t = 200 since (t2/100)′ = t/50. (In Chapter 17 we will do a number
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of such experiments with parameters slowly varying with t.) The response y(t)
shown in Figure 8.7 does nothing very interesting until near t = 50, when it
grows to a considerable amplitude due to resonance. Soon the forcing drifts
out of tune again, after which no further significant transfer of energy from the
forcing function takes place. The undamped response curve shows a permanent
record of the brief moment of resonance near t = 50, and the damped response
curve dies away slowly on the time scale exp(−εt/2).

f = sin((t/100)*t); subplot(3,1,1), plot(f)

y = L\f; subplot(3,1,2), plot(y)

y = L2\f; subplot(3,1,3), plot(y)
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This chapter has focused on linear equations, because the basic mechanism
of resonance is linear. However, resonance occurs in nonlinear systems too. For
example, generalizing (8.7) in the case ω = 1, consider the nonlinear pendulum
equation

y′′ + εy′ + 45 sin(y/45) = sin(νt), (8.11)

where the constant 45 has been chosen arbitrarily, corresponding to a rather
weak nonlinearity. Here are the undamped and damped solutions (with ε = 0.04
as usual) in the same format as before.

N = chebop(0,200); N.lbc = [0;0];

N2 = chebop(0,200); N2.lbc = [0;0];

N.op = @(t,y) diff(y,2) + 45*sin(y/45);

N2.op = @(t,y) diff(y,2) + .04*diff(y) + 45*sin(y/45);

f = sin(0.95*t); subplot(3,1,1), plot(f)

y = N\f; subplot(3,1,2), plot(y)

y = N2\f; subplot(3,1,3), plot(y)
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Note that in comparison to Figure 8.4, the amplitude and the time scale have
increased. This is because in this example, nonlinearity has weakened the restor-
ing force, decreasing the natural frequency of the system, thereby bringing the
forcing frequency closer to resonance.

Application: moon, sun, and tides

Everybody knows that the moon causes the tides, with a further contribution
from the sun. But there are some surprises along the way related to the material
of this chapter.

The resonant system here consists of the earth’s oceans, and the forcing func-
tion consists of the gravitational force from the moon, whose direction changes
as the earth turns. With respect to a fixed point on Earth, the moon appears
to go around about once every 24.8 hours. This means the tidal forcing from
the moon has a period of about T = 12.4 hours, since, as many books and
web pages will tell you, the moon’s gravity both pulls on the ocean nearest it
more than on the earth below and pulls on the earth below more than on the
ocean on the far side. So our forcing function, with time measured in hours, has
frequency ν = 2π/T ≈ 0.507. Here’s a picture over 672 hours, i.e., four weeks.

t = chebfun('t',[0,672]); Tmoon = 12.4;

numoon = 2*pi/Tmoon; f = cos(numoon*t); plot(f)

0 100 200 300 400 500 600

-2

-1

0

1

2

Copyright © 2018 Society for Industrial and Applied Mathematics



8. Resonance 99

There are two big day-to-day corrections to be added to this picture. The
first is the influence of the sun. As it happens, the gravitational force from the
sun is about 180 times as big as that from the moon. This big factor doesn’t
matter, however, since tides depend on gravity being stronger on one side of the
earth than the other: what matters is the gradient of the gravitational force.
This is about twice as great for the moon as for the sun. Moreover, the period
associated with the sun’s forcing is of course simply 12 hours, not 12.4. The
difference in periods causes a slow beating in and out of phase, giving a combined
gravitational forcing from the moon and sun like this.

Tsun = 12; nusun = 2*pi/Tsun;

f = cos(numoon*t) + 0.46*cos(nusun*t); plot(f)
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When the moon is new or full, it is aligned with the sun (a configuration called
syzygy) and we we have big spring tides. A week later it is 90◦ off and we have
smaller neap tides.

The other big correction is the one that makes tides alternate big-small-big-
small. Whereas the moon’s orbit is close to the ecliptic (the plane of the solar
system), the earth’s is tilted by 23%. That means that if you live somewhere
between the equator and a pole, as the earth turns during the day, you may
alternate between close to the ecliptic at one high of the gravitational forcing
function and 90◦ away at the next. So the forcing function near you looks more
like this (the details will depend on latitude and season of the year).

f = .8*cos(numoon*t) + .2*cos(numoon*t/2) ...

+ .8*.46*cos(nusun*t) + .2*.46*cos(nusun*t/2); plot(f)
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Figure 8.11 sketches half of the tide problem, the gravitational forcing.
(We’ve omitted longer time scale annual effects, as the earth moves around
the sun, and also the variation in the moon’s distance from the earth since its
orbit is not a circle.) The other half concerns the resonant response by the
water on Earth. The full details of this are very complicated, for the oceans
have complicated boundaries. Nevertheless, we can see a part of the picture
by ignoring the continents and imagining that the ocean is a uniform cover of
the earth a few miles deep. What is the natural frequency of this system? The
answer is determined by how fast waves travel across the ocean — not the little
waves one might surf on, but the so-called shallow-water waves associated with
tsunamis. It turns out that these travel about half as fast as the earth rotates.
(It would be different if the ocean were deeper.)

So Earth’s tides are in the regime ν > ω, where the forcing frequency exceeds
the resonant frequency. This means that we can expect the tides to be about
half a period out of phase with the moon. Since the moon’s forcing peaks not
once but twice per day, this 180◦ difference in mathematical phase corresponds
to a 90◦ difference in geometric orientation. We can sketch it like this:

earth = chebfun('exp(1i*x)',[0 2*pi]);

fill(real(earth),1.2*imag(earth),[.42 .57 .84]), hold on

fill(real(earth),imag(earth),[.8 .8 .8]), moon = 6+.4*earth;

fill(real(moon),imag(moon),[.96 .95 .72])

Many of us have seen figures like this, perhaps even when we were teenagers first
learning about the tides. But the pictures usually show the bulges pointing in
line with the moon, not at right angles! That’s correct in a certain static sense,
as it conveys the underlying gravitational force, but it’s wrong dynamically.

We hasten to emphasize that the actual behavior of tides on Earth is far more
complex than Figure 8.12 and the discussion above recognize. For example, the
phase lag is diminished by damping, which is not negligible, and at high latitudes
by the smaller distance around the globe, which brings the natural frequency
of oscillation close to the frequency of gravitational input. Most importantly,
we have ignored the continents completely, whose presence changes the details
in a manner that varies from place to place. See for example E. I. Butikov, “A
dynamical picture of the oceanic tides,” American Journal of Physics 70 (2002),
pp. 1001–1011. Because of these effects, if you actually look at tide data to see
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whether reality better fits Figure 8.12 or its opposite, you are likely to find that
the data are all over the place. See Exercise 8.4.

History. It was Newton who figured out the fundamental dynamics of
Earth’s tides, in his Principia, as a consequence of the same law of gravity that
explains orbits of planets around the sun.

Our favorite reference. For a delightful tour of resonance and many
other effects, check out E. J. Heller, Why You Hear What You Hear: An Expe-
riential Approach to Sound, Music, and Psychoacoustics, Princeton University
Press, 2013. It is hard to read even a single page of Heller’s book without
learning something interesting.

Summary of Chapter 8. Resonance is the interaction between a system
with a natural frequency of oscillation and external forcing at a nearby
frequency. Over a period of oscillations, a great deal of energy can be
injected into an oscillating system by this effect. If the damping is small,
forcing at the resonant frequency introduces a phase shift of 90 degrees and
forcing above the resonant frequency results in a phase shift of 180 degrees.
In systems with damping, forcing by a periodic function of frequency ν leads
to a solution that approaches periodic form as t → ∞.

Exercise 8.1. Exploiting resonance to increase amplitude. For a given frequency ν,
consider the solution to y′′ + y = 1− cos(νt), y(0) = 1, y′(0) = 0. (a) If ν is set equal
to the resonant frequency ω for this equation, compute the time tc at which y(t) first
reaches the value 10. (b) What is the smallest value of ν for which y(t) reaches the
value 10 at some time t ∈ [0, 100]?

Exercise 8.2. RLC circuits and AM radio. An AM radio station broadcasts radio waves
consisting of a high-frequency carrier (say, 106 Hz) times a low-frequency oscillation
(a few thousand Hz). This is equivalent to saying the signal is contained in a band of
a few thousand hertz about 106 Hz. The radio is tuned by means of a resonant circuit
that selects energy in this band. The simplest such circuit consists of a resistor of
resistance R (in ohms), an inductor of inductance L (in henries), and a capacitor of
capacitance C (in farads) in series. If E(t) is the applied voltage (in volts) and I(t) is
the current (in amps) as functions of time, then I satisfies the ODE LI ′′+RI ′+C−1I =
E ′. (a) Show that the natural frequency of oscillation (corresponding to R small
enough to be negligible) is (LC )−1/2. If L = 1 henry, what value of C is needed to
tune in a station at 680 kHz? (b) Suppose it is desired to make the half-width of
the resonance 1000 Hz in the sense that signals at 679 or 681 kHz generate responses
of half the amplitude of a signal at 680 kHz. What’s the right choice of R? Is this
subcritical, critical, or supercritical damping?

Exercise 8.3. 1D analogue of Chladni patterns. (a) Plot the solution of y′′+1000y = ex,
y(0) = y(π) = 0. Why does it have such a regular shape, and why is the number of
maxima what it is? Why does the shape become even more regular if 1000 is changed
to 1020? (b) Answer the same questions for y′′′′ − 106y = ex, y(0) = y′′(0) = 0,
y(π) = y′′(π) = 0, with 106 then changing to 1.05 × 106.

Exercise 8.4. High tides in coastal cities. (a) Find out the date of the next full or new
moon in Honolulu, Lisbon, Sydney, and a fourth coastal city of your choosing. (b)
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Find out the times of the two high tides in these cities on this date. For cities observing
daylight saving time, be sure to correct appropriately so as to get high tides in standard
local time. (c) Figure 8.12 suggests the high tides should be at approximately 6am
and 6pm, whereas if the tidal bulges were aligned with the moon, it would be noon
and midnight. Which of these scenarios do your data come closer to? How close?37

Exercise 8.5. Random forcing. Repeat Figure 8.7 but with the forcing function re-
placed by f = randnfun([0,200]), a smooth random function containing a wide range
of wave numbers (see Chapter 12). Run the code three times so as to see responses to
three random functions, and discuss the shape and size of the outputs.

Exercise 8.6. Beating. Figures 8.2 and 8.10 show beating effects that arise when two
waves of nearby frequencies are added. (a) Use trigonometric identities to derive the
formula cos(ωt)+cos((ω+2ε)t) = 2 cos((ω+ε)t) cos(εt) for arbitrary constants ω and
ε. (b) Relate this formula to one of these figures, and discuss what adaptation would
be needed to relate it to the other.

Exercise 8.7. Damping and phase lag. Let ω = 1 and ε = 0.05 and define a chebfun f
for the denominator of (8.9) over the range 0.5 ≤ ν ≤ 1.5. Plot angle(1/f). Repeat
for ε = 0.005 and relate the plots to the discussion about phase lag as a function of ν.

37In the final weeks of writing this book, author LNT visited the Holy Island of Lindisfarne
just before the solar eclipse of August 21, 2017. When there is a solar eclipse, there must be
a new moon syzygy, so Figure 8.12 suggests high tides at 6am and 6pm. Tides matter a great
deal on Lindisfarne, because the causeway is underwater for ten hours each day! The actual
high tide in the afternoon of August 21 was at 14:24, alas — not such a good match with the
figure.
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9. Second-order equations in the phase plane

Consider a second-order autonomous ODE, which may be linear or nonlinear,

y′′(t) = f(y, y′). (9.1)

Given a pair of values y and y′ at a particular time t, this equation tells us the
rate of change of y′ at t, and the rate of change of y itself is by definition y′. Thus
with (9.1) we know the rates of change of both y and y′, and we can represent
this information pictorially by a diagram of the phase plane, in which the
horizontal axis represents y and the vertical axis represents y′. For example,
here is a “quiver plot” of the phase plane for the simple harmonic oscillator or
linear pendulum equation y′′ = −y.

L = chebop(@(t,y) diff(y,2) + y);

quiver(L,[-2.8 2.8 -1.1 1.1]), hold on, plot(0,0,'.')
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At each point (y, y′), the arrow shows the direction and magnitude of the vector
(y′, y′′). Solutions to the ODE will correspond to trajectories following the
arrows around the plane. Note that for any equation (9.1), regardless of f , the
arrows will always point rightward in the upper half-plane and leftward in the
lower half-plane. The black dot at y = y′ = 0 marks a fixed point (or steady
state) of this equation, which means, a point at which y′ = y′′ = 0.

An image like Figure 9.1, while accurate, is sometimes not as compelling as
one in which all the arrows are set to have the same length, giving a plot of a
direction field. This can be done with the quiver option 'normalize'.

quiver(L,[-2.8 2.8 -1.1 1.1],'normalize',1)

hold on, plot(0,0,'.')
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There is nothing more to the dynamics of an autonomous ODE than its phase
plane. If an initial point (y, y′) is specified, then all of the future trajectory
is determined simply by the vector field.38 This is the power of phase plane
analysis: it reduces dynamics to geometry.

For example, let us now specify a t domain and an initial condition for the
linear pendulum,

y′′ = −y, t ∈ [0, 1.8π], y(0) = 0, y′(0) = 1, (9.2)

or in Chebfun,

L.domain = [0,1.8*pi]; L.lbc = [0;1];

Here we superimpose the trajectory corresponding to the solution of (9.2) on
the vector field just displayed. The trajectory begins at the top of the unit
circle with initial velocity 1 and initial acceleration 0, so the curve is oriented
horizontally to the right. As y increases, y′′ becomes negative, and the curve
begins to bend around, describing a clockwise circle. Since the time interval
runs 90% of the way to 2π, the circle is 90% complete.

y = L\0; hold on, arrowplot(y,diff(y))

38To be precise, this requires the solutions to be unique, which will be assured if f satisfies
a condition of Lipschitz continuity. See Chapter 11.
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Let us dispense with the quiver arrows and collect trajectories with differ-
ent initial values on a single plot. The next picture takes b = 0.5, 0.8, . . . , 2,
producing six circles of corresponding radii.

for b = .5:.3:2

L.lbc = [0;b]; y = L\0; arrowplot(y,diff(y)), hold on

end

plot(0,0,'.')
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The phase plane can be informative about boundary-value problems, too.
For example, suppose we change (9.2) to

y′′ = −y, t ∈ [0, 3], y(0) = 1, y(4) = −1.5. (9.3)

Here is the solution, shown as a seventh trajectory added to the previous plot
(without an arrowhead since this is a BVP).

L = chebop(0,4); L.op = @(t,y) diff(y,2) + y;

L.lbc = 1; L.rbc = -1.5;

y = L\0; plot(y,diff(y))
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Equations (9.2) and (9.3) describe a linear pendulum without damping. Fol-
lowing Chapters 4 and 8, let us now add some damping in the form of a small
multiple of y′,

y′′ = −y − εy′, t ∈ [0, 1.8π], y(0) = 0, y′(0) = b, (9.4)

with ε = 0.2. If we follow the same six trajectories as before, we see that they
now lose amplitude as they evolve, moving towards the fixed point y = y′ = 0
as t → ∞. This is a stable fixed point since all nearby trajectories stay close
to it; we shall consider such definitions systematically in Chapter 15. The plot
also shows the solution to the BVP variant of (9.4) with the same boundary
conditions y(0) = 1, y(4) = −1.5 as in (9.3). Note that the solution starts from
a greater velocity y′ than before, necessary to compensate for the damping while
still matching the boundary conditions.

L = chebop(0,1.8*pi); L.op = @(t,y) diff(y,2) + 0.2*diff(y) + y;

for b = .5:.3:2

L.lbc = [0;b]; y = L\0; arrowplot(y,diff(y)), hold on

end

L = chebop(0,4); L.op = @(t,y) diff(y,2) + 0.2*diff(y) + y;

L.lbc = 1; L.rbc = -1.5;

y = L\0; plot(y,diff(y)), plot(0,0,'.')
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We stopped the flow at t = 1.8π, but of course this is not necessary. Here is
a single trajectory carried to 9π. This represents a linear pendulum swinging
back and forth 4 1/2 times, losing amplitude as it swings.
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L = chebop(0,9*pi);

L.op = @(t,y) diff(y,2)+0.2*diff(y)+y; L.lbc = [0;2];

y = L\0; plot(y,diff(y)), hold on, plot(0,0,'.')
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We mentioned that in the phase plane the position of a trajectory at any time
t determines its future, which consists of following the unique path through that
point. This uniqueness property depends on the equation being autonomous. If
we solve a nonautonomous problem, such as

y′′ = −y − 0.2y′ − 2 cos(2t), t ∈ [0, 1.8π], y(0) = 0, y′(0) = b, (9.5)

we can plot the solution in the y-y′ plane, like this (now with different colors to
help distinguish the curves):

L = chebop(0,1.8*pi);

L.op = @(t,y) diff(y,2)+0.2*diff(y)+y+2*cos(2*t);

for b = .5:.3:2

L.lbc = [0;b]; y = L\0; arrowplot(y,diff(y)), hold on

end

plot(4.5,0,'X')
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However, the point of planar analysis has been lost since the future of a tra-
jectory is not determined by its current position in the plane, and the curves
cross each other. The plot of trajectories has become merely a plot of trajec-
tories, no longer an encapsulation of the dynamics of the system. Such plots
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can be interesting and informative; see for example Exercise 9.2 and the Duffing
oscillator in Appendix B. They usually don’t belong to phase plane analysis,
however. An alternative in such cases is to include the time variable in the plot
on an additional axis. Here, for example, we repeat the calculation on the longer
interval [0, 40], for a single trajectory, and plot the result in t-y-y′ space.

L.domain = [0,40];

y = L\0; t = chebfun('t',[0 40]); plot3(t,y,diff(y))
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Returning to (9.4), in the language of Chapter 4, the damping with ε = 0.2
is subcritical : from (4.11) we see that the critical damping parameter for this
equation is ε = 2. Here are images of subcritical, critical, and supercritical
trajectories with ε = 1, 2, 4, now for t ∈ [0, 1.5π]. Note that it is the critically
damped trio of trajectories that finishes closest to the origin, confirming that
ε = 2 gives the most effective damping.

close all, L.domain = [0,1.5*pi];

subplot(1,3,1), L.op = @(t,y) diff(y,2)+diff(y)+y;

for b = 1:-.2:.6

L.lbc = [0;b]; y = L\0; arrowplot(y,diff(y)), hold on

end

plot(0,0,'.'), subplot(1,3,2), L.op = @(t,y) diff(y,2)+2*diff(y)+y;

for b = 1:-.2:.6

L.lbc = [0;b]; y = L\0; arrowplot(y,diff(y)), hold on

end

plot(0,0,'.'), subplot(1,3,3), L.op = @(t,y) diff(y,2)+4*diff(y)+y;

for b = 1:-.2:.6

L.lbc = [0;b]; y = L\0; arrowplot(y,diff(y)), hold on

end

plot(0,0,'.')
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Phase plane analysis becomes particularly interesting for nonlinear ODEs.
For example, the first nonlinear equation of this book is the van der Pol equation.
With slightly different coefficients from (1.2), let us write this as

y′′ + y − μ(1− y2)y′ = 0, t ∈ [0, 10], y(0) = a, y′(0) = 0. (9.6)

Here are phase plane plots for μ = 0.125 and μ = 1.5. With the weak damping
parameter μ = 0.0125, the system is not far from the linear pendulum, with
trajectories winding slowly in or out to an asymptotic curve known as a limit
cycle. With the stronger damping parameter μ = 1.5, trajectories converge to
the limit cycle much faster, and its shape is far from circular, just as the van
der Pol orbit plotted in Chapter 1 is far from a sine wave.

N = chebop(0,15);

for j = 1:2

subplot(1,2,j), mu = 0.125; if j==2, mu = 1.5; end

N.op = @(t,y) diff(y,2)-mu*(1-y^2)*diff(y)+y;

for a = [1 3]

N.lbc = [a;0]; y = N\0; arrowplot(y,diff(y)), hold on

end

plot(0,0,'.')

end
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Application: nonlinear pendulum

The linear pendulum equation y′′ = −y describes oscillation in the context
of Hooke’s law, where the restoring force is proportional to the displacement —
simple harmonic motion. When the amplitudes of motion are small, this is the
right model for a spring or a pendulum and for many other vibrating systems,
but when the amplitudes get bigger, the physics always becomes nonlinear.
Different problems have different nonlinearities, but there is no doubt as to the
archetypal problem of this kind: it is the nonlinear pendulum, corresponding
to an idealized point mass moving in a circle at the end of a rigid weightless
bar. The equation is

y′′ = − sin(y), (9.7)

where y(t) represents the angle from the vertical in radians at time t and con-
stants are set to 1. For an entire book on the subject, see Baker and Blackburn,
The Pendulum, Oxford University Press, 2005.

This is a perfect example for phase plane analysis. First we draw a quiver
plot together with stable and unstable fixed points (black and red, respectively).
There are stable fixed points at (y, y′) = (2πj, 0) for each integer j and unstable
fixed points at the in-between locations (2π(j + 1/2), 0).

N = chebop(0,1.8*pi); N.op = @(t,y) diff(y,2)+sin(y);

quiver(N,[-3 23 -6 6]), hold on, plot(pi*(0:7),0*(0:7),'.')
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To see more, let us plot some trajectories. We start from y = 0 and y′(0) =
b = 1, 1.2, . . . , 4, calculating trajectories over the interval t ∈ [0, 1.8π].39

plot(pi*(0:7),0*(0:7),'.'), hold on

for b = 1:.2:4

N.lbc = [0;b]; y = N\0; arrowplot(y,diff(y))

end

39To us this looks like the hair of Botticelli’s Venus; or is it the Starbucks logo?
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Physically, these curves can be interpreted as follows. If y′(0) = b < 2, the pen-
dulum does not have enough energy to swing over the top, and the trajectory
goes around and around forever on a single loop in the phase plane, correspond-
ing to the pendulum swinging back and forth, with the angle y(t) remaining
bounded. The loops are not circles, but they approach circles for small ampli-
tude, where the distinction between y as in (9.2) and sin(y) as in (9.7) fades
away. If y′(0) = b > 2, on the other hand, the pendulum has enough energy to
swing over, and y(t) keeps increasing monotonically. In the absence of damping,
a pendulum that swings over once swings over infinitely many times as t → ∞.
The phase plane is 2π-periodic.

Notice the trajectory starting at y′(0) = 2. This one appears to stop at the
y-axis, and that is exactly what it does. It has just enough energy to fly up
toward the vertical configuration, with y(t) approaching π as t → ∞, but it
never quite hits the top for any finite value of t.

Of course a real pendulum is sure to have some losses. Here is the same
image corresponding to an equation with subcritical damping,

y′′ = − sin(y)− μy′, t ∈ [0, 1.8π], y(0) = 0, y′(0) = b, (9.8)

with μ = 0.1. A curve is also added to the plot corresponding to the BVP
defined by y(0) = 0, y(1.95π) = 20. We see that to reach y = 20 by the end of
the time interval, a greater initial speed is needed.

N.op = @(t,y) diff(y,2)+sin(y)+.1*diff(y);

for b = 1:.2:4

N.lbc = [0;b]; y = N\0; arrowplot(y,diff(y)), hold on

end

plot(pi*(0:7),0*(0:7),'.'), N.lbc = 0; N.rbc = 20;

y = N\0; plot(y,diff(y))
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Now, a trajectory with sufficient initial energy swings over, but it keeps losing
energy as it goes, so it may or may not swing over a second time. We can
see more if we increase the time interval to [0, 8π]. The trajectory with initial
velocity y′(0) = 4 swings over four times before eventually winding down to
rest. As before, the function f(y, y′) defining the phase plane is 2π-periodic,
though none of the individual trajectories are periodic.

N = chebop(0,8*pi); N.op = @(t,y) diff(y,2)+sin(y)+.1*diff(y);

plot(pi*(0:7),0*(0:7),'.'), hold on

for b = 1:.2:4

N.lbc = [0;b]; y = N\0; arrowplot(y,diff(y))

end
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History. Four hundred years ago, Galileo understood the essentials of the
linear pendulum. In his Dialogues Concerning Two New Sciences the character
Salviati says, “As to the times of vibration of bodies suspended by threads of
different lengths, they bear to each other the same proportion as the square
roots of the lengths of the threads; or one might say the lengths are to each
other as the squares of the times; so that if one wishes to make the vibration-
time of one pendulum twice that of another, he must make its suspension four
times as long.”

Our favorite reference. When it comes to phase plane analysis, one of
the oldest books is also one of the nicest: H. T. Davis, Introduction to Nonlin-
ear Differential and Integral Equations, Dover, 1962 (first published in 1960).
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For example, we enjoy Chapter 10 on “The phase plane and its phenomena,”
Chapter 11 on “Nonlinear mechanics,” and Chapter 12 on “Some particular
equations.”

Summary of Chapter 9. The phase plane for a second-order autonomous
homogeneous ODE y′′ = f(y, y′) is the plane with coordinates y and y′.
The position of a solution at a particular time t determines its future trajec-
tory as the unique curve passing through this point. Plotting phase plane
trajectories gives a quick way to interpret behavior of ODEs, including
nonlinear ones.

Exercise 9.1. y′′ = y. Draw phase plane trajectories or quiver arrows for the equation
y′′ = y (either by hand or with the computer). Where in this image does the solution
of Figure 5.3 lie? (It comes very close to following the stable manifold of the fixed
point for 30 time units and then the unstable manifold for a further 30 times units;
see Chapter 15.)

Exercise 9.2. Moving slowly in the phase plane. Consider the ODE y′′ + y = y2. (a)
What are the fixed points? (b) Draw a quiver plot, choosing axes to make the plot as
informative as possible. Based on this information, draw a sketch by hand of the key
points of the phase plane dynamics. Describe qualitatively what orbits will remain
bounded, and how they will behave; also what orbits will diverge to ∞, and how they
will behave. (c) Find two distinct solutions that satisfy y(0) = y(10) = 2. Plot them
both as functions of t and in the phase plane. What are the values of y′(0) for these
two solutions?

Exercise 9.3. Region-filling orbits. (Adapted from Davis, Introduction to Nonlinear
Differential and Integral Equations, section 10.4.) (a) Use the method of undetermined
coefficients to find the analytical solution of the IVP y′′ + 2y = −2 cos(2t), y(0) = 1,
y′(0) =

√
2. (b) This solution has a curious property in the phase plane: the curve

eventually gets arbitrarily close to every point in a near-elliptical region. Plot the
solution over t ∈ [0, 100] to see the effect. (This is fun to watch using comet as well.)
(c) The solution just considered is nonperiodic. Periodic solutions are obtained from
the same initial conditions, on the other hand, if cos(2t) is replaced by cos(kt) for
certain values of k > 0. Find the smallest three such values analytically, and produce
the corresponding plot for t ∈ [0, 100].

Exercise 9.4. Period of the nonlinear pendulum. The code

y = @(s) chebop(@(y) diff(y,2)+sin(y),[0 15-5*log(pi-s)],[s;0],[])\0;

T = @(s) 2*min(diff(roots(y(s))));

produces two anonymous functions y and T applicable for values s ∈ (0, π). Explain
what these functions compute and how they do it. Make a plot of T (s) for s ∈ [0.1, 3.14]
and explain its principal features. Explain in a general way (not necessarily with
mathematical details) the role of the quantity 15− 5 log(π − s).
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10. Systems of equations

Up to this point, our discussion has concerned scalar ODEs. In this chapter we
begin to talk about systems of equations, which involve more than one dependent
variable, or equivalently, a dependent variable that is a vector rather than a
scalar.

All our vector problems will be of first order. A general first-order ODE can
be written

y′(t) = f(t,y) (10.1)

for a linear or nonlinear function f , where for each t, y(t) represents a vector of
dimension n,

y(t) =

⎛
⎜⎝

y1(t)
...

yn(t)

⎞
⎟⎠ , f(t,y) =

⎛
⎜⎝

f1(t,y)
...

fn(t,y)

⎞
⎟⎠ .

The dependent variables are thus y1, . . . , yn, and we could write the system out
explicitly like this:

y′1(t) = f1(t, y1(t), . . . , yn(t)),

...

y′n(t) = fn(t, y1(t), . . . , yn(t)).

For systems of small size we will usually find it convenient to use variable names
without subscripts, such as u, v, w. The reason we can restrict the discussion

115
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to first order is that any higher-order ODE can be written as a system of first-
order ODEs by introducing additional variables, as outlined in Exercise 1.5. In
FLASHI nomenclature, any fS · · · can be turned into an Fs · · · .40

To fully specify an ODE problem from (10.1), one normally needs n addi-
tional conditions. In an initial-value problem, we prescribe the value of y at a
fixed time such as t = 0,

y(0) = a. (10.2)

This amounts to specifying each of the n components,

y1(0) = a1, . . . , yn(0) = an.

In a boundary-value problem, different components of y or combinations thereof
may be specified at different points, for a total normally of n conditions alto-
gether. Exactly what specifications may lead to a well-posed BVP for a system
of equations is not always a straightforward matter. For IVPs, however, exis-
tence and uniqueness are guaranteed so long as f is continuous with respect to t
and y and Lipschitz continuous with respect to y, as we shall prove in the next
chapter (Theorem 11.2).

For example, consider the two-variable autonomous system

u′ = −v − u(u2 + v2), v′ = u− v(u2 + v2). (10.3)

Here are the trajectories of u and v for t ∈ [0, 30] with u(0) = 1, v(0) = 0.41

N = chebop(0,30); N.lbc = [1; 0];

N.op = @(t,u,v) [diff(u)+v+u*(u^2+v^2); diff(v)-u+v*(u^2+v^2)];

[u,v] = N\0; plot([u v])
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40This doesn’t mean that, in practice, higher-order systems are necessarily reduced to first-
order form. For example, the Solar System Dynamics Group at the Jet Propulsion Laboratory
in California solves systems of hundreds of ODEs numerically to track the moon and planets
and other bodies: when the media tell you there’s going to be an eclipse, the computations
probably came from JPL. The methods used by the SSD Group are based on a second-order
formulation, without reduction to first order.

41For plots like this showing multiple components, we revert to MATLAB’s built-in color
tables rather than the light/dark green and blue colors usually used in this book for lin-
ear/nonlinear IVPs and BVPs.
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We see two interlocking oscillations, decaying rapidly in amplitude at first but
then much more slowly.

Since (10.3) is autonomous, the whole future of the system is determined by
the values of u and v at any given time. Thus it makes sense to plot this solution
in the phase plane, with u on the horizontal axis and v on the vertical axis.
This is a straightforward generalization of the phase plane of the last chapter,
where the two axes represented y and y′. Here, however, trajectories need not
point rightward in the upper half-plane.

arrowplot(u,v), hold on, plot(0,0,'.')
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The dot at the center marks the fixed point of the system, corresponding to the
constant solution u(t) = v(t) = 0. In general, a fixed point of an autonomous
ODE y′ = f(y) is any point y0 such that f(y0) = 0, implying that the constant
y(t) = y0 is a solution. The dynamics of this problem is angularly symmetric,
as can be confirmed by converting f to polar coordinates.

As in the last chapter, we may think of the trajectory as following the arrows
of a direction field:

quiver(N,[-.7 1.1 -.4 .6])
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One way to understand the motion is to interpret the nonlinear terms of (10.3)
as linear terms with varying coefficients. For a positive constant κ, the system

u′ = −v − κu, v′ = u− κv
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describes a simple oscillation with damping. Locally, near any particular point
(u(t), v(t)), (10.3) will behave in just this way with κ = u(t)2 + v(t)2. This ex-
plains the behavior of the two images above: we start with a damping coefficient
κ = 1, but, at the end of the trajectory, κ is about 60 times smaller:

kappa = u(end)^2 + v(end)^2

kappa = 0.0164

We emphasized in the last chapter that phase plane or more generally phase
space analysis (for n ≥ 3) is appropriate only for a system that is autonomous,
so that the state y at a fixed time determines fully the future solution y(t).42

A fundamental property of phase space analysis is that distinct trajectories can
never meet (assuming f is continuous with respect to t and y and Lipschitz
continuous with respect to y). This follows from the uniqueness of solutions,
for if an autonomous ODE has two solutions y1(t) and y2(t) such that y1(t1) =
y2(t2) for some t1 and t2, then if solutions are unique, we must have y(t1+ t) =
y2(t2 + t) for all t, positive and negative. So the trajectories corresponding to
y1 and y2 must be the same.

For another example, let us consider the two-variable system known as the
predator–prey or Lotka–Volterra equations. We suppose an environment
in which there is a prey species, say rabbits, whose population as a function of
time is u(t), and a predator species, say foxes, whose population as a function of
time is v(t).43 In the absence of foxes, the rabbit population grows exponentially
thanks to abundant vegetation, but it is decreased by fatal encounters with foxes
at a rate proportional to the product uv,

u′ = u− uv. (10.4)

The fox population, on the other hand, decays exponentially in the absence of
rabbits to eat but expands when they are available,

v′ = − 1
5v + uv. (10.5)

(The constant 1/5 is included to make the dynamics nontrivial. In a serious
application one would have dimensional constants in front of each term, based
on measurements of field data.) Combining the two equations with initial con-
ditions, we obtain the Lotka–Volterra IVP

u′ = u− uv, v′ = − 1
5v + uv, t ≥ 0, u(0) = u0, v(0) = v0. (10.6)

A quiver plot looks like this:

42A nonautonomous system of size n can, however, be written as an autonomous one of size
n + 1 by introducing a new dependent variable τ equivalent to t, governed by the equation
τ ′ = 1 and the initial value τ(0) = 0. See Figure 9.9.

43Volterra’s original application of 1926 involved fish populations in the Adriatic Sea. Danby
writes in Computer Modeling: From Sports to Spaceflight. . . From Order to Chaos: “Presen-
tations of this model include many pairs: birds and worms, wolves and deer, sharks and tuna,
to name a few. I have found that my students prefer foxes and rabbits, so I shall refer to
these. After all, who identifies with a worm?”
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N = chebop(0,60); N.lbc = [1;1];

N.op = @(t,u,v) [diff(u)-u+u*v; diff(v)+.2*v-u*v];

quiver(N,[0 1.5 0 3])
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This problem has periodic solutions, where the rabbit population oscillates
between large and (very) small and the fox population oscillates between large
and (not so) small, with a phase lag since a large rabbit population leads to
a growing fox population. Here is the periodic solution that evolves from the
initial populations u(0) = v(0) = 1.

[u,v] = N\0; plot([u v])

hold on, plot([0 0;60 60],[.2 1; .2 1],'--')
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The period is about 17.5.

[~,m] = max(v,'local'); period = diff(m)

period =

17.5262

17.5262

17.5262

To understand the Lotka–Volterra dynamics, again it is helpful to interpret
the nonlinear terms of (10.4)–(10.5) as linear terms with varying coefficients.
Equation (10.4) can be written u′ = (1 − v)u, showing that, locally, u will
decrease exponentially for v > 1 (the fox curve lies above the upper dashed
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line) and increase exponentially for v < 1 (it lies below the upper dashed line).
Thus the rabbit population has an exponential growth tendency that shuts off
as v rises above 1. Similarly, equation (10.5) can be written v′ = (u − 1/5)v,
showing that the fox population has an exponential decay tendency but grows
whenever there are enough rabbits, u > 1/5 (the rabbit curve lies above the
lower dashed line).

Here is the orbit just computed in the phase plane, winding around coun-
terclockwise several times.

arrowplot(u,v), hold on, quiver(N,[0 1.5 0 3])

plot([.2 0;.2 1.5],[0 1; 3 1],'--')
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Let us superimpose several orbits in a single plot, corresponding to the solutions
arising from various initial populations of rabbits.

for s = .4:.2:1.4

N.lbc = [s; 1]; [u,v] = N\0; arrowplot(u,v), hold on

end

plot([.2 0;.2 1.5],[0 1; 3 1],'--')
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The figures show that in the Lotka–Volterra model the effects of the initial
conditions last forever: some fox-rabbit oscillations have great amplitude while
others move little. At the center is obviously a fixed point, which we may
confirm by setting u′ = v′ = 0 in (10.6). This gives the equations

u = uv, 1
5v = uv,
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implying that these equations in fact have two fixed points: one at (1/5, 1) and
the other at (0, 0). Let us mark them in the plot.

hold on, plot([0 .2],[0 1],'.')
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The Lotka–Volterra equations are perhaps the most famous system of two
ODEs, appearing in every ODE textbook. Turning now to three dimensions,
it is only fitting that we should begin with the most famous system of three
ODEs, the Lorenz equations. In 3D, a new possibility opens up for reasons
we shall explain in a moment: the dynamics of an ODE may be chaotic. The
Lorenz equations are the archetypal chaotic system, consisting of three coupled
first-order equations,

u′ = 10(v − u), v′ = u(28− w) − v, w′ = uv − (8/3)w. (10.7)

The coefficients 10, 28, and 8/3 are arbitrary, and it is not necessary to use
exactly these values. However, so much study of the Lorenz equations has been
based on these parameter choices that they have become standard.

Equations (10.7) may look complicated at first glance, but in fact the non-
linearities here are rather simple: the equation for u′ is linear, and the equations
for v′ and w′ are quadratic, their only nonlinearities consisting of the term −uw
in the equation for v′ and the term uv in the equation for w′. To make an IVP,
we impose initial conditions such as

u(0) = v(0) = −15, w(0) = 20. (10.8)

Here is the solution of (10.7)–(10.8) up to time t = 30, showing the three
components together.

N = chebop(0,30); N.lbc = [-15; -15; 20];

N.op = @(t,u,v,w) [diff(u)-10*(v-u); ...

diff(v)-u*(28-w)+v; diff(w)-u*v+(8/3)*w];

[u,v,w] = N\0; plot([u v w])
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To focus on just one component of the solution, here is a plot of v(t). Note
the characteristic property of chaos: apparent randomness in a deterministic
system. We shall discuss chaos more fully in Chapter 13.

plot(v)
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The Lorenz equations are autonomous, so they can be represented in a phase
space, which will have three dimensions. Here is a phase space plot of the
trajectory just computed. The plot includes dots showing the fixed points,
which are the solutions of the equations we obtain by setting u′ = v′ = w′ = 0
in (10.7),

v = u, 28u− uw = v, uv = 8w/3.

There are three fixed points, one at (u, v, w) = (0, 0, 0) and the others at

(u, v, w) = (±6
√
2, ±6

√
2, 27).

plot3(u,v,w), c = 6*sqrt(2); hold on

plot3([0 c -c],[0 c -c],[0 27 27],'.')
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Ideas related to phase spaces and their trajectories are at the heart of the rich
subject of dynamical systems, and a great deal is known about the mathematics
and application of these notions. The traditional method of this analysis is to
begin by finding fixed points and then examine the behavior near these points
by approximating the nonlinear problem locally by a linear problem. As we shall
see in Chapter 14, linear analysis makes sense at any point of a phase space, not
just a fixed point; locally, any smooth nonlinear ODE might as well be linear.
What makes the fixed points particularly interesting is that trajectories interact
in nontrivial ways at such points, and to see the overall dynamics in a phase
space, it is often fruitful to start from the fixed points and see how they may
be connected by various trajectories. See Chapter 15.

One of the fundamental things one can learn from this kind of geometrical
reasoning is that trajectories can get tangled up in 3D, but not in 2D. In 2D,
since trajectories cannot cross, tangling is not possible. Therefore, chaos can
appear in autonomous systems with n ≥ 3 but never with n = 2.44 Another
point is that, since a linear system of ODEs behaves in essentially the same
way at every point of phase space, its trajectories look essentially the same
everywhere. So they can’t get tangled up either, and chaos can never appear in
a linear problem, no matter how many variables there are. Since we have not
given a mathematical definition of chaos, these observations must be regarded
as heuristic, but they can be made precise.

Let us finish with an example of a three-variable problem that is not chaotic,
analyzed in pp. 202–204 of Bender and Orszag, Advanced Mathematical Methods
for Scientists and Engineers,

u′ = vw, v′ = −2uw, w′ = uv. (10.9)

It can be shown that along any trajectory, the quantity u(t)2 + v(t)2 +w(t)2 is
constant, and thus trajectories lie on spheres. Here is a plot showing some of
them.

44A precise formulation of this idea is provided by the Poincaré–Bendixson theorem.
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close all, N = chebop(0,10);

N.op = @(t,u,v,w) [diff(u)-v*w; diff(v) + 2*u*w; diff(w)-u*v];

for theta = -1.5:.2:1.5

N.lbc = [cos(theta); sin(theta); 0];

[u,v,w] = N\0; plot3(u,v,w), hold on

plot3(-u,v,w), plot3(w,v,u), plot3(w,v,-u)

end

plot3([0 0 0 0 1 -1],[0 0 1 -1 0 0],[1 -1 0 0 0 0],'.')
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As explained by Bender and Orszag, this example is related to the mechanical
phenomenon known as Eulerian wobble and can be used to explain why, if you
toss a book in the air, you can make it spin stably around the shortest axis or
the longest, but not the middle one: it will somersault. This is also called the
tennis racket theorem or the Dzhanibekov effect.

Application: SIR model for epidemics

A major advance in epidemiology dates to a 1927 study by W. O. Kermack
and A. G. McKendrick of a 1906 outbreak of bubonic plague in Bombay, now
Mumbai (“A contribution to the mathematical theory of epidemics,” Proceed-
ings of the Royal Society of London A). Kermack and McKendrick proposed
what is now called the SIR model for the spread of disease. Although the SIR
model is now considered too simplistic for quantitative tracking of real epi-
demics, it exhibits several important properties and remains the foundation for
more comprehensive models.

This is a compartment model, in which one imagines members of a popula-
tion making the transition continuously from a box labeled S for susceptible to

Copyright © 2018 Society for Industrial and Applied Mathematics



10. Systems of equations 125

another box I for infected and eventually to a box R for recovered or removed
(possibly by death). In nondimensional form the system is

S′ = −βSI, I ′ = (βS − γ)I, R′ = γI, (10.10)

where β, γ > 0 are parameters and S(t), I(t), and R(t) denote the propor-
tions of the population in the three compartments. These equations model the
dynamics of the transitions S → I and I → R. First, S decreases and I in-
creases at the rate βSI (so S is monotonically nonincreasing). This product
corresponds to infected people coming into contact with susceptible ones with
infection rate β per contact (high for measles, low for AIDS). Second, R in-
creases and I decreases at the rate γI (so R is monotonically nondecreasing).
This represents the approximation that infected people come to the end of their
infections, whether through death or recovery, in a random fashion at a steady
rate (again high for measles, low for AIDS).

Note that (10.10) is nonlinear because of the product SI. Note also how
easily we can spot factors that are omitted from the model. For example,
(10.10) says nothing about the course of the infection; an infected patient is
simply assumed to recover or die at random with a probability that does not
vary from day to day. Also, the model assumes the populations are perfectly
mixed, with no spatial or social aspect to the epidemic. In actuality, spatial
and socioeconomic factors can be very important, as was made famous by John
Snow’s study of the cholera outbreak linked to a certain public water pump in
a crowded quarter of London in 1854.

The equations (10.10) have two obvious steady states. If S = 1 and I =
R = 0, nobody is infected and the disease never gets going. If S = I = 0
and R = 1, the whole population is recovered or removed and the epidemic has
passed into history. The nontrivial dynamics emerges when we begin with a
nonzero infected fraction I0,

S(0) = 1− I0, I(0) = I0, R(0) = 0.

Here we show the course of the epidemic with β = 2, γ = 1, and I0 = 0.0001.

beta = 2; gamma = 1; I0 = 0.0001; N = chebop([0 30]); close all

N.op = @(t,S,I,R) [ diff(S) + beta*S*I

diff(I) - beta*S*I + gamma*I

diff(R) - gamma*I ];

N.lbc = [1-I0; I0; 0];

[S,I,R] = N\0; plot([S,I,R]), hold on, plot(S+I+R,'--')
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The model may be simple, but there are some remarkable things to see in
these curves. First of all, note how a disease may be active in a small fraction
of a population for a long time, exponentially growing but at an amplitude so
low that it may go unnoticed.45

Why does it grow at all? As mathematicians, we may say that the fixed point
(S, I, R) = (1, 0, 0) is unstable. Looking at (10.10), we see that the equation
giving exponential growth is the second one, I ′ = (βS − γ)I. If βS > γ, the
coefficient is positive and we can expect I to grow exponentially at the rate
βS − γ. For our choice of parameters, this is indeed the case at t = 0, with
βS−γ = 1. As epidemiologists, we can interpret this condition as follows: each
newly infected person, on average, infects more than 1 additional person before
ceasing to be infective.

Eventually, on the other hand, the epidemic shuts off. As soon as S falls to
the point where βS ≤ γ, I(t) begins to diminish and the epidemic starts fading
out. In this example this occurs at the point tc where S(tc) = 0.5.

tc = roots(S-0.5)

tc = 9.0718

Note that although the infected population begins to diminish after this point,
the epidemic has by no means yet run its course. In the end, most of the
population has had the disease:

Rinfty = R(end)

Rinfty = 0.7968

But not all. This is a fascinating and important aspect of epidemiology. For a
population to be safe from a certain pathogen, it is not necessary that everybody
be immune. It suffices for a high enough fraction to be immune so that further
infections will not spread. This is the celebrated effect of herd immunity. And
here we realize that the two “obvious” fixed points of this system noted earlier
are not the only ones. In fact, any values S∞ and R∞ = 1 − S∞ in [0, 1] may
be combined with I∞ = 0 to make a fixed point.

As β increases, the peak of I(t) comes both sooner and higher:

45What do you suppose is happening in a carton of milk in your refrigerator when its “best
before” date is still a week away?
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for beta = [1.3 1.6 2 2.8]

N.op = @(t,S,I,R) [ diff(S) + beta*S*I

diff(I) - beta*S*I + gamma*I

diff(R) - gamma*I ];

[S,I,R] = N\0; plot(I), hold on, [val,pos] = max(I);

end
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Epidemiological equations are not just used to track biological diseases. Sim-
ilar compartment models have been used to study the spread of computer mal-
ware as well as other items that travel across networks — like a rumor, or a
meme. See our favorite reference at the end of Chapter 15.

History. Systems of differential equations were studied by d’Alembert and
Lagrange in the mid-18th century, but vector notation was not yet available in
those days. Vector formulations became customary with the work of Peano and
others near the end of the 19th century.

Our favorite reference. J. D. Murray’s wide-ranging book Mathemat-
ical Biology did much to create the field of mathematical biology as it is known
today. In its later extension to two volumes (Springer, 2001), the book focuses
in volume 1 on systems of ODEs modeling biological systems, including insect
populations, fishery management, tumor cell growth, divorce rates, biological
oscillators, propagation of neural signals, and much more. The biology is varied,
and the dynamical effects in the ODEs are equally varied, combining to give a
deeply satisfying illustration of the power of mathematics in understanding our
world.

Summary of Chapter 10. Any system of ODEs can be reduced to a
first-order system of the form y′(t) = f(t,y). An n-variable autonomous
system y′(t) = f(y) has an n-dimensional phase space. If n ≥ 3 and the
equations are nonlinear, there is the possibility of chaos.

Exercise 10.1. Four bugs on a rectangle. In Chapter 3, using the complex arithmetic
trick, we considered a scalar ODE in which a lion chases an antelope, always moving
directly towards it. Now consider a problem of four bugs starting at four corners of a
rectangle, each chasing the one counterclockwise from it at speed 1. (a) Suppose the
bugs begin at the corners of the square (±1,±1). Draw a figure showing the evolution
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to time t = 1.99995, and report the locations at that time of the four bugs. (This part
of the problem could be reduced to a scalar ODE — indeed it can easily be solved
analytically — but the next part is necessarily a system.) (b) Now suppose the bugs
begin at the four corners of the rectangle (±1.01,±0.99). Answer the same questions
as in part (a). To learn about the extraordinary paths followed by the bugs as t → 2,
see Chapman, Lottes, and Trefethen, “Four bugs on a rectangle,” Proceedings of the
Royal Society, 2011.

Exercise 10.2. Oregonator. The Oregonator, or Field–Noyes model, is an approxi-
mation to the dynamics of the Belousov–Zhabotinskii chemical reaction, which ex-
hibits periodic oscillations of its reagents. (You can see a video of the reaction at
https://youtu.be/wxSa9BMPwow?t=3m9s.) In nondimensional form the equations are

εu′ = qv − uv + u(1− u), δv′ = −qv − uv + w, w′ = u−w,

where q, ε, and δ are parameters. For this exercise use the values q = 8×10−4 , ε = 0.05,
and δ = 0.02. (These are not physically realistic for the BZ reaction. For realistic
values, the system is considered “stiff” and requires a change in the numerical solver
Chebfun uses, as illustrated in example 43 of Appendix B.) Solve the system with
Chebfun for u(0) = w(0) = 0, v(0) = 1, and plot the three components as functions of
time. (A particularly interesting way to see the dynamics is comet3(u,v,w).)

Exercise 10.3. Nonautonomous. Suppose that a first-order, two-variable ODE system
has unique solutions for any initial data and one of its solutions is u(t) = sin(t),
v(t) = sin(2t). Sketch this orbit in the phase plane and explain why this ODE cannot
be autonomous.

Exercise 10.4. Matrix eigenvalues via ODE isospectral flow. Suppose A = [ a b ; b c ]
is a 2 × 2 real symmetric matrix. The eigenvalues of A can be determined from
limt→∞ a(t) and limt→∞ c(t) in the ODE a′ = 2b2, b′ = b(c − a), c′ = −2b2. (a)
Try this for the matrix [ 3 2 ; 2 1 ], plotting deviations from their limiting values as
a function of t ∈ [0, 2]. How close are a(t) and c(t) at t = 1 and 2 to their final
values? (b) Do the same for the matrix [1 2 ; 2 3]. What is qualitatively different in
this case? (c) What are the fixed points of this ODE? (If you are curious to learn
more about isospectral flows in linear algebra, including the case of n×n matrices and
connections with standard algorithms for computing matrix eigenvalues, see Deift,
Nanda, and Tomei, “Ordinary differential equations and the symmetric eigenvalue
problem,” SIAM Journal on Numerical Analysis 20 (1983), pp. 1–22.)

Exercise 10.5. Energy conservation for Eulerian wobble. Show analytically that the
quantity u2 + v2 + w2 is independent of time for solutions of the system (10.9).

Exercise 10.6. Four kinds of fixed points (from Hairer, Nørsett, andWanner). (a) Draw
a quiver plot of the system u′ = (u−v)(1−u−v)/3, v′ = u(2−v). Determine the four
fixed points analytically and include them in the plot. (b) Calculate the eigenvalues
of the Jacobian at these points and show that one is a sink, one is a source, one is a
saddle point, and one is a spiral.

Exercise 10.7. Phase plane for SIR model. (a) Suppose a solution of (10.10) satisfies
S(0) + I(0) + R(0) = 1. Show that S(t) + I(t) + R(t) = 1 for all t. Using this
conservation property, we can eliminate S or I or R from the system and thus obtain
a two-variable system that can be analyzed in the phase plane. (b) Elimination of R
is particularly trivial. Write down the resulting two-variable system. Solve it for the
same parameters as in Figure 10.13 and make an arrowplot of the trajectory in the
S-I plane. Where are the fixed points in this plane?
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11. The fundamental existence theorem

More than most mathematical fields, the subject of ODEs is founded on a key
theorem: solutions to an IVP y′ = f(t, y), y(0) = y0 exist and are unique so long
as f is continuous with respect to both variables and Lipschitz continuous with
respect to y, as defined below. (If ∂f/∂y exists and is uniformly bounded, that
is enough to imply Lipschitz continuity, since a bound on |∂f/∂y| will serve as
a Lipschitz constant.) The theorem applies to systems as well as scalars, which
means that, by the usual addition of extra variables, it applies to higher-order
as well as first-order equations. We rely on this result throughout this book. In
this chapter we present one of the standard proofs, due to Picard and Lindelöf.46

Since an ODE prescribes the slope of a curve at each point, it may seem
obvious that a unique solution must always exist. However, we saw examples in
Chapter 3 showing this is not the case. The problem y′ = y2, y(0) = 1 of (3.9)
has the solution y(t) = 1/(1 − t) on [0, d ] for d < 1, but no solution exists for
d ≥ 1; y2 fails to be Lipschitz continuous as y → ∞. The problem y′ = y1/2,
y(0) = 0 of (3.16) has the distinct solutions y(t) = 0 and y(t) = t2/4, as well
as many others; y1/2 is not Lipschitz continuous for y ≈ 0. So existence and
uniqueness cannot be taken for granted.

For simplicity, we will state and prove the theorem first in the scalar case,
and then indicate the modest changes needed for the generalization to systems.

Theorem 11.1. Existence and uniqueness for a first-order scalar

46We emphasize that this theorem and proof represent just one particularly noteworthy
item from the theory of existence and uniqueness for ODEs. In fact, there is a whole book on
the subject: R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria
for Ordinary Differential Equations, World Scientific, 1993.

129
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ODE IVP (FlaShI). If f is continuous with respect to t and y and Lipschitz
continuous with respect to y, then the IVP

y′(t) = f(t, y), t ∈ [0, d ], y(0) = y0 (11.1)

has a solution, and it is unique.

By a solution to the IVP, we mean a continuously differentiable function y(t)
satisfying (11.1). The condition that f is Lipschitz continuous with respect
to y means that there exists a constant K such that for all t ∈ [0, d ] and y ∈ R,
|f(t, y2) − f(t, y1)| ≤ K|y2 − y1|. Although our discussion assumes d > 0 for
simplicity, (11.1) is actually symmetric with respect to t, and the same result
holds for t ∈ [d, 0] with d < 0.

The standard proof of Theorem 11.1 is based on the process known asPicard
iteration. We note that integration of (11.1) yields the equation47

y(t) = y0 +

∫ t

0

f(s, y(s))ds. (11.2)

In the Picard iteration, we consider the sequence of functions defined by y(0) =
y0 and then

y(k+1)(t) = y0 +

∫ t

0

f(s, y(k)(s))ds, k = 0, 1, 2, . . . , (11.3)

or as we may write abstractly for an operator N ,

y(k+1) = N(y(k)), k = 0, 1, 2, . . . . (11.4)

The proof consists of showing that, under the given assumptions, this successive
substitution process converges to a unique solution of (11.1), at least on some
smaller interval [0, d/m]. By a succession of m such steps we reach all of [0, d ].

Before presenting the mathematical argument, let us see the construction in
action. The problem

y′ = sin(y) + sin(t), t ∈ [0, 8], y(0) = 1 (11.5)

is an example of a nonlinear IVP whose defining function f(t, y) is continuous
with respect to both variables and Lipschitz continuous with respect to y; the
Lipschitz constant can be taken as K = 1. Here is a plot of iterates k = 0, . . . , 4:

d = 8; t = chebfun('t',[0 d]); y0 = 1; y = y0 + 0*t;

for k = 0:4

plot(y), hold on, y = y0 + cumsum(sin(y)+sin(t));

end

47This is an example of a Volterra integral equation.
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A second plot shows k = 5, . . . , 9.

for k = 5:9

plot(y), hold on, y = y0 + cumsum(sin(y)+sin(t));

end
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A third plot shows k = 10, . . . , 14, and this time we include the true solution (a
dashed lined in red, mostly hidden under the green curves) to confirm that the
iteration is converging successfully.

N = chebop(0,d); N.op = @(t,y) diff(y) - sin(y); N.lbc = y0;

yexact = N\sin(t); plot(yexact,'--'), hold on

for k = 10:14

plot(y), y = y0 + cumsum(sin(y)+sin(t));

end

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

Copyright © 2018 Society for Industrial and Applied Mathematics



132 Exploring ODEs

These figures give a vivid impression of how convergence works for the Picard
iteration: from left to right. On a short interval like [0, 1], the convergence for
this example is rapid, whereas on the longer interval [0, 8] the rate is not so
good. In fact, the successive iterates satisfy

y(0)(t)−y(t) = O(t), y(1)(t)−y(t) = O(t2), y(2)(t)−y(t) = O(t3), . . . . (11.6)

These estimates apply even if f is not smooth with respect to t or y (Exer-
cise 11.7). For our example, the powers are readily confirmed on the computer
by plotting the errors of y(0), . . . , y(4) as functions of t on a log-log plot. (The
vertical bars correspond to points where the error happens to cross through
zero.)

y = y0 + 0*t; tt = logspace(-2,log10(8),1200);

for k = 0:4

err = abs(y(tt)-yexact(tt));

for j = 10:1000

if err(j)<=min(err(j-1:j+1)), err(j)=1e-20; end

end

loglog(tt,err), hold on, y = y0 + cumsum(sin(y)+sin(t));

end

10 -2 10 -1 10 0

10 -10

10 0

One way to prove Theorem 11.1 is to make (11.6) quantitative. (See, for
example, Chapter 12 of Süli and Mayers, An Introduction to Numerical Analysis,
Cambridge, 2003.) We follow here the more abstract and elegant approach of
regarding the mapping N of (11.4) as a contraction map in the Banach space
C([0, d ]) of continuous functions on [0, d ] with the supremum norm.48 More
precisely, it may be necessary to restrict the interval to [0, d/m] for some m and
take m steps.

Proof of Theorem 11.1. As described above, we set y(0) = y0 and iterate
with the formula (11.3). By induction it follows that y(k) is well-defined and
continuously differentiable for each k. From (11.2) we compute

y(k+1)(t)− y(k)(t) =

∫ t

0

[
f(s, y(k)(s))− f(s, y(k−1)(s))

]
ds.

48Do we really need Banach spaces? Not really — see p. 4 of Hastings and McLeod, Classical
Methods in Ordinary Differential Equations with Applications to Boundary Value Problems,
American Mathematical Society, 2012.
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Since t ≤ d, this equation implies

‖y(k+1) − y(k)‖∞ ≤ dK‖y(k) − y(k−1)‖∞, (11.7)

where K is the Lipschitz constant. Now suppose dK < 1. Then (11.7) asserts
that the map N of (11.4) is a contraction in the Banach space C([0, d ]) of con-
tinuous functions on [0, d ] with norm ‖ · ‖∞. By a standard result known as the
Banach fixed-point theorem or the contraction mapping principle, a contraction
map has a unique fixed point, i.e., a point y with N(y) = y, and the iteration
converges to it. In our context, this means that the iteration converges to a
unique function y ∈ C([0, d ]) that satisfies N(y) = y, i.e., (11.2). From (11.2)
it follows that y is in fact continuously differentiable and satisfies (11.1).

This completes the proof if dK < 1. What if dK > 1? In this case we
may pick an integer m such that dK/m < 1 and use the same argument to
establish a unique solution in C([0, d/m]). From here, a second application of
the fixed-point theorem gives a unique solution in C([d/m, 2d/m]), and so on
for m steps.

Theorem 11.1 extends in an immediate manner to a first-order system of n
equations.

Theorem 11.2. Existence and uniqueness for a first-order system
of ODEs (FlashI). If f is continuous with respect to t and y and Lipschitz
continuous with respect to y, then the IVP

y′(t) = f(t,y), t ∈ [0, d ], y(0) = y0 (11.8)

has a solution, and it is unique.

The same proof works as before, with the Banach space C([0, d ]) generalized
to Cn([0, d ]) and with ‖y‖∞ now defined as the supremum for t ∈ [0, d ] of
‖y(t)‖, where ‖ · ‖ is any fixed norm on Rn. Lipschitz continuity is also defined
with respect to the latter norm. We say that f(t,y) is Lipschitz continuous
with respect to y if there exists a constant K such that for all t ∈ [0, d ] and
y ∈ Rn, ‖f(t,y2)− f(t,y1)‖ ≤ K‖y2 − y1‖. Since all norms are equivalent on
a finite-dimensional space, this definition is independent of the choice of norm.

* * *

The main business of this chapter is finished: the statement and proof of
Theorems 11.1 and 11.2, which assume that f(t, y) is continuous in t and Lip-
schitz continuous in y. Let us now explore around the edges a little. Although
these theorems mark a center point of this field, there is more to be said about
both existence and uniqueness.

The most important matter to note is that continuity of f with respect
to t is a stronger assumption than necessary for the Picard iteration argument.
The simplest next step, sufficient for the examples explored in this book such
as those of Figures 2.3 and 2.8, is to suppose that f is piecewise continuous
as in Theorems 2.2 and 2.3. When we say that the bivariate function f(t, y)
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is piecewise continuous with respect to t, we mean that it is continuous with
respect to t except for at most a finite set of jump discontinuities at points
t1, . . . , tk that are independent of y. The proof by Picard iteration then goes
through essentially as before, with the Banach space C([0, d]) generalized to the
Banach space of piecewise continuous functions with jump discontinuities only
at the same points t1, . . . , tk, again with norm ‖ · ‖∞.

Theorem 11.3. Existence and uniqueness for discontinuous ODEs
(FlashI). The conclusions of Theorems 11.1 and 11.2 also hold if f is piecewise
continuous with respect to t as defined above and Lipschitz continuous with
respect to y.

For an extensive treatment of existence theorems for discontinuous ODEs,
see A. F. Filippov, Differential Equations with Discontinuous Righthand Sides,
Kluwer, 1988. One theme in this theory is to extend results like Theorem 11.3
to coefficients that are just integrable with respect to t. More generally, one
may also weaken the condition that f is Lipschitz continuous with respect to y.
One line of such results takes f to be continuous but not necessarily Lipschitz
continuous, which is enough to guarantee existence of a solution at least locally,
on some interval [0, δ ] with δ > 0; this is the Peano existence theorem. The
solution need not be unique, however. A standard example is equation (3.16),
y′ = y1/2, and here is another example, taken from Ince’s Ordinary Differential
Equations :

y′ = f(t, y), f(t, y) =

⎧⎨
⎩

0, t = y = 0,

4t3y

y2 + t4
otherwise.

(11.9)

The function f is continuous with respect to t and y for all t and y, and away
from the point t = y = 0 it is (locally) Lipschitz continuous with respect to y,
ensuring existence and uniqueness of solutions so long as they stay away from
this point and ±∞. Here is a display of some such solutions.

N = chebop(0,1); N.op = @(t,y) diff(y) - 4*t^3*y/(y^2+t^4);

for y0 = [-1.4:.2:-.2 .2:.2:1.4]

N.lbc = y0; y = N\0; plot(y), hold on

end
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The interesting matter is what happens with solutions that do touch the point
t = y = 0. We can quickly spot three such solutions, y(t) = −t2, y(t) = 0, and
y(t) = t2. We add dashed black curves for −t2 and t2 to the figure.

t = chebfun('t',[0,1]); plot([t^2 -t^2],'--')
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Between these two black curves, there is a continuum of solutions, all passing
through the point t = y = 0. We compute some numerically by marching
backwards from t = 1 to t = 0.01, plotting the results in orange.

N.domain = [.01 1]; N.lbc = [];

for y0 = [-.85:.17:.85]

N.rbc = y0; y = N\0; plot(y)

end

plot([t^2 -t^2],'--')
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Actually, this problem has an analytic solution. For any c, the function

y(t) = c2 − (t4 + c4)1/2 (11.10)

satisfies (11.9) and takes the value y(0) = 0. The negative of (11.10) is also a
solution.

In an image like Figure 11.7, nonuniqueness takes the form of multiple solu-
tions emanating from a single point t and y(t). It is interesting to consider the
same effect in reverse time, solving the same ODE, for example, from t = 1 to
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t = 0, as we discussed for the “leaky bucket” problem of Chapter 3. (We also
reversed time to generate Figure 11.7.) Here, we see multiple trajectories that
coalesce — not just approximately but exactly. In an ODE problem driven by a
Lipschitz continuous function f , two distinct solutions can never coalesce, so in
some sense information about the initial condition can never be completely lost.
Non-Lipschitz problems like the leaky bucket viewed backward in time, however,
are different. One might say that the adjoint of nonuniqueness is extinction.

Application: designer nonuniqueness

From examples like (3.16) and (11.9), one may get the impression that
nonuniqueness is elusive, to be found only if one knows how to look in just the
right hiding places. In fact, generating nonunique solutions is as easy at sketch-
ing curves on a sheet of paper, and Figure 11.7 shows us the sort of curves that
are needed. Take this diagram of functions a(sin(πt))2 with −1 ≤ a ≤ 1, for
example.

t = chebfun('t',[-2,2]);

for a = -1:.2:1

y = a*sin(pi*t)^2; plot(y), hold on

end
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Each of these curves y(t) is smooth, with a well-defined derivative at each point,
which we may call f(t, y). So the curves are solutions of y′(t) = f(t, y) for this
choice of f . Yet the trajectory emanating from t = 0, y = 0 is obviously
nonunique, as is the trajectory emanating from t = k, y = 0 for any integer k.

In the figure, suppose we imagine that trajectories have been specified as
indicated for each value a ∈ [−1, 1]. If the ODE is to be defined for all t and y,
we need to fill in the regions above the top curve and below the bottom one.
This can be done in any number of ways, and here is one of them, based on
functions ±[b+ (sin(πt))2] with b > 1.

for b = .2:.2:1

y = b + sin(pi*t)^2; plot([y; -y])

end
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If b is regarded as taking all values 1 < b < ∞, then we have completed a speci-
fication of a function f(t, y) that is continuous with respect to both variables for
all t and y. Since it has nonunique trajectories through certain points, it cannot
possibly be Lipschitz continuous with respect to y. And indeed it is not, at least
when t ranges over any interval that includes one of the integers (Exercise 11.6).

Once we start sketching trajectories in the plane, we can see that all kinds
of effects are possible. Here is a function pinch that has the effect of “pinching”
a square of diameter 2d centered at (t0, y0) so as to introduce nonuniqueness at
this point.

pinch = @(t,y,t0,y0,d) y - (abs(y-y0)<d).*(abs(t-t0)<d).* ...

cos(pi*(t-t0)/(2*d)).^2.*sign(y-y0).*(d/2-abs(abs(y-y0)-d/2));

Rather than talk through the algebra, we visualize the effect of applying
pinch(t,y,0,0,1) to a set of horizontal trajectories:

t = linspace(-2,2,200)';

for ys = -2:.05:2

y = ys + 0*t; y = pinch(t,y,0,0,1); plot(t,y), hold on

end
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By pinching the plane at the middle point, we have introduced nonuniqueness
there. With a few more pinches we can introduce more points of nonuniqueness.

for ys = -2:.05:2

y = ys + 0*t;

y = pinch(t,y,0,0,1);

y = pinch(t,y,1.3,1.3,.5); y = pinch(t,y,-1.3,-1.3,.5);

y = pinch(t,y,1,-1,.3); y = pinch(t,y,-1,1,.3);

plot(t,y), hold on

end
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In a paper published in 1963, based on an earlier publication by Lavrentieff
in 1925, P. Hartman took this idea to a fascinating limit with a fractal flavor
(“A differential equation with non-unique solutions,” American Mathematical
Monthly). By introducing infinitely many pinches on successively smaller scales,
he showed that one can construct a flow field with pinch points falling arbitrarily
close to every value (t, y). This implies a remarkable consequence: there is an
ODE y′ = f(t, y) with the property that, for every choice of initial point (t0, y0),
the equation has more than one solution on every interval [t0, t0 + ε].

History. Theorem 11.2 is often called the Picard–Lindelöf theorem, follow-
ing publications by Picard in 1890 and Lindelöf in 1894; another landmark was
Goursat’s Cours d’analyse mathématique of 1908. It is also called the Cauchy–
Lipschitz theorem, and an early publication was by Liouville in 1838. Peano’s
local existence theorem, without the Lipschitz requirement or the assertion of
uniqueness, appeared in 1890 and was elaborated in his Traité d’Analyse, though
the idea of successive substitution is much older. Banach’s fixed-point theorem
appeared in 1922, and Carathéodory in 1927 published one of the first local
existence theorems for ODEs defined by discontinuous coefficient functions f .

Our favorite reference. Discontinuous right-hand sides are ubiquitous
in applications, and their dynamical consequences are explored in di Bernardo,
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Budd, Champneys, and Kowalczyk, Piecewise-smooth Dynamical Systems: The-
ory and Applications, Springer, 2008.

Summary of Chapter 11. The fundamental existence theorem of ODEs
asserts that an ODE y′ = f(t,y) subject to initial data y(0) = y0 has a
unique solution for all t if f is continuous with respect to t and Lipschitz
continuous with respect to y. This result applies to systems as well as
scalars and thus covers higher-order ODEs too if appropriate conditions
are specified on derivatives. Both existence and uniqueness can fail if f is
merely continuous with respect to y, though existence still holds locally.

Exercise 11.1. Cleve Moler’s favorite ODE. Consider the IVP (y′)2+y2 = 1, y(0) = 0
with the additional constraint −1 ≤ y ≤ 1. (a) Show that there are exactly two
solutions for t ∈ [0, 1] and state formulas for them. (b) Show that there are infinitely
many solutions for t ∈ [0, 2].

Exercise 11.2. From an integral equation to an IVP. Convert the integral equation
y(t) = et+4

∫ t

0
(t−s)y(s)ds to an ODE IVP (including the initial condition). Determine

the solution analytically.

Exercise 11.3. Differentiability and Lipschitz continuity. Prove that if a function
f(t, y) has a uniformly bounded derivative |∂f/∂y| for all t and y, then it is Lipschitz
continuous.

Exercise 11.4. Value of m for our example. For the example (11.5) of the opening
pages of this chapter, the Picard iteration converges over the whole interval [0, 8].
However, our proof of Theorem 11.1 subdivides the interval into m subintervals. For
this example, what is the smallest allowed number m?

Exercise 11.5. A first-order two-point BVP. (a) Sketch the solution curves of y′ =
|y|1/2 in the (t, y) plane. How do nonuniqueness and extinction effects appear in this
plot? (b) Suppose y(0) = −1 and y(6) = 1. There exists a unique solution for
t ∈ [0, 6] for these data (an unusual situation in that this is a first-order equation with
two boundary conditions!). Determine this solution analytically.

Exercise 11.6. Figure 11.9. (a) Verify that the function f described by Figure 11.9 is
not Lipschitz continuous. (b) Exactly how many solutions are there on [−2, 2] to the
ODE described by this figure that satisfy |y(t)| = 1 for t = −1.5,−0.5, 0.5, 1.5?

Exercise 11.7. Nonsmooth f . In the text it was mentioned that the estimates (11.6)
apply even if f is not smooth. Verify this experimentally by reproducing Figure 11.4
with f changed to (a) sin(y) + sign(sin(50t)) and (b) | sin(10y)|+ sin(t). It is enough
to work with the time interval [0, 1].

Exercise 11.8. A growing exponent. A function y(t) is continuously differentiable,
nonnegative, and unbounded for t ∈ (0, 4), where it satisfies y′ = yt. For what
subinterval of (0, 4) is y identically zero? (Hint. Try integrating backward in time
from t = 4 to t = 1 with a boundary condition y(4) = 4 or 8.)
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12. Random functions and random ODEs

One of the most fascinating themes in the mathematical sciences, whose impor-
tance is growing every year, is randomness. In this chapter we say a word about
how randomness plays into the subject of ODEs.

To begin the discussion, here are two examples of random functions produced
by the Chebfun randnfun command.

rng(1), lam1 = 1; lam2 = 0.1; dom = [0 10];

f1 = randnfun(lam1,dom); subplot(2,1,1), plot(f1)

f2 = randnfun(lam2,dom); subplot(2,1,2), plot(f2)
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-5

0

5
Fig. 12.1. Random functions with length scales λ = 1 and 0.1
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At the end of the chapter we will explain the precise mathematical definition,
but for the moment the main thing to note is that these are smooth functions
defined on a prescribed interval and with a prescribed length scale λ. The first
function, with λ = 1, has a typical distance on the order of 1 between maxima,

141
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whereas the second, with λ = 0.1, wiggles ten times as fast. The vertical
scales are the same, and in fact, at each fixed point t, each function produced
by randnfun takes values corresponding to samples from the standard normal
distribution N(0, 1), with mean 0 and variance 1.

Like so many commands in Chebfun, randnfun provides a continuous ana-
logue of a familiar discrete object. In MATLAB, randn(n,1) generates an
n-vector of random entries from N(0, 1). Similarly randnfun(lam,[a,b]) pro-
duces a smooth random function of typical wavelength λ on the interval [a, b].

As our first random ODE problem, let us consider the simplest ODE IVP of
all,

y′(t) = f(t), y(0) = 0, (12.1)

whose solution is just the indefinite integral of f ,

y(t) =

∫ t

0

f(s)ds. (12.2)

If we take f to be the two functions plotted above, we get these results. We call
a curve like these a smooth random walk.

y1 = cumsum(f1); subplot(2,1,1), plot(y1)

y2 = cumsum(f2); subplot(2,1,2), plot(y2)
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Fig. 12.2. Their indefinite integrals: smooth random walks
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Note that the first curve has a larger amplitude than the second. The reason
for this is a familiar matter of statistics associated with cancellation of random
signs. These indefinite integrals are essentially the average value of the integrand
(times 10, when we reach t = 10), and, according to the law of large numbers,
this average converges to 0 as the number of samples approaches ∞, which in
our context means as λ approaches zero. Moreover, the convergence will be in
proportion to λ1/2. So in fact our second curve should be expected to be on the
order of

√
10 times smaller than the first. To eliminate this dependence on λ we

can renormalize f by dividing it by λ1/2, and in Chebfun this (approximately)
is what is done if randnfun is called with the 'big' flag. From now on we will
always use 'big'.

Here are three smooth random walks with λ = 0.1.
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lam = 0.1;

for k = 1:3

f = randnfun(lam,dom,'big');

y = cumsum(f); subplot(1,3,k), plot(y)

end
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Fig. 12.3. Smooth random walks with λ = 0.1
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Here are three smooth random walks with λ = 0.01.

lam = 0.01;

for k = 1:3

f = randnfun(lam,dom,'big');

y = cumsum(f); subplot(1,3,k), plot(y)

end
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Fig. 12.4. Smooth random walks with λ = 0.01
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The sample paths we have shown in Figs. 12.2–12.4 are smooth, but as
λ → 0, the smoothness goes away. In this limit we get the precisely defined
mathematical notion of Brownian motion, where the sample paths are contin-
uous but not smooth. A Brownian motion trajectory is also called a Wiener
path, and probabilists say that a Wiener path is a sample from the Wiener pro-
cess. We can show the convergence as λ → 0 by superimposing three paths for
successively smaller values of λ, all based on the same random number seed set
by MATLAB’s rng command.49

49In MATLAB as in other programming languages, successive calls to randn give new
random numbers, but one can reinitialize the sequence for repeatability with the command
rng(k), where k is a fixed integer. Chebfun’s randnfun works the same way. This feature has
been crucial for us in writing this chapter, since we need reproducible random curves if we are
to comment on their particular features.
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for lam = [1 1/4 1/16]

rng(3), f = randnfun(lam,dom,'big');

y = cumsum(f); plot(y), hold on

end
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Fig. 12.5. Convergence to a Brownian path as λ → 0

Here is a smooth random walk over a longer time scale, up to t = 500. Note
that the maximal amplitude is a bigger than before, and yet the trajectory
comes back repeatedly to zero — whereupon, of course, it “starts over.” In an
infinitely long trajectory, the path will cross zero infinitely often, and yet the
amplitudes will grow.50 Probability theory is full of such paradoxes.

lam = 0.1; rng(1)

f = randnfun(lam,[0 500],'big');

y = cumsum(f); plot(y)
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Fig. 12.6. Smooth random walk over a larger time interval

Here are n = 10 smooth random walks up to t = 100, together with their
mean, shown as a thicker curve in black. As the sample size n approaches ∞,
the mean will approach the function ϕ(t) that is the expected value of f(t) at
each point t. For this simple example, ϕ(t) = 0.

lam = 0.1; F = randnfun(lam,[0 100],10,'big'); Y = cumsum(F);

plot(Y), hold on, plot(mean(Y,2))

50Statements like this hold “with probability 1” or “almost surely.” In principle a Brownian
path could be any function at all, and thus, for example, might remain bounded by 1 forever,
or even identically zero, but the probability of such events will be zero. With probability 1, a
Brownian path is everywhere continuous and nowhere differentiable.
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Fig. 12.7. Ten smooth random walks and their mean

For a second random ODE problem, let us consider an indefinite integral as
before, but now a system of equations in two variables y1 and y2,

y′1(t) = f1(t), y′2 = f2(t), y1(0) = y2(0) = 0, (12.3)

where f1 and f2 are independent random functions, normalized again by division
by O(λ1/2). The two variables are uncoupled, so in a sense there is nothing new
here. On the other hand, the trajectories now take the interesting form of two-
dimensional smooth random walks, which in the limit λ → 0 would become 2D
Brownian motion. Here are two sample paths with λ = 0.1 on [0, 10].

rng(2)

for k = 1:2

f1 = randnfun(lam,dom,'big')/sqrt(2); y1 = cumsum(f1);

f2 = randnfun(lam,dom,'big')/sqrt(2); y2 = cumsum(f2);

subplot(1,2,k), plot(y1,y2)

end
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Fig. 12.8. 2D smooth random walks to t = 10
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Following our usual trick in 2D, we could equally well have generated these
images using a single complex random function instead of two real ones:

for k = 1:2

f = randnfun(lam,dom,'big','complex');

y = cumsum(f); subplot(1,2,k), plot(y)

end
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Fig. 12.9. 2D smooth random walks via complex arithmetic
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These trajectories look different, but only because we have rolled the dice again.
Beneath the superficial distinction of complex scalars vs. real 2-vectors, these
are independent sample paths from the same distribution.

Our random ODEs so far have been trivial, just indefinite integrals. Let
us explore some more substantial examples, which will give an idea of some of
the fascination of the field of stochastic differential equations (SDEs). In
all of the next six figures, f is a smooth random function of some small fixed
time scale and amplitude on the interval [0, 5]. In each case several sample
trajectories are plotted.

First we look at an equation featuring additive noise,

y′ = y + f, y(0) = 0. (12.4)

Without f , the solution would be y(t) = 0, but the noise term breaks this sym-
metry. At first, so long as |y| is small, trajectories look like random walks, with
signs varying from + to −, but as |y| gets larger the exponential element over-
whelms the random one, and a path shoots off to −∞ or ∞ with probability 1.
By symmetry, it is clear that both fates are equally likely.

rng(0), lam = 0.1; dom = [0 5];

L = chebop(dom); L.op = @(y) diff(y) - y; L.lbc = 0;

for k = 1:6

f = randnfun(lam,dom,'big');

y = L\f; plot(y), hold on

end
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Fig. 12.11. Six solutions to (12.4): unstable
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On a larger vertical scale the same curves look simply like exponentials.
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Fig. 12.11. The same paths on a larger scale

Next, we reverse the sign in (12.4) and consider

y′ = −y + f, y(0) = 0. (12.5)

Now the process is stable, showing random oscillations about 0 that remain
bounded as t increases.

L.op = @(y) diff(y) + y; L.lbc = 0;

for k = 1:6

f = randnfun(lam,dom,'big');

y = L\f; plot(y), hold on

end
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Fig. 12.12. Six solutions to (12.5): stable

Now let us change (12.4) into an equation with multiplicative noise,

y′ = fy, y(0) = 1, (12.6)

where f is again random. We find that the amplitudes of the solutions of this
new equation vary widely.

dom = [0 5]; rng(1), L = chebop(dom); L.lbc = 1;

for k = 1:6

f = randnfun(lam,dom,'big'); L.op = @(t,y) diff(y) - f*y;

y = L\0; plot(y), hold on

end
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Fig. 12.13. Solutions to (12.6): smooth geometric Brownian motion

The greatly differing amplitudes may seem surprising at first, but in fact (12.6)
is nothing more than the exponential of (12.1). We can verify this by rewriting
(12.6) as y′/y = f , that is,

(log y)′ = f, log y(0) = 0. (12.7)

So for any given f , the solution y of (12.6) is the exponential of the solution y
of (12.1).

Equations (12.5) and (12.6) are first-order linear equations of type FLAShI
and FLaSHI, respectively. Of course, equations involving ay′′ + by′ + cy as in
(7.10) in which the coefficients a, b, c all vary with t can also be considered, as
can nonlinear equations. Let us consider a nonlinear example with a bistable
flavor. Without the random term f , the equation

y′ = y − y3 + f (12.8)

would have stable fixed points y = ±1. Taking 20 trajectories from the initial
value y = 0, and putting the amplitude scale of f at 0.2, we find that about
half end up oscillating about each of these values. By symmetry, the positive
and negative behaviors must be must be equally likely. (These fates are not
permanent. Since Gaussians take arbitrarily large values, though rarely, further
sign flips will happen with probability 1 for sufficiently large values of t.)

N = chebop(dom); rng(0)

N.lbc = 0; N.op = @(t,y) diff(y) - y + y^3;

for k = 1:20

f = 0.2*randnfun(lam,dom,'big');

y = N\f; plot(y), hold on

end
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Fig. 12.14. Random switching in the nonlinear equation (12.8)

On the other hand, suppose we bias the switch slightly by taking the initial
value y(0) = 0.20. Both positive and negative fates are again possible, but
among twenty test trajectories, just two now go negative.

N.lbc = 0.2;

for k = 1:20

f = 0.2*randnfun(lam,dom,'big');

y = N\f; plot(y), hold on

end
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Fig. 12.15. Random switching with a positive initial condition

We promised at the beginning to explain the definition of the smooth random
functions delivered by randnfun. The essential idea here is the use of finite
Fourier series with normally distributed random coefficients all of equal variance.
We start from the notion of a periodic function on the interval [0, L], defined
by a Fourier series

f(t) = a0 +
√
2

m∑
k=1

[
ak cos

(
2πkt

L

)
+ bk sin

(
2πkt

L

)]
, (12.9)

where each ak and bk is an independent sample from the N(0, 1/(2m + 1))
distribution, i.e., with mean 0 and variance 1/(2m + 1). The space scale λ
is fixed by setting m to be the largest integer ≤ L/λ. In the “big” mode as
specified in Chebfun by the 'big' flag, we have the same formula but with ak
and bk coming from a distribution whose variance does not diminish as m → ∞
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for fixed L. Such a series almost surely does not converge as m → ∞, but its
integrals almost surely do, such as the indefinite integral

∫ t

f(s)ds = a0 t+
L√
2π

m∑
k=1

k−1

[
ak sin

(
2πkt

L

)
− bk cos

(
2πkt

L

)]
. (12.10)

Random infinite series of the form (12.10) go back to Paley, Wiener, and Zyg-
mund in the 1920s and 1930s, and both (12.9) and (12.10) could be called finite
Fourier–Wiener series. To generate a nonperiodic random function, randnfun
first constructs a periodic one on a larger interval and then restricts it to the
interval prescribed.

Without fully describing any of the mathematics, let us at least mention some
of the terminology that appears when our smooth random ODEs are related to
SDEs via the limit λ → 0. A random function f is a sample from a certain
Gaussian process dependent on the parameter λ. Suppose we write an ODE
involving f in the form

y′(t) = μ(t, y(t)) + σ(t, y(t))f(t) (12.11)

for some functions μ and σ. As λ → 0, this ODE approaches an SDE that
would normally be written as

dXt = μ(t,Xt)dt+ σ(t,Xt) ◦ dWt. (12.12)

The two terms on the right are sometimes labeled drift and diffusion (or volatil-
ity), respectively. If μ is of the form of a constant times Xt and σ is a constant,
as in (12.4) and (12.5), the SDE is a Langevin equation, and its solution is the
Ornstein–Uhlenbeck process. If μ and σ are both of the form of a constant
times Xt, as in (12.6), we have the SDE of geometric Brownian motion.
The small circle in (12.12) indicates that this is an SDE of Stratonovich type.
The alternative of an Itô SDE has a different definition and the notation

dXt = μ̃(t,Xt)dt+ σ(t,Xt)dWt. (12.13)

We have changed μ to μ̃ because although (12.12) and (12.13) have different
meanings, they define the same stochastic process provided μ̃ and μ are related
by

μ̃(t,Xt) = μ(t,Xt) +
1

2
σ(t,Xt)

∂σ

∂x
(t,Xt). (12.14)

Details of the usual formulations of Itô and Stratonovich calculus can be found
in many books of stochastic analysis. Results about the convergence of ran-
dom ODEs to SDEs stem from two papers by E. Wong and M. Zakai in 1966;
see also Sussmann, “On the gap between deterministic and stochastic ordinary
differential equations,” The Annals of Probability, 1978.
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Application: metastability, radioactivity, and tunneling

Many systems in physics, chemistry, biology, and social sciences have what
are known as metastable states, which means, states that may appear stable for
a long time but then suddenly undergo a transition. Examples include financial
bubbles, supercooled liquids, and radioactive nuclei. Often the effect can be
explained by noting that there is a stable fixed point of a noise-free system, but
when noise is present it eventually kicks the system out of the stable state.

We can illustrate the effect with the IVP

y′ = y3 − y + εf(t), y(0) = 0, (12.15)

where f is a smooth random function and ε is a noise amplitude parameter.
(Note that the signs are opposite to those in (12.8).) Here are three solutions
for t ∈ [0, 100] with ε = 0.35. In the absence of the noise term, y = 0 is a
stable fixed point and y = ±1 are unstable fixed points. When noise is added,
however, the stable state will eventually be left behind.

lam = 1; rng(11)

N = chebop(0,100); N.op = @(y) diff(y) - y^3 + y; N.lbc = 0;

N.maxnorm = 10; ep = 0.35;

f1000 = randnfun(lam,[0 1000],'big',3); f = f1000{0,100};

for k = 1:3

y = N\(ep*f(:,k)); plot(y), hold on

end
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2
Fig. 12.16. Metastability for (12.15) with ε = 0.35

Note that each trajectory stays near the stable state for a while, and then
at some moment escapes. We cannot predict the precise moment of escape,
though it would appear that, for this example, it happens on a time scale in the
range 10–100. To put it another way, the half-life of the system is evidently in
this range, where the half-life is defined (as in the Application of Chapter 2) as
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the expected time t1/2 by which the probability of escape has risen to 1/2. A

related notion is that of a mean exit time.51

Intuitively speaking, a system will escape from a metastable state when the
random fluctuations, by chance, happen to deviate by an exceptionally large
amount from their usual state. The mathematical theory of large deviations is
used to analyze such effects. One phenomenon one finds in this subject is that
a small change in a parameter may have a large effect on the lifetime. Here,
for example, we reduce ε from 0.35 to 0.30 and find that none of the three
trajectories escapes.

ep = 0.30;

for k = 1:3

y = N\(ep*f(:,k)); plot(y), hold on

end
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Fig. 12.17. Reduction to ε = 0.3

Eventually, trajectories will still escape, as we can see if we show results over
all of t ∈ [0, 1000].

N.domain = [0 1000];

for k = 1:3

y = N\(ep*f1000(:,k)); plot(y), hold on

end
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Fig. 12.18. A longer time interval with ε = 0.3

51For such definitions to be mathematically precise, they must be based on a precise defi-
nition of when a particle has escaped. The definition implicit in the N.maxnorm setting of our
Chebfun code is that a particle escapes when |y| reaches the value 10.
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Thanks to the power of exponentials, half-lives of radioactive isotopes have
been estimated ranging over more than 50 orders of magnitude, from less than
10−24 seconds to more than 1022 years. Three famous examples are uranium-
238, with a half-life of 4.5 billion years, uranium-235 at 700 million years,
and carbon-14 at 5700 years. In quantum physics the process of decay from
a metastable state is called tunneling.

History. The approach to stochastic differential equations taken in this
chapter, via smooth random functions, is nonstandard. After foundational
works of Bachelier (1900), Einstein (1905 and 1906), Smoluchowski (1906),
Langevin (1906), and Perrin (1909), it became usual at least among mathe-
maticians since the work of Wiener (1923) to regard randomness as intrinsically
nonsmooth, involving independent, instantaneous noise increments injected at
each instant of time. An advantage of this point of view is that it is mathe-
matically beautiful and just right as an idealization, even if the physical world
does not contain elements on all scales down to infinitesimal. A disadvantage
is that it is mathematically advanced, so that any discussion of randomness is
faced with technical challenges of measure theory and functional analysis (or an
apology for their omission) from page 1. Indeed, one cannot even write SDEs in
the usual form y′(t) = f(t, y), since y′ does not exist — it would represent white
noise, which to be truly white must have infinite amplitude. Therefore new no-
tations as in eqs. (12.12) and (12.13) are used instead. Along with new notation
go new theories of SDEs above and beyond the usual theory of determinis-
tic ODEs (Itô, Stratonovich), and these in turn must be solved by numerical
methods above and beyond the usual ones (Euler–Maruyama, Milstein, . . .).

Our favorite reference. Jean-Pierre Kahane (1926–2017) was an ex-
pert in Taylor and Fourier series with random coefficients. As our favorite
reference, we would like to highlight his review paper “A century of interplay
between Taylor series, Fourier series, and Brownian motion,” Bulletin of the
London Mathematical Society 29 (1997), pp. 257–279. The opening pages tell
the fascinating story of how an infinite Taylor series with random coefficients
from N(0, 1), for example, defines an analytic function in the open complex unit
disk |z| < 1 and hence a smooth function of θ for z = reiθ for any r < 1 (see
Exercise 12.2). As r → 1, such functions approach white noise.

Summary of Chapter 12. Smooth random functions with specified
length scale λ can be defined via finite Fourier series with random coeffi-
cients. Integrals of such functions give smooth random walks, and random
ODEs can incorporate such functions either as forcing terms or as coeffi-
cients. As λ → 0, smooth random ODEs approach stochastic differential
equations (SDEs) of the Stratonovich variety.

Exercise 12.1. Tracking a random signal. Let f be the function on [0, 50] defined by
rng(0), randnfun(1,[0,50]), and consider the IVP y′ = −a(y(t) − f(t)), y(0) = 0,
where a > 0 is a constant. Plot f together with the solutions y for a = 0.1, 1, and 10
and discuss the results. Intuitively speaking, what is happening here?
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Exercise 12.2. Random and lacunary Taylor series. (a) Define f(z) =
∑n

k=0
ckz

k,
where c0, . . . , cn are independent random samples from N(0, 1), with n chosen big
enough so that it is equivalent to ∞ to plotting accuracy. For a particular choice of
random coefficients, plot Re(f(z)) as a function of θ for z = reiθ with r = 0.5, 0.9, 0.99.
(b) Another way to generate an analytic function in the unit disk with a natural
boundary on the unit circle is by means of a lacunary series (i.e., one with long gaps),
an idea going back to Weierstrass. Make the same plots as in (a) but now with cj = 1
when j is a power of 2 and cj = 0 otherwise.

Exercise 12.3. Unbounded variation of a Brownian path. White noise has unbounded
1-norm with probability 1; so its integral, Brownian motion, has unbounded variation.
Make a log-log plot of the 1-norms of big smooth random functions on [−1, 1] as a
function of wavelength parameter λ for λ = 1, 1/2, . . . , 1/256. What rate of increase
do you see as a function of λ?

Exercise 12.4. Cumulative maximum of a Brownian path. Plot four smooth random
walks with λ = 0.1 on [0, 50] together with their cumulative maxima calculated with
cummax(f). Describe qualitatively what you see.

Exercise 12.5. Roots of a Brownian path. Calculate smooth random walks on [0, 50]
for λ = 16, 8, 4, . . . , 1/16, initializing the random number seed with rng(1) in each
case. Plot each function and calculate its roots. Describe qualitatively how the sets
of roots behave as λ → 0. Find a way to show this graphically. (With probability 1,
the zero set of a Brownian path is an uncountably infinite closed set with no isolated
points and fractal dimension 1/2. For this and many other properties of Brownian
paths, see Mörters and Peres, Brownian Motion, Cambridge, 2010.)

Exercise 12.6. Winding number of a Brownian path. (a) Construct ten complex
smooth random walks starting from z = 1 rather than z = 0 for t ∈ [0, 100] with
λ = 0.1. How many of the paths complete a circuit 360◦ around the origin at some
point of the trajectory? (Use the Chebfun angle command.) It can be shown that,
with probability 1, a Brownian path will wind around the origin infinitely often as
t → ∞, yet the expected time for each circuit is ∞. (b) The expected time for the
path to reach an angle of 30◦ from the positive axis, however, is finite. Estimate it
numerically to 1 or 2 digits of accuracy.
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Having just considered functions that are truly random, at least in principle,
we now turn to the celebrated phenomenon of solutions of ODEs that “look
random” even though they are not. Besides this property, two other hallmarks
of chaos are sensitive dependence on initial conditions and strange attractors. In
this chapter we explore these notions, connecting them with the number known
as the Lyapunov exponent.

We begin with the Lorenz equations as given in equation (10.7),

u′ = 10(v − u), v′ = u(28− w) − v, w′ = uv − (8/3)w. (13.1)

In Figure 10.11 we plotted the trajectory for t ∈ [0, 30] emanating from the
initial data

u(0) = v(0) = −15, w(0) = 20. (13.2)

Here is an image of this trajectory in phase space, seen from the angle that
amounts to a projection onto the u–w plane.

N = chebop(0,30); N.lbc = [-15; -15; 20];

N.op = @(t,u,v,w) [diff(u)-10*(v-u); ...

diff(v)-u*(28-w)+v; diff(w)-u*v+(8/3)*w];

[u,v,w] = N\0; plot(u,w)

c = 6*sqrt(2); hold on, plot([0 c -c],[0 27 27],'.')
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This image reveals the famous “butterfly” structure of the strange attractor
for the Lorenz equations.52 What it means to be a strange attractor is that
typical orbits rapidly approach this set, which is not a simple curve or surface
but has the form of a fractal. For the Lorenz equations, the fractal dimension
is approximately 2.06, so the butterfly is just a little bit thicker than a two-
dimensional manifold.53

Now let us look at dependence on initial conditions. Here the function
v(t) just computed is plotted in green, as in Chapter 10. In addition, another
function ṽ(t) is plotted in red that arises from the very slightly perturbed initial
data

u(0) = v(0) = −15, w(0) = 20.00001. (13.3)

N.lbc = [-15; -15; 20.00001]; [u2,v2,w2] = N\0;

plot(v2), hold on, plot(v)
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The two initial conditions differ by less than one part in 106, so one would
expect v and ṽ to be close to one another, and for about 13 time units, so
they are. But throughout that time, the trajectories are steadily (on average)
separating, and eventually the differences are of size O(1) and the functions

52Not to be confused with the butterfly effect that also originates with Lorenz (not his
famous 1963 paper, but a later one from 1969). If a butterfly flaps its wings in the Amazon,
thanks to sensitive dependence of the earth’s weather on initial conditions, might that cause
a hurricane in Texas?

53The fractal dimension of a set is a precisely defined mathematical quantity that may take
any nonnegative real value, not just an integer.
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become completely uncoupled. An initial difference of size 10−5 has grown by
six orders of magnitude in 15 time units.

Everything in this problem is smooth, differentiable, and indeed analytic.
For example, the derivative of the value v(30) with respect to the third initial
condition w(0) is a perfectly well-defined number — it is just that it is a very
big one! Here is an approximation to the derivative of v(5) with respect to w(0):

(v2(5)-v(5))/(w2(0)-w(0))

ans = -30.9180

Here is the analogous approximation to the derivative of v(10) with respect to
w(0):

(v2(10)-v(10))/(w2(0)-w(0))

ans = 7.6882e+04

Note that these numbers are rapidly growing with t. If we compute the corre-
sponding finite difference at t = 30, we get

(v2(30)-v(30))/(w2(0)-w(0))

ans = 2.5687e+06

but this greatly underestimates the actual derivative of v(30) with respect to
w(0), which is on the order of 1013. We can explain the underestimation by
noting that the initial perturbation by 0.00001 is not nearly small enough to
grow by 13 orders of magnitude before reaching size O(1), at which point it
stops growing.

To see more of this effect, it is interesting to plot ‖ỹ(t)−y(t)‖ on a log scale,
where y and ỹ are the 3-component vector solutions resulting from the original
and the perturbed initial conditions. (The norm ‖ · ‖ we use is the square root
of the sum of the squares of the components u(t), v(t), w(t).) Here is such a
plot, and it reveals two distinct regimes. For t < 15, the perturbations grow
exponentially. For t > 15, they reach size O(1) (numbers roughly in the range
10–100) and stop growing.

tt = linspace(0,30,400);

err = sqrt((u2(tt)-u(tt)).^2+(v2(tt)-v(tt)).^2+(w2(tt)-w(tt)).^2);

semilogy(tt,err)
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The growth rate of this initial phase is known as the Lyapunov exponent, λ,
for this ODE. We can approximate it by a least-squares fit to the data for
t ∈ [0, 15].

ii = find(tt<=15);

c = polyfit(tt(ii),log(err(ii)),1); e0 = c(2); lam = c(1)

lam = 0.9052

The significance of this number is that, approximately speaking, perturbations
in the Lorenz trajectories typically grow at the rate

‖ỹ(t)− y(t)‖ ≈ Ce0.91t.

We can plot this fit to the data as a dashed line.

hold on, semilogy([0 18],exp(e0+lam*[0 18]),'--')
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In this experiment, we started from a finite perturbation, which grew expo-
nentially over a finite time span. The mathematical definition of a Lyapunov
exponent is based on infinitesimal perturbations, which may grow forever. To
be precise, λ is defined by this formula, involving a supremum over all initial
perturbations δy(0):

λ = lim
t→∞ lim sup

‖δy(0)‖→0

t−1 log
‖δy(t)‖
‖δy(0)‖ . (13.4)

In principle this number might vary from one initial point y(0) to another, in
which case one would typically be interested in the supremum over all y(0).54

The Lyapunov exponent for the Lorenz equations is known to be about
0.9056. By chance, our experiment has matched this number more closely than
should really be expected, statistically speaking (see Exercise 13.1).

54A further complication is that what we have called the Lyapunov exponent should more
properly be termed the maximal Lyapunov exponent. For an n-dimensional dynamical system,
imagine initial conditions in the form of an infinitesimal spherical cloud or blob centered at a
point y(0). As t → ∞, the blob will elongate and compress into an ellipsoid, with the lengths
of the axes of the ellipsoid growing or decaying at different exponential rates on average
as t → ∞ in a manner that can be made precise by the tool known as the singular value
decomposition. These growth and decay rates are the Lyapunov exponents of the system.
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The article that launched the study of chaos was published by Edward Lorenz
in 1963 with the title “Deterministic nonperiodic flow,” and is one of the most
important scientific publications of the 20th century.55 The fact that it took
until after 1963 for the phenomenon to be widely recognized can be attributed to
the invention of computers. Chaos is not an unusual behavior at all in nonlinear
systems of ODEs, but it could not be easily seen in the closed form solutions
that were available in the days of hand calculation.

The historical side of our next example is particularly interesting. Among
the most important ODEs of all scientifically are the equations of the n-body
problem, by which we mean the equations that govern the trajectories of n
point masses attracting each other gravitationally and moving according to New-
ton’s laws. In its simplest form this is a set of 3n ODEs of second order: for
each body, there are three spatial coordinates, and the differential equations
express the fact that the acceleration of each body is equal to the sum of the
inverse-square attractions to the others. For problems confined to a plane, the
count reduces to 2n variables, an x and a y coordinate for each body. We are
going to look at such a problem, and for convenience we will employ our usual
trick of encoding x and y as a complex variable z = x + iy, as first introduced
in Chapter 3. This brings us to a second-order system of ODEs in n complex
unknowns:

z′′j = −
∑
i	=j

zj − zi
|zj − zi|3 , 1 ≤ j ≤ n. (13.5)

The analytic solution to the 2-body problem goes back to Kepler and Newton,
and it involves stable ellipses (as in Exercise 4.1). But there is no analytic
solution for the 3-body problem, let alone for the n-body problem with n > 3.

For a long time, mathematicians and physicists have asked, is our solar sys-
tem stable? Might its regular orbits one day break down? This problem proved
theoretically intractable but has led to a great deal of important mathematics
along the way. Even today, after extensive computational investigations, there
is some controversy over whether or not the solar system is stable or chaotic,
but the difficulty of this question is a result of a special circumstance: the mass
of the sun is much greater than that of the planets, and acts as a strong reg-
ulating influence. The sun’s mass is so dominant that, to first approximation,
each planet’s orbit is just the solution of a 2-body problem involving itself and
the sun. By contrast, if you look at the trajectories of n attracting bodies of
equal masses in the absence of a heavy sun to act as a policeman, chaos is the
rule. Before computers, nobody could look at such trajectories.

The idealized configuration we shall examine consists of three planets in a
plane with no sun, initially positioned with zero velocity at the vertices of a
3-4-5 right triangle. The following commands compute the orbits up to t = 150.

u0 = 0; v0 = 3; w0 = 4i; N = chebop(0,150);

N.op = @(t,u,v,w) [ ...

55The term “chaos” came later, coined by Jim Yorke in 1975.
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diff(u,2) + (u-v)/abs(u-v)^3 + (u-w)/abs(u-w)^3; ...

diff(v,2) + (v-u)/abs(v-u)^3 + (v-w)/abs(v-w)^3; ...

diff(w,2) + (w-u)/abs(w-u)^3 + (w-v)/abs(w-v)^3];

N.lbc = @(u,v,w) [u-u0; v-v0; w-w0; diff(u); diff(v); diff(w)];

[u,v,w] = N\0;

To begin with we plot the orbits just up to t = 20.

plot([u v w],'interval',[0 20])
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In this image the red, green, and blue curves show paths of the three planets as t
increases. At first they are well separated, but soon two close red-blue flybys
are observed. Here are the distance and time of the closest approach:

[closest_distance,closest_time] = min(abs(u{0,20}-v{0,20}))

closest_distance = 0.0039

closest_time = 7.3318

Plotting the orbits up to t = 50 gives a picture hard to interpret in detail.
It is clear, however, that the planets are swinging around each other in an
effectively random fashion.

plot([u v w],'interval',[0 50])
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One might expect this behavior to continue forever, but, in fact, it doesn’t.
Around t = 86, the three-body system breaks up (“self-ionizes”), with the red
planet shooting off to the northwest and the green and blue ones spiraling off
together to the southeast. This curious effect is revealed in the plot below of
the orbits up to t = 100, looking like ribbons on a birthday present. Thus
the 3-body problem for an initial 3-4-5 triangle turns out to exemplify what is
known as transient chaos.

plot([u v w],'interval',[0 100])
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Here, for example, is the time at which the red planet passes through coordinate
x = −2:

t_escape = roots(real(v)+2)

t_escape = 90.1543

Just as we did with the Lorenz equations, let us examine the effect of a
small perturbation in one component of the initial data. Changing the initial
coordinate w(0) from 4i to 3.9999i gives the following orbit up to t = 100, which
is similar to the former one for a while but then begins to differ completely. This
time there is no self-ionization.

N.lbc = @(u,v,w) [u-u0; v-v0; w-3.9999i; diff(u); diff(v); diff(w)];

[u2,v2,w2] = N\0; plot([u2 v2 w2],'interval',[0 100])
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A plot shows ‖ỹ(t) − y(t)‖ as a function of t and the estimated Lyapunov
exponent λ ≈ 0.15.

tt = linspace(0,150,400);

err = sqrt(abs(u2(tt)-u(tt)).^2 + abs(v2(tt)-v(tt)).^2 + ...

abs(w2(tt)-w(tt)).^2);

semilogy(tt,err), ii = find(tt<=70);

c = polyfit(tt(ii),log(err(ii)),1); e0 = c(2); lam = c(1)

hold on, semilogy([0 80],exp(e0+lam*[0 80]),'--')

lam = 0.1524

0 50 100 150

10 0

Note the transition from the chaotic exponential phase to smooth algebraic
growth at a rate O(t) after the bodies have separated.

Our third example of a chaotic system is the Rössler equations,

u′ = −v − w, v′ = u+ 1
5v, w′ = 1

5 + w(u − c), (13.6)

where the constant 1/5 has been fixed arbitrarily and c is a parameter. This
system is even simpler than the Lorenz equations (13.1) in that only one of the
three equations is nonlinear. The Rössler equations illustrate the phenomenon
of period doubling as a route to chaos. First, here we solve (13.6) for t ∈ [0, 300]
with c = 2 with initial conditions u(0) = 2 and v(0) = w(0) = 0. The image on
the left shows the trajectory in the three-dimensional u-v-w phase space, which
settles down to a regular oscillation, a limit cycle. The image on the right shows
the same trajectory projected onto the u–v plane, just the part for t > 200. The
initial transient has died away, and thus all one sees is the 2D projection of the
limit cycle.

N = chebop(0,300); N.lbc = [2; 0; 0];

N.op = @(t,u,v,w) [diff(u)+v+w; diff(v)-u-.2*v; diff(w)-.2-w*(u-2)];

[u,v,w] = N\0; subplot(1,2,1), plot3(u,v,w)

subplot(1,2,2), plot(u{200,300},v{200,300})
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As the parameter c is increased, a change takes place: a bifurcation (see Chap-
ter 17). At around c = 2.8, the limit cycle undergoes period doubling, with
the trajectory unfolding into a double loop. The image for c = 3.5 shows this
“period 2” solution.

N.op = @(t,u,v,w) ...

[diff(u)+v+w; diff(v)-u-.2*v; diff(w)-.2-w*(u-3.5)];

[u,v,w] = N\0; subplot(1,2,1), plot3(u,v,w)

subplot(1,2,2), plot(u{200,300},v{200,300})
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As c increases further, more bifurcations take place. A second period doubling
to a “period 4” solution occurs around c = 3.7, and here is a pair of images for
c = 4.

N.op = @(t,u,v,w) ...

[diff(u)+v+w; diff(v)-u-.2*v; diff(w)-.2-w*(u-4)];

[u,v,w] = N\0; subplot(1,2,1), plot3(u,v,w)

subplot(1,2,2), plot(u{200,300},v{200,300})
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The phenomenon of period doubling was made famous in the 1970s by Mitchell
Feigenbaum, who showed that it is a route to chaos in many problems. As c
increases further (the next transition is around c = 4.1), the period doubles again
and again, infinitely often. Each time interval from one doubling to the next
is asymptotically 4.6692 . . . times shorter than the last; this is Feigenbaum’s
constant. Finally, for c greater than about 4.2, the system is chaotic. The
following images for c = 5 show the chaotic regime, with the orbits settling
down not to a limit cycle but to a strange attractor.

N.op = @(t,u,v,w) ...

[diff(u)+v+w; diff(v)-u-.2*v; diff(w)-.2-w*(u-5)];

[u,v,w] = N\0; subplot(1,2,1), plot3(u,v,w)

subplot(1,2,2), plot(u{200,300},v{200,300})
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Our final example of chaos is governed by a nonautonomous equation due
to Moon and Holmes, a chaotic nonlinear forced oscillator. The equation is

y′′ + 1
4y

′ − y + y3 = 0.4 cos(t). (13.7)

As always, the constants here are somewhat arbitrary and could be adjusted.
This is just a second-order ODE, so in the absence of the nonautonomous forcing
function, the trajectories could not be chaotic. The forcing function, however,
makes this system equivalent to a first-order autonomous system in three vari-
ables y, y′, and t (see footnote 40 in Chapter 10). Thus the dimension is great
enough for chaos to be a possibility, and a computation confirms its appearance.
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t = chebfun('t',[0 300]); N = chebop(0,300);

N.op = @(t,y) diff(y,2) + .25*diff(y)-y+y^3;

N.lbc = [0;0]; rhs = 0.4*cos(t);

y = N\rhs; plot(y)
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We have not defined chaos! This is because there is no universally accepted
definition, though the features of sensitive dependence and strange attractors
are important. Note that exponential divergence of trajectories alone cannot be
enough, since the solutions of y′ = y diverge at the rate et but nobody would
call this equation chaotic. One needs the exponential divergence to be combined
with some kind of global boundedness associated with nonlinearity, and this is
where the strange attractors come in.

Application: chaos in a food web

In Chapter 10 we saw that a simple model of the interactions between rabbits
and foxes led to limit cycles in their populations. If we introduce a third species
into the fray, this can transform the dynamics completely. This possibility was
discovered by Bob May (later Lord May) in the 1970s, a story made famous in
the book Chaos: Making a New Science by James Gleick.

Rabbits need to eat too! Suppose in addition to the populations of rabbits,
u(t), and foxes, v(t), we consider the population of carrots, c(t). We sup-
pose that, left on their own, these tend to grow logistically (see Exercises 3.15
and 3.16). Now rabbits consume carrots, and foxes consume rabbits, and nei-
ther animal species can be sustained without food. A reasonable model of the
system is

c′ = c(1− c)− f1(c)u, u′ = f1(c)u− f2(u)v − d1u, v′ = f2(u)v − d2v, (13.8)

with fi(z) = aiz/(1 + biz) for i = 1, 2. The consumption interactions are little
different from those in the Lotka–Volterra equations. They include a saturation
effect for the consumer species, accounting for extra competition as populations
grow large. This model was proposed by Hastings and Powell in “Chaos in
a three-species food chain,” Ecology, 1991, where the parameter choices were
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a1 = 5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01. The parameter b1 was allowed to
vary.

Increasing b1 increases the effect of competition between rabbits. Here is
what happens to the rabbits with b1 = 2.5, a nonchaotic regime.

a1 = 5; a2 = 0.1; b2 = 2; d1 = 0.4; d2 = 0.01;

f1 = @(z,b1) a1*z./(1+b1*z); f2 = @(z) a2*z./(1+b2*z);

N = chebop(0,3000); b1 = 2.5;

N.op = @(t,c,u,v) [ diff(c)-(c*(1-c)-f1(c,b1)*u);

diff(u) - (f1(c,b1)*u-f2(u)*v-d1*u);

diff(v) - (f2(u)*v-d2*v) ];

N.lbc = [.4;1;9]; [c,u,v] = N\0; plot(u{2000,3000})
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At first glance this may look somewhat irregular. But in phase space we see an
ordinary limit cycle of doubled period, just as in Figure 13.11.

plot3(c{2000,3000},u{2000,3000},v{2000,3000})
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If we set b1 = 3.5, increasing the competition between rabbits, the picture
changes fundamentally.

Copyright © 2018 Society for Industrial and Applied Mathematics



13. Chaos 167

b1 = 3.5;

N.op = @(t,c,u,v) [ diff(c)-(c*(1-c)-f1(c,b1)*u);

diff(u) - (f1(c,b1)*u-f2(u)*v-d1*u);

diff(v) - (f2(u)*v-d2*v) ];

[c,u,v] = N\0; plot3(c{2000,3000},u{2000,3000},v{2000,3000})
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Looking again at the rabbit population, we see repeated but aperiodic crashes
in the population, separated by a variable number and size of shorter cycles of
boom and bust.

close all, plot(u{2000,3000})
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Obviously real food webs can be far more complex than this. But this
example shows that the change from two species to three can have a quantum
effect, and for reasons that are mathematical, not biological.

History. The roots of chaos are often traced to Poincaré and Hadamard in
the 1890s, long before the days of computers, but the subject did not become
widely studied until the work of Lorenz, May, Yorke, Feigenbaum, and others
in the 1960s and 1970s. Chaos became known to the public with James Gleick’s
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1987 book Chaos: Making a New Science mentioned earlier and the 1993 movie
Jurassic Park.

Our favorite reference. One of the best mathematical textbooks ever
written is S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering, Westview Press, 2015 (first pub-
lished in 1994). Strogatz combines marvelous clarity with a precise presentation
of the mathematics of this fascinating subject.

Summary of Chapter 13. Many nonlinear ODEs with three or more
variables are chaotic, though this fact was not widely recognized until the
last third of the 20th century. Chaos is characterized by the property
that perturbations may grow exponentially with time, yet global orbits
remain bounded. The maximal rate of exponential growth is known as the
Lyapunov exponent.

Exercise 13.1. Lucky Lyapunov exponents. It was mentioned in the text that the
estimate 0.9052 of the Lyapunov exponent was fortuitously close to the true value.
Confirm this by computing the name number based on data for t ∈ [0, 14] and t ∈ [1, 15]
instead of t ∈ [0, 15].

Exercise 13.2. Smaller perturbation of the Lorenz equations. In the text we perturbed
the Lorenz equations by changing the value of w(0) from 20 to 20+10−5. (a) Reproduce
Figures 13.2 and 13.3 with the smaller perturbation 20 + 10−9 and comment on the
results. (b) Also repeat the finite-difference estimates of the derivatives of v(5), v(10),
and v(30) with respect to w(0), and comment on the results.

Exercise 13.3. Alternative choices of the Lorenz coefficient 28. In the Lorenz equa-
tions, let r denote the parameter that traditionally takes the value 28. Starting from
our usual initial conditions, make plots of u(t) against w(t) as in Figure 13.1 for
t ∈ [0, 100] with r = 20, 22, 24; also make plots in each case of u(t) against t as in
Figure 13.2. Which case seems to be chaotic? Which one gives the clearest example
of transient chaos?

Exercise 13.4. Lorenz equations with a breeze. In the Lorenz equations (13.1), let the
first equation be changed to u′ = 10(v − u) − a, where a is a parameter. As in the
last exercise, make plots of u(t) against w(t) and of u(t) against t for t ∈ [0, 30] with
a = 20, 25, 30. Comment on the solutions.

Exercise 13.5. Two electrons and a nucleus. Consider the highly idealized problem of
two electrons of mass 1 and charge −1 orbiting a nucleus of charge +2 fixed at the
origin of the x-y plane. Let z(t) and w(t) be the positions of the electrons represented
with the usual complex variable trick. Consider trajectories for t ∈ [0, 20] starting from
initial conditions z = i, z′ = 1, w = −i, w′ = a. (a) Write down the ODE governing
the evolution of w(z) and z(t) assuming an inverse-square electrostatic force law with
constant 1. The electrons repel each other while being attracted to the nucleus. (b)
Plot the two trajectories in the case a = 1. The configuration is symmetric, and
the symmetry should be preserved for all t. (c) Now make similar plots for a =
0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. Discuss the results.

Exercise 13.6. Chaos and cellular automata. Discrete processes, in which no real
numbers are involved, can also exhibit chaotic properties. Illustrate this by simulating
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the “Rule 30” cellular automaton described in Stephen Wolfram’s 2002 book A New
Kind of Science.56 To do this, let n be a positive even integer and initialize an n× n
matrix A to zero apart from the value 1 in the middle of the top row, a1,n/2 = 1.
Now sweep from rows 2 to n, updating each entry according to the following rule:
aij is changed to the value 1 if the three entries above it, ai−1,j−1:j+1, correspond to
the binary representation of one of the numbers 1, 2, 3, 4 rather than 0, 5, 6, 7. (The
numbers in columns 1 and n can be left unchanged.) Take n = 200 and use the
MATLAB spy command to plot the matrix at the end. Note that the structure is
completely deterministic yet has apparently random properties. For another view of
the randomness, plot ai,n/2 as a function of i.

Exercise 13.7. Random Fibonacci sequence. Here, on the other hand, is an example
of a discrete process with true randomness. Suppose x0 = x1 = 1 and, for k ≥ 1,
xk+1 = xk−1 + xk. Then it is well known that xk grows asymptotically at a rate
determined by φk, where φ is the golden ratio (1 +

√
5)/2 ≈ 1.618. Consider the

random Fibonacci sequence defined by xk+1 = ±xk−1 ± xk, where at each step each
sign is independently + or − with probability 0.5. On a semilogy scale, make plots
of |xk| vs. k up to the maximum values k = 100 and 5000. Numerically estimate the
Lyapunov constant for this process; that is, the constant C such that with probability 1
the sequence grows in absolute value at a rate Ck as k → ∞. (If you are curious to
learn more, see D. Viswanath, “Random Fibonacci sequences. . . ,” Mathematics of
Computation 69 (2000), pp. 1131–1155.)

56On p. 27 of the original edition Wolfram calls this “probably the single most surprising
scientific discovery I have ever made.”
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14. Linear systems and linearization

Much of mathematics springs from two topics: calculus and linear algebra. The
subject of ODEs is obviously rooted in calculus, and it has a fundamental linear
algebra side too. If an ODE is linear, then it is “all” linear algebra. If it is
nonlinear, then linear algebra still determines its local behavior near each point
of a trajectory.

Let us start with the linear case. If A is an n×n matrix, a first-order linear
ODE with n variables can be defined by

y′(t) = Ay(t), (14.1)

a special case of the general system (10.1). Conversely, any first-order linear,
autonomous, homogeneous n-variable system of ODEs (“FLAsH”) can be writ-
ten in this form for some matrix A. If y0 is an n-vector, then one solution of
(14.1) is

y(t) = etAy0, (14.2)

where etA is the matrix exponential, defined by

etA = I+ tA+
1

2!
(tA)2 +

1

3!
(tA)3 + · · · . (14.3)

This series always converges, providing a well-defined matrix exponential for
any A and t.57 In fact, (14.3) is the Taylor series of etA about t = 0, and from

57A proof can be based on the observation that, for any t, the powers (tA)k grow at most
geometrically as k → ∞, whereas the factorials k! grow faster than geometrically.

171
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the theory of analytic functions it is known that the series can be differentiated
term by term, yielding

d

dt
etA = AetA.

This formula confirms that (14.2) is a solution of (14.1). Equations (14.1)–(14.2)
are matrix generalizations of equations (2.1)–(2.2) of Chapter 2.

So linear, autonomous, homogeneous systems of ODEs are all about expo-
nentials of matrices. We record this conclusion as a theorem formulated for
IVPs.

Theorem 14.1. Solution of first-order linear autonomous homoge-
neous IVP system (FLAsHI). The problem

y′(t) = Ay(t), y(0) = y0, (14.4)

where y0 is an n-vector and A is an n× n matrix, has the unique solution

y(t) = etAy0 (14.5)

valid for all t, −∞ < t < ∞.

Proof. We have just outlined an argument for existence, and uniqueness
follows from Theorem 11.2. A suitable Lipschitz constant for (14.4) is K = ‖A‖;
as explained in Chapter 11, the choice of norm does not matter.

A small extension of (14.1) is to make the ODE inhomogeneous (“FLAsh”),

y′(t) = Ay(t) + g,

where g is a fixed n-vector. We might call this an affine autonomous system of
equations, though most of the time we will just say “linear.” Following Theorem
2.4 for the scalar case, we readily derive the solution as follows.

Theorem 14.2. Solution of first-order linear autonomous IVP sys-
tem with constant inhomogeneity (FLAshI). The problem

y′(t) = Ay(t) + g, y(0) = y0, (14.6)

where y0 and g are n-vectors and A is an n×n matrix, has the unique solution

y(t) = etAy0 +

∫ t

0

e(t−s)Agds. (14.7)

If A is nonsingular this reduces to

y(t) = etAy0 +A−1(etA − I)g. (14.8)

Proof. It can be verified explicitly that (14.7) and (14.8) are solutions of
(14.6), and uniqueness again follows from Theorem 11.2.
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Theorem 14.2 assumes a constant inhomogeneity, but the variable case is
also straightforward (again “FLAsh”):

y′(t) = Ay(t) + g(t),

where g(t) is a n-vector function of t. Here is a systems generalization of a
result midway between Theorems 2.3 and 2.4 (since g but not A has been made
t-dependent). As in those theorems, the ODE is understood to hold everywhere
except at any points of discontinuity.

Theorem 14.3. Solution of first-order linear autonomous inhomo-
geneous IVP system (FLAshI). The problem

y′(t) = Ay(t) + g(t), y(0) = y0, (14.9)

where y0 is an n-vector, g(t) is an n-vector piecewise continuous function of t,
and A is an n× n matrix, has the unique solution

y(t) = etAy0 +

∫ t

0

e(t−s)Ag(s)ds. (14.10)

Proof. Again the formulas are readily verified and uniqueness comes from
Theorem 11.2.

The discussion above is confined to autonomous problems, but nonau-
tonomous linear equations of the form y′ = A(t)y + g(t) are important too.
In this situation the matrix exponential etA generalizes to a so-called funda-
mental matrix Y(t), discussed in equations (19.17)–(19.18) of Chapter 19. The
special case g = 0 also appears in equation (14.32) below.

Some ODEs are linear to start with, but the greatest importance of linear
ODEs comes from the fact that a nonlinear ODE can be linearized. By this we
mean that locally, near a given time t0, the solution of a nonlinear ODE

y′(t) = f(t,y(t)) (14.11)

will evolve approximately like that of a linear one. In fact, every autonomous
ODE looks locally like an affine autonomous system of the form (14.6), so long
as the coefficients are twice differentiable. We now work out the details of such
approximations, which are a matter of multivariate calculus. As usual, we keep
the formulas simple by assuming t0 = 0, even though in an application we may
linearize about values t0 �= 0.

Suppose we have an autonomous ODE

y′(t) = f(y(t)) (14.12)

and are interested in the behavior of solutions y(t) near a particular point y∗.
Specifically, we consider the solution of the IVP

y′(t) = f(y(t)), y(0) = y0 (14.13)
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for some initial value y0 close to or equal to y∗. We use the abbreviation

f∗ = f(y∗) (14.14)

and suppose that f is twice differentiable at y = y∗. The partial derivative
∂f/∂y is an n× n Jacobian matrix,

J =
∂f

∂y
=

⎛
⎜⎜⎜⎜⎜⎝

∂f1
∂y1

· · · ∂f1
∂yn

...
...

∂fn
∂y1

· · · ∂fn
∂yn

⎞
⎟⎟⎟⎟⎟⎠ .

We abbreviate the value of J at y = y∗ by

J∗ = J(y∗). (14.15)

We now calculate from the definition of J∗

f(y(t)) = f∗ + J∗(y(t) − y∗) +O(‖y(t) − y∗‖2). (14.16)

This equation tells us that up to an errorO(‖y(t)−y∗‖2), any autonomous ODE
can be regarded as linear, or rather affine, as in (14.6). Here ‖·‖ can denote any
norm on the space of n-vectors, since all norms on a finite-dimensional space
are equivalent.

The formulas will be simpler if we work with the difference variables

δy(t) = y(t) − y∗, δy0 = y0 − y∗.

With these definitions, (14.8) and (14.16) give us the following conclusions.

Theorem 14.4. Linearization of an autonomous system of ODEs
(FlAsHI). Let y∗ be fixed and assume f is twice differentiable at y = y∗ with
Jacobian J∗. The solution of (14.13) satisfies

δy′(t) = f∗ + J∗δy(t) +O(‖δy(t)‖2) (14.17)

and if J∗ is nonsingular,

δy(t) = etJ∗δy0 + (J∗)
−1(etJ∗ − I)f∗ +O(tΔ(t)2) (14.18)

if Δ(t) is an upper bound on ‖δy(s)‖ for 0 ≤ s ≤ t. If y0 = y∗, then δy = 0,
and this estimate becomes

δy(t) = (J∗)
−1(etJ∗ − I)f∗ +O(t3). (14.19)

Sketch of proof. Equation (14.17) is a restatement of (14.16). Equation
(14.18) follows by applying Theorem 14.2 to (14.17) with A = J∗ and h = f∗.
Equation (14.19) follows from (14.18) together with the estimate Δ(t) = O(t) in
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the special case δy(0) = 0. (In this outline we are assuming that the O( ·) terms
behave in the obvious matter, with a small perturbation of an ODE resulting
in a small perturbation of its solution. A careful argument could justify such
steps by the use of a lemma known as Gronwall’s inequality.)

We now explore three examples of Theorem 14.4 in action, first for a scalar
first-order problem, then for a scalar second-order problem analyzed by reduc-
tion to a first-order system, then for a two-variable first-order system.

For the scalar first-order example, we recall the IVP (3.9),

y′(t) = y(t)2, y(0) = 1, (14.20)

whose solution y(t) = (1 − t)−1 blows up to ∞ at t = 1. Here is a solution
plotted as in Chapter 3.

N = chebop(0,1); N.op = @(t,y) diff(y) - y^2;

N.lbc = 1; N.maxnorm = 25;

y = N\0; plot(y), hold on, plot([1 1],[0 30],'--')
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The Jacobian for this equation is the scalar J(y) = 2y, which takes the value
J∗ = 2y0 at y∗ = y0, so Theorem 14.4 gives the following linear approximation
for t ≈ 0, y ≈ y0:

y′(t) ≈ (y0)
2 + 2y0(y(t)− y0), y(0) = y0,

or near a possibly nonzero time t0,

y′(t) ≈ (y0)
2 + 2y0(y(t)− y0), y(t0) = y0. (14.21)

Let us add dotted arcs to the plot corresponding to solutions of this linear
equation emanating from t0 = 0.5 and 0.8.

for t0 = [0.5 0.8]

y0 = y(t0); f0 = y0^2; J0 = 2*y(t0); L = chebop(t0,t0+.22);

L.op = @(t,u) diff(u) - f0 - J0*(u-y0); L.lbc = y0;

u = L\0; plot(u,':'), plot(t0,y0,'.')

end
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Each linearized solution is shown over an interval of length 0.22. At the initial
point, as asserted by (14.19), the linearization matches both the slope and the
curvature. The approximation starting at t = 0.5 tracks the true solution closely
over the interval shown, whereas the approximation starting at t = 0.8 loses
accuracy more quickly. Note that as the solution to a linear problem, it will
exist for all t, unlike the underlying nonlinear problem with its blowup.

Next we look at an example involving a second-order scalar ODE. This is
such an important situation that it is worth spelling out the special form Theo-
rem 14.4 takes in this case. Suppose we have a second-order scalar autonomous
problem

u′′(t) = F (u(t), u′(t)), u(0) = u0, u′(0) = v0. (14.22)

Setting v(t) = u′(t), we can write this as a first-order system in the variable
y(t) = (u(t), v(t))T :

u′(t) = v(t), v′(t) = F (u(t), v(t)), u(0) = u0, v(0) = v0.

The Jacobian J∗ is

J∗ =

(
0 1

∂F/∂u ∂F/∂v

)
,

and (14.17) becomes u′(t) = v(t) together with

v′(t) = F (u∗, v∗) +
∂F

∂u
(u(t)− u∗) +

∂F

∂v
(v(t)− v∗).

Translating this back to the original second-order scalar context gives this vari-
ant of Theorem 14.4, with δu(t) = u(t)− u∗ and δv(t) = u′(t)− v∗.

Theorem 14.5. Linearization of an autonomous second-order scalar
ODE (flASHI). Let the function F defining the scalar second-order IVP
(14.22) be twice differentiable with respect to its first and second arguments at
u = u∗, u

′ = v∗, and define

F∗ = F (u∗, v∗), a∗ =
∂F

∂u
(u∗, v∗), b∗ =

∂F

∂u′ (u∗, v∗).

Then u(t) satisfies

(δu(t))′′ = F∗ + a∗δu(t) + b∗δv(t) +O((δu(t))2) +O((δv(t))2). (14.23)
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If u0 = u∗ and v0 = v∗, this becomes

(δu(t))′′ = F∗ + a∗δu(t) + b∗δv(t) +O(t2). (14.24)

For an example, we turn to our friend the van der Pol equation, as in (8.8):

u′′ = 5(1− u2)u′ − u, t ∈ [0, 15], u(0) = 1, u′(0) = 0. (14.25)

N = chebop(0,15); N.lbc = [1;0];

N.op = @(t,u) diff(u,2) - 5*(1-u^2)*diff(u) + u;

u = N\0; plot(u), hold on
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By Theorem 14.5, the linearized approximation near a point t0 with u(t0) = u∗
and u′(t0) = v∗ is

u′′(t) ≈ 5(1− (u0)
2)v0 − u0(10u0v0 + 1)(u(t)− u0) + 5(1− u2

0)(u
′(t)− v0).

We use this result to add three curves to the plot corresponding to times t0 = 3,
6.9, and 11.5.

for t0 = [3 6.9 11.5]

u0 = u(t0); v0 = deriv(u,t0);

F0 = 5*(1-u0^2)*v0-u0; a0 = -(10*u0*v0+1); b0 = 5*(1-u0^2);

L = chebop(t0,t0+1.5); L.lbc = [u0; v0];

L.op = @(t,w) diff(w,2) - F0 - a0*(w-u0) - b0*(diff(w)-v0);

w = L\0; plot(w,':'), plot(t0,u0,'.')

end
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According to (14.24), the linearization of this problem captures u′′ with accuracy
O(t2). It follows that u itself is captured with accuracy O(t4): in the figure,
the dotted lines match not just y(0), y′(0), and y′′(0), but also y′′′(0) (see
Exercise 14.3). Yes, the oscillatory middle approximation is correct!

Now we consider an example to illustrate Theorem 14.5 with a generic au-
tonomous system of two equations, that is, one not obtained from a second-order
scalar problem. Here are the Lotka–Volterra equations (10.6):

u′ = u− uv, v′ = − 1
5v + uv, t ≥ 0, u(0) = u0, v(0) = v0. (14.26)

In Chapter 10 we plotted a limit cycle solution.

N = chebop(0,20); N.lbc = [1;1];

N.op = @(t,u,v) [diff(u)-u+u*v; diff(v)+.2*v-u*v];

[u,v] = N\0; arrowplot(u,v), hold on, plot([0 .2],[0 1],'.')
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The Jacobian for (14.25) is

J0 =

(
1− v −u

v u− 1/5

)
.

This enables us to add dotted linearized trajectories as before.

for t0 = [0 2 14]

u0 = u(t0); v0 = v(t0); f01 = u0-u0*v0; f02 = -v0/5+u0*v0;

L = chebop(t0,t0+1); L.lbc = [u0; v0];

L.op = @(t,U,V) [diff(U)-f01-(1-v0)*(U-u0)+u0*(V-v0); ...

diff(V)-f02-v0*(U-u0)-(u0-1/5)*(V-v0)];

[U,V] = L\0; plot(U,V,':'), plot(u0,v0,'.')

end
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Application: linearized Lorenz trajectories

Chaos is the quintessential nonlinear effect, yet at each point of time, a
chaotic ODE, like any other ODE, behaves linearly. Let us explore this effect
for the Lorenz equations (13.1),

u′ = 10(v − u), v′ = u(28− w)− v, w′ = uv − (8/3)w. (14.27)

Suppose at some time t0 a trajectory y(t) of (14.27) takes the values y(t0) =
y∗ = (u∗, v∗, w∗)

T . If we define as usual δy = y− y∗, then from Theorem 14.4
we have

δy′ ≈ f∗ + J∗δy, (14.28)

where we can calculate the Jacobian as

J(u, v, w) =

⎛
⎝ −10 10 0

28− w −1 −u
v u −8/3

⎞
⎠ . (14.29)

This gives us a linear model of the local behavior near the given time and
solution values.

Let us focus on what the model tells us about perturbations. If y(t) is
the given trajectory, let y(t) + Δy(t) be another nearby trajectory. Then by
subtracting (14.28) applied to one solution from (14.28) applied to the other,
we obtain

Δy′ ≈ J∗Δy. (14.30)

This approximation is valid near the given time t0, but if we let J vary with t,
so that it always corresponds to the local Jacobian along the trajectory, we get

Δy′ ≈ J(t)Δy. (14.31)

If Δy is infinitesimal, this becomes an equality,

Δy′ = J(t)Δy (Δy infinitesimal). (14.32)
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This kind of linearization is applicable to all nonlinear problems. Infinitesi-
mal perturbations of a nonlinear ODE evolve according to a linear, homoge-
neous, nonautonomous equation. In other words, infinitesimal perturbations
are a problem of type FLasHI.

We can look at the Jacobians for the Lorenz equations numerically. Starting
from our usual initial values, we run the system up to time t = 10 and make a
function J that evaluates J(t) for any t ∈ [0, 10].

N = chebop(0,10);

N.op = @(t,u,v,w) [diff(u)+10*u-10*v; ...

diff(v)-(28-w)*u+v ; diff(w)-u*v+(8/3)*w];

N.lbc = [-15; -15; 20]; [u,v,w] = N\0;

J = @(t) [-10 10 0; 28-w(t) -1 -u(t); v(t) u(t) -8/3];

Here for example is J(t) at t = 4, a number big enough that initial transients
have died away and the solution is close to the strange attractor.

J(4)

ans =

-10.0000 10.0000 0

-5.9316 -1.0000 12.2391

-10.2430 -12.2391 -2.6667

Now here is something curious. We look at the eigenvalues of this matrix,

eig(J(4))

ans =

-12.5350 + 0.0000i

-0.5658 +15.2951i

-0.5658 -15.2951i

They all have negative real part! This is a surprise because the Lorenz equations
are chaotic, meaning that infinitesimal perturbations grow exponentially. In
fact, we saw in Chapter 13 that on average they grow approximately at the rate
exp(0.91t). Yet eigenvalues with negative real part correspond to exponential
decay, not growth. What’s going on?

The explanation is that, even though a chaotic system is characterized by
exponential growth of perturbations on average, there can be points along its
trajectories where the perturbations are shrinking. This is just what happens
with the Lorenz equations. To see the effect, we can plot the spectral abscissa
of J(t), the maximum real part of its eigenvalues, as a function of t.

spec_absc = chebfun(@(t) max(real(eig(J(t)))),[4,10], ...

'splitting','on'); plot(spec_absc)
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Most of the time, the spectral abscissa is positive, and its mean is positive,

mean(spec_absc)

ans = 1.4455

Nevertheless, it regularly dips below zero. If the nonlinear problem were frozen
with fixed linear dynamics at such a time, then perturbations would eventually
decay rather than grow.

As a fine point of linear algebra, let us say a little more of what it means
for a matrix J to have all its eigenvalues in the complex left half-plane. This
implies that solutions to the constant-coefficient problem y′ = Jy must decay
as t → ∞. It does not imply that they must decay even at the start, for small t.
A different condition of linear algebra is needed to ensure this stronger property,
namely that the numerical abscissa of the matrix is negative. The numerical
abscissa of J is the maximum eigenvalue of (J+JT )/2, and here we add another
curve to the plot showing how this quantity varies for our Lorenz trajectory.

numer_absc = chebfun(@(t) max(eig((J(t)+J(t)')/2)),[4,10],...

'splitting','on'); hold on, plot(numer_absc)
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Evidently even the numerical abscissa dips below zero intermittently, implying
that at certain times the behavior of the Lorenz equations is locally dissipative
by any definition, though chaos reigns at large scale. Analogous effects can be

Copyright © 2018 Society for Industrial and Applied Mathematics



182 Exploring ODEs

found in atmospheric dynamics and other scientific problems and are sometimes
quantified by means of a “local Lyapunov exponent.”

History. Perhaps the most extreme case of linearization in the history of
science was reported in Physical Review Letters in February 2016 in the paper
“Observation of gravitational waves from a binary black hole merger,” which
won the Nobel Prize for Barish, Thorne, and Weiss just a year later.58 Ein-
stein’s ten coupled partial differential equations of general relativity, from 1915,
are forbiddingly nonlinear. In 1916, however, Einstein proposed that when lin-
earized to small amplitudes, the equations predict the possibility of propagation
of gravitational waves. Meanwhile, 1.3 billion years earlier, two black holes had
merged together in an event so cataclysmic that for a fraction of a second it
radiated energy with greater power than all the stars in the observable universe
combined. For 1.3 billion years the gravitational waves flew outward at the
speed of light, losing amplitude in the usual inverse-radius fashion, and they
reached the earth on September 14, 2015, when the minute oscillations were de-
tected by the LIGO project nearly simultaneously in Louisiana and Washington
State, USA. One might fancifully say that the merger of the black holes was
the most nonlinear event ever observed by mankind, and the signal by which it
was ultimately observed was the most linear. The amplitude of that signal was
almost unimaginably small, as is reflected in the astonishing label of the y-axis
in Figure 1 of the 2016 paper, which informs the reader that the figure shows
relative deflections in units of 10−21.

Our favorite reference. A classic textbook with a great emphasis on
the linear algebra side of ODE theory was Hirsch and Smale, Differential Equa-
tions, Dynamical Systems, and Linear Algebra, published in 1974 by Academic
Press. Later a third author was added, Devaney, and the title was changed
to Differential Equations, Dynamical Systems, and an Introduction to Chaos
(third edition, Elsevier, 2013). The books are quite different, with less about
the linear algebra side in the later edition, and both are very interesting.

Summary of Chapter 14. An autonomous ODE y′(t) = f(y(t)) with
a sufficiently smooth function f can be approximated near a particular
time t0 and value y∗ by the affine equation δy′(t) ≈ f∗ + J∗δy(t), where f∗
and J∗ are the function f and Jacobian matrix ∂f/∂y frozen at t = t0
and y = y∗ and δy(t) = y(t) − y∗. Globally over a range of values of t,
infinitesimal perturbations to a nonlinear trajectory evolve according to the
linear homogeneous nonautonomous ODE Δy′ = J(t)Δy, where J(t) is the
Jacobian matrix at time t for the given nonlinear trajectory.

Exercise 14.1. Exponential of a matrix and linear systems of BVPs. (a) Find formulas
for the powers Ak of the 2 × 2 matrix A = [0 1; -1 0] (MATLAB notation). (b)
Using the results of (a) and familiar formulas for Taylor series, find a formula for

58It is one of the most compellingly written papers we have seen — exciting reading for
anyone interested in science. The first three of the 1011 authors, incidentally, are Abbott,
Abbott, and Abbott, and the last three are Zucker, Zuraw, and Zweizig.

Copyright © 2018 Society for Industrial and Applied Mathematics



14. Linear systems and linearization 183

exp(tA). (c) What is the smallest t > 0 for which exp(tA) is skew-diagonal, that is,
having zeros in the positions on the diagonal? Call this number T . What is the matrix
exp(TA)? (d) Show that the BVP y′ = Ay with boundary conditions y1(0) = a,
y2(T ) = b is ill-posed, having either no solutions or infinitely many solutions depending
on the values of a and b. (e) Show on the other hand that if A is any diagonal matrix,
this BVP is well-posed, with a unique solution for each a and b.

Exercise 14.2. Affine autonomous systems. Verify that (14.7) is a solution of (14.6).

Exercise 14.3. Confirming fourth-order accuracy. According to the text, the dashed
red lines in Figure 14.4 match the green curve they approximate to accuracy O(t4), or
more precisely O((t−t0)

4) for an approximation near t = t0. Confirm this numerically
for the oscillatory middle curve by means of an appropriate log-log plot.

Exercise 14.4. Exponential of a nonnormal matrix. Let A be the 6 × 6 bidiagonal
matrix with −0.5,−0.6, . . . ,−1 on the main diagonal, 2, 2, . . . , 2 on the first super-
diagonal, and 0 everywhere else. (a) Calculate the spectral abscissa and numerical
abscissa of A. (b) Make a semilogy plot of ‖etA‖ as a function of t ∈ [0, 40], where
‖ · ‖ is the 2-norm. (In MATLAB the appropriate command is expm.) Superimpose
appropriate dashed lines to indicate how this curve matches the results of (a).
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15. Stable and unstable fixed points

The last chapter dealt with linearization of ODEs. One of the most important
applications of linearization is the analysis of fixed points.

Consider an autonomous equation

y′(t) = f(y(t)). (15.1)

As defined in Chapters 9 and 10, a fixed point of (15.1) is a vector y∗ such
that f(y∗) = 0. We saw in those chapters that a fruitful way of understanding
the behavior of an autonomous ODE is to begin by examining its fixed points
in the phase plane (if n = 2) or more generally in phase space. If y∗ is a fixed
point, then the term f∗ in Theorem 14.4 vanishes. Equation (14.17) becomes

δy′(t) = J∗δy(t) +O(‖δy(t)‖2), (15.2)

with δy(t) = y(t)−y∗ as before. Near a fixed point, therefore, an ODE behaves
approximately like the equation y′ = Ay with which we began the last chapter
— not just affine, but linear, with A being the Jacobian matrix J∗.

To illustrate the structure of some linearizations at fixed points in the phase
plane, here are two plots showing solutions of (15.2) (without the “O” term)
corresponding to the diagonal matrices

J∗ =

(−1 0
0 −1

)
,

(−2 0
0 −1

)
. (15.3)

Each plot shows trajectories emanating from 16 equally spaced initial points on
the unit circle, which is drawn in black.
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th = (pi/8)*(1:16) + .0001; u0 = cos(th); v0 = sin(th);

L = chebop(0,1.4);

op = @(J) @(t,u,v) [diff(u)-J(1,1)*u-J(1,2)*v; ...

diff(v)-J(2,1)*u-J(2,2)*v];

subplot(1,2,1), plot(0,0,'.'), hold on

c = chebfun('exp(1i*pi*x)'); plot(c)

J = [-1 0; 0 -1]; L.op = op(J);

for k = 1:16

L.lbc = [u0(k); v0(k)]; [u,v] = L\0; arrowplot(u,v)

end

subplot(1,2,2), plot(0,0,'.'), hold on, plot(c)

J = [-2 0; 0 -1]; L.op = op(J);

for k = 1:16

L.lbc = [u0(k); v0(k)]; [u,v] = L\0; arrowplot(u,v)

end
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In both figures, all trajectories are converging to the origin. This is because
both eigenvalues of J∗, which in this case are simply the diagonal entries, are
negative. If all the eigenvalues of the Jacobian at a fixed point are negative,
or more generally satisfy Reλ < 0 and thus lie in the open left half of the
complex plane, then y∗ is called a sink. This implies that all orbits starting
sufficiently close to y∗ converge to y∗ at an exponential rate. The image on
the left above may be the first one that comes to mind when one thinks about
sinks, but the image on the right is more typical: most trajectories approach a
sink along special directions corresponding to the eigenvectors associated with
eigenvalues of least negative real part. In this example the eigenvectors are
(1, 0)T , the direction of exponential decay at the rate e−2t , and (0, 1)T , the
direction of slower decay at the rate e−t . As t increases, the component in the
(1, 0)T direction becomes negligible compared with the component in the (0, 1)T

direction, so trajectories approach the origin along the latter, vertical axis.
But still we have diagonal matrices, so these pictures do not show the gen-

eral behavior. To illustrate some further possibilities, here are figures for two
nondiagonal matrices,

J∗ =

(−1 1
−1 −1

)
,

(−2 2.5
0 −1

)
, (15.4)
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whose eigenvalues are {−1 + i,−1 − i} and {−2,−1}, respectively. Again the
eigenvalues are in the left half-plane, so 0 is again a sink, but the images are
quite different, showing a combination of rotation mixed with decay.

subplot(1,2,1), plot(0,0,'.'), hold on, plot(c)

J = [-1 1; -1 -1]; L.op = op(J);

for k = 1:16

L.lbc = [u0(k); v0(k)]; [u,v] = L\0; arrowplot(u,v)

end

subplot(1,2,2), plot(0,0,'.'), hold on, plot(c)

J = [-1 2.5; 0 -1/2]; L.op = op(J);

for k = 1:16

L.lbc = [u0(k); v0(k)]; [u,v] = L\0; arrowplot(u,v)

end
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Note that in the left image there is no special direction along which trajectories
eventually straighten out. Such a direction would correspond to an eigenvector,
but for this matrix the eigenvectors are complex. The eigenvalues are −1 +
i and −1 − i, both in the left half-plane, which explains the decay toward
the origin. In the right image, there are real eigenvectors again but they are
far from orthogonal. The effect of this is that, although eventually all the
trajectories decay to the origin, some of them grow for a while before decaying.
This phenomenon is known as transient growth.

All these plots correspond to the same simple case of a two-variable problem
with a sink. This is only the beginning of the many configurations that can
arise in linearized analysis of fixed points. If all the eigenvalues are in the open
right half-plane, that is, with Reλ > 0, then y∗ is a source and the arrows are
reversed. If some eigenvalues are in the left half-plane and the others are in the
right half-plane, then y∗ is a saddle point. Here are examples of saddle points
corresponding to the matrices

J∗ =

(−1 0
0 1

)
,

(−1 2
0 1

)
. (15.5)

The eigenvalues of both matrices are {−1, 1}.
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subplot(1,2,1), plot(0,0,'.'), hold on, plot(c)

L = chebop(0,0.9); J = [-1 0; 0 1]; L.op = op(J);

for k = 1:16

L.lbc = [u0(k); v0(k)]; [u,v] = L\0; arrowplot(u,v)

end

subplot(1,2,2), plot(0,0,'.'), hold on, plot(c)

J = [-1 2; 0 1]; L.op = op(J);

for k = 1:16

L.lbc = [u0(k); v0(k)]; [u,v] = L\0; arrowplot(u,v)

end
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There is a general terminology and theory of behavior near fixed points
that goes beyond these linearized approximations. We say that a fixed point of
a system of the form (15.1) is Lyapunov stable if, for any neighborhood V
of y∗, there is a neighborhood U ⊆ V such that every trajectory that starts in U
remains in V for all t. This condition does not require decay, just boundedness.
The fixed point is asymptotically stable if in addition U can be chosen such
that every trajectory that starts in U converges to y∗ as t → ∞.59 If y∗ is not
Lyapunov stable, it is Lyapunov unstable, implying that some (not necessarily
all) trajectories starting near y∗ diverge away as t increases. The following
theorem, which we give without proof, summarizes some of the relationships
between these general notions and the eigenvalues of J∗.

Theorem 15.1. Stability and eigenvalues of the Jacobian (FlAsHI).
Let y∗ be a fixed point of an autonomous ODE (15.1) where f is twice differen-
tiable at y∗, and let J∗ be the associated Jacobian matrix. If all the eigenvalues
λ of J∗ satisfy Reλ < 0, then y∗ is asymptotically stable, and if at least one of
them satisfies Reλ > 0, then y∗ is Lyapunov unstable.

Note that the theorem leaves open the situation in which all eigenvalues
satisfy Reλ ≤ 0 but not all satisfy Reλ < 0. In this case y∗ is unstable if there
is a defective multiple eigenvalue with Reλ = 0 (i.e., associated with a Jordan
block of size ≥ 2). If all eigenvalues with Reλ = 0 are nondefective, then linear

59Despite this careful terminology, most of the time we will be more casual and just say a
fixed point is stable if all nearby trajectories converge to it.
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analysis is not enough to determine stability or asymptotic stability; it depends
on the higher-order nonlinear behavior of f .

Let us now consider three examples, systems of ODEs we looked at in Chap-
ter 10. The first of these was the Lotka–Volterra equations (10.4)–(10.5),

u′ = u− uv, v′ = − 1
5v + uv,

whose behavior was plotted in Figs. 10.4–10.8 and again in Figs. 14.5–14.6. To
calculate the fixed points we set u′ = 0, implying u = 0 or v = 1, and v′ = 0,
implying v = 0 or u = 1/5. So the fixed points are (u, v) = (0, 0) and (1/5, 1).
The Jacobian of the system at (u, v) is

J(u, v) =

(
1− v −u
v u− 1/5

)
,

implying

J(0, 0) =

(
1 0
0 −1/5

)
, J(1/5, 1) =

(
0 −1/5
1 0

)
.

The first matrix has eigenvalues 1 and −1/5, so (0, 0) is a saddle point. The
image on the right has eigenvalues±i/

√
5, both imaginary, so (1/5, 1) is a center,

a point of neutral stability. This explains the rotation of trajectories that is the
conspicuous feature of Figs. 10.6–10.8.

The next example from Chapter 10 is the Lorenz equations (10.7),

u′ = 10(v − u), v′ = u(28− w) − v, w′ = uv − (8/3)w,

plotted in Figs. 10.9–10.11 and considered further in Chapters 13 and 14. To find
fixed points we calculate that u′ = 0 implies v = u, v′ = 0 then implies u = v = 0
or w = 27, and w′ = 0 implies u = v = w = 0 or u = v = ±√8 · 27/3 =

±6
√
2. So there are three fixed points, and they are (u, v, w) = (0, 0, 0) and

(±6
√
2, ±6

√
2, 27). The Jacobian of the system at (u, v, w) is

J(u, v, w) =

⎛
⎝ −10 10 0

28− w −1 −u
v u −8/3

⎞
⎠ ,

implying

J(0, 0, 0) =

⎛
⎝−10 10 0

28 −1 0
0 0 −8/3

⎞
⎠

and

J(±6
√
2, ±6

√
2, 27) =

⎛
⎝ −10 10 0

1 −1 ∓6
√
2

±6
√
2 ±6

√
2 −8/3

⎞
⎠ .

The eigenvalues of J(0, 0, 0) are about −22.8, −2.7, and 11.8, so this is an
unstable saddle point. The other fixed points are the more interesting ones,
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with eigenvalues about −13.9 and 0.9 ± 10.2i. Thus these fixed points are
unstable too, mildly so, but because of the large imaginary term they have
a big rotational component, as we know well from the Lorenz trajectories of
Figs. 10.11 and 13.1.

The other main example of Chapter 10 is the system of equations (10.10) of
an SIR model from epidemiology, which with the parameter choices β = 2 and
γ = 1 takes the form

S′ = −2SI, I ′ = (2S − 1)I, R′ = I.

Behaviors were explored in Figs. 10.13–10.14. For a fixed point analysis we first
set R′ = 0, implying I = 0. This then implies R′ = S′ = 0, so we see that every
choice of R and S gives a fixed point, so long as I = 0. The Jacobian matrix is

J(S, I, R) =

⎛
⎝−2I −2S 0

2I 2S − 1 0
0 1 0

⎞
⎠ ,

which at a fixed point becomes

J(S, I, R) =

⎛
⎝ 0 −2S 0

0 2S − 1 0
0 1 0

⎞
⎠ ,

Since this matrix is block lower-triangular, with an upper-left 2 × 2 block that
is itself upper-triangular, we see that the eigenvalues are 0, 0, and 2S − 1. The
latter number has immediate significance: if S > 1/2, the matrix has a positive
eigenvalue and the system is unstable, ready to begin an epidemic as soon as
any patient gets infected.

Application: transition to turbulence in a pipe

Of all the fixed points in the mathematical sciences, perhaps none has re-
ceived more attention, or caused more confusion, than laminar fluid flow in a
pipe.60 (Laminar means smooth and steady.) This discussion is adapted from
Trefethen, Trefethen, Reddy, and Driscoll, “Hydrodynamic stability without
eigenvalues,” Science, 1993.

The problem was made famous by Osborne Reynolds in 1883. Imagine a
long circular pipe with a fluid such as water flowing through it. The flow is
governed by the set of time-dependent PDEs known as the Navier–Stokes equa-
tions, determining the evolution of the velocity field v(x, t), and an analytical

60There are competitors, though the equations are not so clear-cut, in climate science.
Whenever you hear the phrase “tipping point,” you can be sure that there is a question of
stability of a fixed point at hand. One tipping point of great concern involves the melting of
the ice in the Arctic: as ice melts, the earth reflects less light out to space, and the ice melts
faster. See D. Paillard, “The timing of Pleistocene glaciations from a simple multiple-state
climate model,” Nature 391 (1998), pp. 378–381.
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solution corresponding to laminar flow can be written down easily: v is a time-
independent field pointing along the pipe, corresponding to a steady flow with a
velocity that is maximal at the centerline and decreases quadratically to zero at
the wall. This solution is a fixed point of the equations, and it is mathematically
stable. We have not discussed PDEs and their stability, but just as for ODEs,
the idea is that any sufficiently small perturbation of the laminar flow velocity
field in a pipe must eventually die away. So a mathematician would expect that
laminar flow of water through a pipe should be possible at any speed.

The paradox is that, in practice, this is not what is observed. If the flow in
a pipe is fast enough, it is invariably not laminar but turbulent — complicated,
apparently chaotic, highly time-dependent. Clearly the mathematical solution,
laminar flow, has something wrong with it in the laboratory. What is going on?
How can a flow that is stable mathematically be unstable in practice?

The explanation is that although sufficiently small perturbations of the lam-
inar velocity flow field must eventually decay, the threshold that defines “suffi-
ciently small” is too small to be counted upon in practice. The mathematics of
these high-speed flow problems is such that the minimal amplitude of perturba-
tions that do not eventually decay is tiny. The slightest imperfection in the pipe
or the smoothness of the inflow, or the slightest vibration of the laboratory, may
be enough to kick the system into instability. Geometrically, we say that the
basin of attraction of the laminar state is very narrow. This makes the laminar
state often effectively unobservable in practice.

A simple ODE model explains how an extremely narrow basin of attraction
can come about in a set of equations that seems far from extreme. LetR > 0 be a
parameter, a caricature of the Reynolds number, the nondimensional centerline
velocity of the laminar flow. Let u and v be two dependent variables, caricatures
of the field of velocity perturbations of the laminar flow, satisfying the equations

u′ = −R−1u+ v − v
√

u2 + v2, v′ = −2R−1v + u
√
u2 + v2. (15.6)

Rewriting (15.6) in matrix form reveals the structure more plainly:(
u
v

)′
=

(−R−1 1
0 −2R−1

)(
u
v

)
+
√
u2 + v2

(
0 −1
1 0

)(
u
v

)
. (15.7)

The term on the left is linear, and the term on the right is quadratic (if u
and v are doubled, it multiplies by 4). As always, it is the linear term that
governs behavior for sufficiently small u and v. Since the matrix is triangular,
its eigenvalues are the diagonal entries, −R−1 and −2R−1, and since these
numbers are negative, (0, 0) is a sink.

On the left below is an image of the linear part of the problem for R = 10
showing this sink, very much like the second panel of Figure 15.2. Something
physically important is revealed in this image: a great deal of transient growth
before the eventual decay. (In the fluid mechanics problems this effect is some-
times called “lift-up,” in which vorticity aligned with a shear flow excites a
growth in local velocity anomalies.) On the right is an image of the nonlinear
problem for the same value R = 10. What happens here is that the quadratic
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term catches hold of the linear amplification and moves it onto a new track
entirely. Though the initial conditions in this nonlinear experiment start at a
distance of only 0.02 from the fixed point, most of the trajectories spiral up
to size O(1) rather than decaying to the center. For this model, this is the
caricature of transition to turbulence.

th = (pi/8)*(1:16) + .0001; u0 = cos(th); v0 = sin(th);

subplot(1,2,1), plot(0,0,'.'), hold on, plot(.02*c)

N = chebop(0,18); R = 10;

N.op = @(t,u,v) [diff(u) + u/R - v; diff(v) + 2*v/R];

for k = 1:16

N.lbc = [.02*u0(k); .02*v0(k)]; [u,v] = N\0; arrowplot(u,v)

end

subplot(1,2,2), plot(0,0,'.'), hold on, plot(.02*c)

N = chebop(0,30);

N.op = @(t,u,v) [diff(u) + u/R - v + v*sqrt(u^2+v^2)

diff(v) + 2*v/R - u*sqrt(u^2+v^2)];

for k = 1:16

N.lbc = [.02*u0(k); .02*v0(k)]; [u,v] = N\0; arrowplot(u,v)

end
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Zooming out the second plot shows where the red trajectories are heading.
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Let us draw a plot to visualize this behavior in another way. For the same
equations (15.7) with R = 10, Figure 15.6 shows (u2 + v2)1/2 as a function
of t for six trajectories emanating from initial points (u, v) = (0, v0) with
v0 = 0, 001, 0.0025, 0.005, 0.01, 0.02, 0.04. The three initial conditions of low-
est amplitude lead to trajectories that eventually decay to zero, but the other
three, shown in red, increase to O(1).

N = chebop(0,60);

N.op = @(t,u,v) [diff(u) + u/R - v + v*sqrt(u^2+v^2)

diff(v) + 2*v/R - u*sqrt(u^2+v^2)];

for v0 = [.001 .0025 .005 .01 .02 .04]

N.lbc = [0; v0]; [u,v] = N\0;

big = (norm([u(end) v(end)])>.2);

if big, semilogy(sqrt(u.^2+v.^2))

else semilogy(sqrt(u.^2+v.^2)), end, hold on

end

0 10 20 30 40 50 60
10 -4

10 -2

10 0

Unlike turbulence, the model (15.7) is non-chaotic, and indeed it could not
possibly be chaotic since it is an autonomous first-order system with just two
variables. Similar models with three variables instead of two, however, com-
bine the narrow basin of attraction of the laminar state with chaotic long-time
trajectories. See Baggett, Driscoll, and Trefethen, “A mostly linear model of
transition to turbulence,” Physics of Fluids, 1995.

History. The general theory of stability of ODEs was developed by Alek-
sandr Mikhailovich Lyapunov, a student of Chebyshev, who was one of the
outstanding Russian mathematicians of the era before the 1917 revolution. Lya-
punov’s interest in questions of stability began with fluid and solid mechanics
and was set forth in his great work of 1892, The General Problem of the Stability
of Motion. His academic descendants include Smirnov, Sobolev, Kantorovich,
Ladyzhenskaya, and other major figures of 20th century Russian mathematics.

Our favorite reference. The idea of a tipping point was made famous by
Malcolm Gladwell’s bestseller The Tipping Point: How Little Things Can Make
a Big Difference, which first appeared in 2000. Gladwell emphasizes tipping
points related to the mathematics of epidemiology — which, as he vividly shows,
applies to many more areas than just epidemiology.
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Summary of Chapter 15. The starting point of analysis of an au-
tonomous system of ODEs y′ = f(y) is determination and classification
of its fixed points y∗, defined by the condition f(y∗) = 0. For y ≈ y∗, the
difference δy(t) = y(t) − y∗ evolves approximately according to the linear
equation (δy)′ = J∗(δy), where J∗ = (∂f/∂y)(y∗) is the Jacobian matrix
at y∗. A fixed point is stable if all the eigenvalues of J∗ lie in the left half
of the complex plane and unstable if at least one eigenvalue is in the right
half-plane.

Exercise 15.1. Unstable or stable? Classify the fixed point y = y′ = y′′ = 0 for the
ODEs (a) y′′ + 5y′ + 4y = 0, (b) y′′′ + 6y′′ + 11y′ + 6y = 0.

Exercise 15.2. A system with four fixed points. Consider the system u′ = 1
3
(u−v)(1−

u− v), v′ = u(2− v). (a) Give a formula for the Jacobian matrix J as a function of u
and v. (b) Determine the fixed points and evaluate the Jacobian at these points. (c)
Find the eigenvalues analytically, and classify the nature of each fixed point.

Exercise 15.3. Eulerian wobble. Determine the fixed points of (10.9) and analyze their
stability.

Exercise 15.4. Fixed points are unattainable. Let y′(t) = f(y) be an autonomous ODE
satisfying the continuity hypotheses of Theorems 11.2 or Theorem 11.3, and suppose
y∗ is a fixed point. Let y(t) be the solution for t > 0 with initial value y(0). Prove
that if y(0) 
= y∗, then y(t) 
= y∗ for all t.

Exercise 15.5. A cyclic system of three ODEs (adapted from Guckenheimer and
Holmes, “Structurally stable heteroclinic cycles,” Mathematical Proceedings of the
Cambridge Philosophical Society, 1988). Consider the system of ODEs u′ = u(1 −
u2 − bv2 − cw2), v′ = v(1 − v2 − bw2 − cu2), w′ = w(1 − w2 − bu2 − cv2), where b
and c are parameters. (a) Plot the solution u(t) for t ∈ [0, 800] with b = 0.55, c = 1.5
and initial conditions u(0) = 0.5, v(0) = w(0) = 0.49. Make similar plots of v(t) and
w(t), and also of the whole trajectory in u-v-w space, and comment on these shapes.
(b) What are the four fixed points of this system that the plots just drawn come close
to? For large t, the trajectory moves approximately in a cycle from one fixed point,
to another, to a third, and then back again. (It is approximating a heteroclinic cycle.)
Which fixed point is the trajectory near at t = 800? (c) Find the eigenvalues of the
appropriate matrix at one of these fixed points. What does this tell us about the
structure of this fixed point? How does that fit with the observed trajectory?

Exercise 15.6. Oregonator. Exercise 10.2 presented the nonlinear equations known as
the Oregonator. Here, continue with the parameters as presented in that exercise. (a)
The origin u = v = w = 0 is a fixed point. Determine the relevant eigenvalues and
classify the linearized behavior of the system there. (b) There is another fixed point
with u = w > 0. Find it, determine its eigenvalues, and classify it.
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In the subject of linear algebra, existence and uniqueness are straightforward.
A scalar linear equation ay = b has a unique solution for any b if a �= 0, whereas
if a = 0, it either has infinitely many solutions (if b = 0) or no solution at all (if
b �= 0). For a system of n linear equations Ay = b, where A is an n×n matrix,
the situation is a generalization of the same alternative. If A is nonsingular,
there is a unique solution for any b, whereas if A is singular, there are infinitely
many solutions if b ∈ range(A) and no solutions at all if b �∈ range(A).

Nonlinear algebraic problems, by contrast, can do almost anything. Consider
first a nonlinear equation involving a scalar real variable y, which without loss
of generality we can write with a zero right-hand side as f(y) = 0. If f(y) =
exp(y) there is no solution; if f(y) = y + exp(y), there is one solution; and if
f(y) = round(y), there are infinitely many solutions, namely all the numbers in
the interval (−0.5, 0.5), together with perhaps −0.5 or 0.5 depending on exactly
how you define the “round” function. More important, it may happen that
there are multiple solutions that are separated from one another. These may
be finite in number, as with f(y) = y2 − 1, whose solutions are y = ±1, or they
may be infinite in number, as with f(y) = sin(πy), whose solutions are all the
integers. The function f(y) = sin(πy) + 0.01y2 illustrates another possibility:
that a problem may have quite a few isolated solutions without having infinitely
many.

f = chebfun(@(y) sin(pi*y)+0.01*y.^2,[-15 15]);

plot(f), hold on, r = roots(f); plot(r,f(r))

195
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All this is for a scalar equation f(y) = 0. For a nonlinear system of equations
f(y) = 0, further possibilities arise.

Now let us look at differential as opposed to algebraic equations. What can
we say about the possibility of nonuniqueness, that is, of problems with multiple
solutions?

For linear ODEs, we have already made the main observations. Theorems
2.1–2.4 asserted uniqueness of solutions to first-order scalar linear IVPs, and
these results carry over to IVP linear systems and equations of higher order.
For linear BVPs, we saw in Chapter 6 that the key matter is whether or not a
problem has an eigenfunction. If not, there is a unique solution. If so, there are
either no solutions or a continuum of solutions.61

For nonlinear ODE IVPs, uniqueness is again usually not a problem. Theo-
rem 11.1 asserted existence and uniqueness for any problem y′(t) = f(t, y) if f
is continuous with respect to t and Lipschitz continuous with respect to y, and
Theorem 11.2 made the analogous statement for systems of IVPs. For unique-
ness to fail for an IVP, f must lack these continuity properties, as in the example
y′ = y1/2 of equation (3.16) or the further examples discussed in Chapter 11.

When it comes to nonlinear ODE BVPs, however, anything is possible. We
saw illustrations of nonlinear nonuniqueness with equation (5.10) and Exer-
cise 9.2, and the BVPs associated with the nonlinear pendulum of Chapter 9
also have nonunique solutions, though we did not mention that there. Phenom-
ena of this kind are the subject of this and the next two chapters.

To make a start, consider the linear BVP

y′′ = −y, x ∈ [0, 1], y(0) = y(1) = 1. (16.1)

This problem has no eigenfunction, so there is a unique solution.

N = chebop(0,1); N.op = @(x,y) diff(y,2) + y;

N.lbc = 1; N.rbc = 1;

y = N\0; plot(y)

61For example, y′′ + y = 0 with boundary condition y(0) = 0 has the general solution
y(x) = A sin(x). On any interval [0, L] where L is not an integer multiple of π, there is a
unique solution for any b when the second boundary condition y(L) = b is specified. If L is
an integer multiple of π, on the other hand, there are infinitely many solutions if b = 0 and
no solutions if b �= 0.
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Now consider the nonlinear variant in which the right-hand side of (16.1) is
replaced by its cube,

y′′ = −y3, x ∈ [0, 1], y(0) = y(1) = 1. (16.2)

(A quintic as opposed to cubic “nonlinear spring law” appeared in eq. (4.8).)
If we give this problem to Chebfun, a solution is produced that looks approxi-
mately like the last one, but about 10% larger.

N.op = @(x,y) diff(y,2) + y^3; y1 = N\0; plot(y1)
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However, this is not the only solution to (16.2). First let us present another
solution; then we shall explain how we got it.

x = chebfun('x',[0 1]); N.init = 1-25*(x-x^2); y2 = N\0; plot(y2)
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The last two figures show that there exist at least two distinct solutions to
(16.2). Now this is not a book of numerical analysis, but a word must be said
at this point about algorithms. In every area of computational mathematics, to
solve nonlinear problems, it is usually necessary to use some kind of iteration,
in which the solution is approached via a sequence of linear problems. The pro-
totypical iteration is Newton’s method, and Chebfun uses a version of Newton’s
method to solve nonlinear BVPs.62

If a problem has more than one solution, which one will an iteration like
Newton’s method converge to? The first thing to be said is that, sometimes, it
may not converge at all, and there is a large subject of nonlinear numerical op-
timization that aims to improve matters in this respect. When it does converge,
however, the solution it converges to is often one that is close to the initial guess
employed by the iteration. Every Newton iteration starts from some initial guess
or other, even if it is the zero function. In the case of Chebfun, if the user does
not specify an initial guess explicitly, then the iteration starts from a simple
polynomial in the variable x constructed to match the boundary conditions,
and this is what Chebfun did to obtain the solution plotted in Figure 16.3.

To get the second solution of (16.2), we overrode the default by specifying
a different initial guess in the field N.init. This function, 1 − 25(x− x2), was
chosen because it has approximately the right shape. There are few guaran-
tees in this business, but Chebfun duly converged to the solution plotted in
Figure 16.4. Here we superimpose the initial guess on the plot.

hold on, plot(N.init,'--')
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As an autonomous scalar equation of second order, (16.2) can be examined
in the y-y′ phase plane. Here is an image showing the phase plane trajectories
of the two solutions just computed.

y1p = diff(y1); plot(y1([0 1]),y1p([0 1]),'.'), hold on

y2p = diff(y2); plot(y2([0 1]),y2p([0 1]),'.')

arrowplot(y1,y1p), arrowplot(y2,y2p)

62When applied like this to find functions as opposed to just numbers, Newton iteration is
also called Newton–Kantorovich iteration.
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Each solution makes a half-circuit clockwise around the origin, one on the
right starting at (y, y′) = (1, 0.7258), and the other on the left starting at
(y, y′) = (1,−13.4074). By considering this picture we may be tempted to
conjecture that, in fact, (16.2) has infinitely many additional solutions besides
these: at least two that wind around exactly once, two that wind around 1 1/2
times, and so on (Exercise 16.3). As the winding numbers increase, so do the
amplitudes. For example, here is the next solution in the sequence, which we
obtain by starting with the initial guess y(x) = 5 sin(2πx). In the phase plane,
this corresponds to a large oval winding around one full revolution clockwise,
beginning at (y, y′) = (1, 38.8855) (not shown).

N.init = 5*sin(2*pi*x); plot(N.init,'--'), hold on

y3 = N\0; plot(y3); y3p = diff(y3);
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Whereas nonlinear BVPs can be rather delicate, nonlinear IVPs are rela-
tively straightforward. With this in mind, it is interesting to solve (16.2) as an
initial-value problem, fixing the left-hand value at y(0) = 1 and taking various
choices y′(0) = a in the range [−50, 50] for the left-hand derivative value:

y′′ = −y3, x ∈ [0, 1], y(0) = 1, y′(0) = a. (16.3)

N.rbc = [];

for a = -50:5:50

N.lbc = [1;a]; y = N\0; plot(y), hold on

end
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If we study this image carefully, we can see that there are five choices of initial
slope y′(0) = a that lead to the condition y(1) = 1 being satisfied at the right.
Regarding y(1) as a function of a, let us plot this function over the given range
a ∈ [−50, 50].

fa = @(a) chebop(@(x,y) diff(y,2)+y^3,[0,1],[1;a],[])\0;

f = chebfun(@(a) feval(fa(a),1),[-50,50],120); plot(f)
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Solutions to the BVP (16.2) correspond to points where this curve takes the
value 1.

r = roots(f-1); hold on, plot(r,f(r),'.')
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Five solutions appear in this range,
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r'

ans =

-38.8855 -13.4074 0.7258 4.8424 38.8855

and we have seen three of them already,

[y1p(0) y2p(0) y3p(0)]

ans =

0.7258 -13.4074 38.8855

In numerical analysis, the technique of varying a slope at one end of an interval
so as to satisfy a boundary condition at the other end is known as the shooting
method.

Let us turn to a more celebrated example of nonuniqueness, one involving
just two solutions rather than an infinite set, the Bratu equation:

y′′ + 3exp(y) = 0, x ∈ [0, 1], y(0) = y(1) = 0. (16.4)

Here we show two solutions on a single plot, one resulting from Chebfun’s default
initial guess (the zero function) and the other from the alternative initial guess
8(x− x2).

N = chebop(0,1); N.op = @(x,y) diff(y,2) + 3*exp(y);

N.lbc = 0; N.rbc = 0; y1 = N\0; plot(y1)

hold on, x = chebfun('x',[0 1]); N.init = 8*(x-x.^2);

y2 = N\0; plot(y2)
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These are the only two solutions to this problem, as we can explain (though
not quite rigorously prove without some more work) by the same method of
shooting as before.

N.rbc = [];

for a = -8:2:16

N.lbc = [0;a]; y = N\0; plot(y), hold on

end
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In Chapter 18 we shall consider the behavior of equation (16.4) as a parameter
is varied, namely the coefficient that here takes the value 3.

We close this chapter with a final pair of examples of nonlinear BVPs with
multiple solutions. In each case, shooting is a good method to explore the variety
of solutions, at least when the coefficient multiplying the highest derivative is not
too small. Another method of investigation for such problems is path-following,
to be considered in Chapter 18. Besides these approaches, a further technique
is the idea of deflation (Exercise 16.4).

First we consider the inhomogeneous equation

εy′′ + y + y2 = 1, x ∈ [−1, 1], y(±1) = 0. (16.5)

For ε = 0.2 this problem has four solutions: two symmetric and two asymmetric.
Higher values of ε would have just two symmetric solutions; the asymmetric ones
emerge in a pitchfork bifurcation (see next chapter) at a critical value of ε.

N = chebop(-1,1); N.lbc = 0; N.rbc = 0;

N.op = @(x,y) 0.2*diff(y,2) + y + y^2; x = chebfun('x');

N.init = x.^2-1; y1 = N\1; plot(y1), hold on

N.init = 1-x.^2; y2 = N\1; plot(y2)

N.init = sin(pi*x); y3 = N\1; plot(y3)

N.init = -sin(pi*x); y4 = N\1; plot(y4)
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Equation (16.5) is a constant-coefficient variant of an equation known as the
Carrier equation,

εy′′ + 2(1− x2)y + y2 = 1, x ∈ [−1, 1], y(±1) = 0. (16.6)
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For ε = 0.2 this also has four solutions, of similar structure.

N = chebop(-1,1); N.lbc = 0; N.rbc = 0;

N.op = @(x,y) 0.2*diff(y,2) + 2*(1-x^2)*y + y^2;

N.init = x.^2-1; y1 = N\1; plot(y1), hold on

N.init = 1-x.^2; y2 = N\1; plot(y2)

N.init = sin(pi*x); y3 = N\1; plot(y3)

N.init = -sin(pi*x); y4 = N\1; plot(y4)
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Application: sending a spacecraft to a destination

There may be several ways to get a spacecraft from A to B, even in a specified
time interval. For example, suppose the sun is fixed at the origin in the x-y plane
and a spacecraft starts at position (−2, 1). Starting from the initial velocity
(0.7, 0.7), here is the orbit up to the time T = 6. We have solved this as a
second-order IVP in two variables x and y defining the position of the spacecraft.

T = 6; N = chebop(0,T); x0 = -2; y0 = 1; u0 = 0.7; v0 = 0.7;

N.op = @(t,x,y) [diff(x,2) + x/(x^2+y^2)^1.5; ...

diff(y,2) + y/(x^2+y^2)^1.5];

N.lbc = @(x,y) [x-x0; y-y0; diff(x)-u0; diff(y)-v0];

[x1,y1] = N\0; plot(0,0,'.'), hold on, h1 = arrowplot(x1,y1);
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Of course, actual spacecraft are not simply launched into free flight from an
initial position and velocity; they have rockets and make adjustments along the
way. We are considering a simplified problem.

Now suppose our goal is to choose the initial conditions so that the spacecraft
will be at position (2, 1) at time T . This is a problem of the kind mentioned
in the first footnote of Chapter 5: a BVP in t rather than x. If we start from
the initial guess of a straight line orbit from (−2, 1) to (2, 1), Chebfun finds a
solution.

xT = 2; yT = 1; N.lbc = @(x,y) [x-x0; y-y0]; N.rbc = [xT; yT];

t = chebfun('t',[0 T]); N.init = [-2+2*t/3; 1+0*t];

[x2,y2] = N\0; arrowplot(x2,y2)
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Here are the corresponding initial velocities.

u20 = deriv(x2,0); v20 = deriv(y2,0); disp([u20 v20])

0.4460 0.5665

There is another solution, however, following a longer orbit the other way
around. Its average speed will be greater, and it will pass closer to the sun.
Here is this second solution plotted as a dashed line, obtained by starting from
another initial guess.

N.init = [-2+2*t/3; 1-2*sin(pi*t/T)];

[x3,y3] = N\0; arrowplot(x3,y3,LS,'--')
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The vector of initial velocities now points down instead of up.

u30 = deriv(x3,0); v30 = deriv(y3,0); disp([u30 v30])

0.1597 -0.7098

Both the solutions we have just found are arcs of ellipses, as the reader may
confirm by extending the orbits to a later time. A good choice is T = 27.4.

This 2-body problem belongs to Newtonian mechanics, and it would have
given little difficulty to scholars of earlier centuries. It is well known that any
orbit will be an ellipse or a hyperbola, or a parabola in the borderline case. In
the present example we got ellipses rather than hyperbolas because the number
T was sufficiently large. If the spacecraft needs to get from A to B faster, for
example in T = 2 time units, then the simplest solution is a nearly straight
trajectory that begins pointed almost at B, like firing a bullet. This time the
spacecraft has more than enough kinetic energy to escape the sun’s gravitational
field, and the orbit is an arc of a hyperbola rather than an ellipse.

T = 2; N.domain = [0 T];

N.lbc = @(x,y) [x-x0; y-y0]; N.rbc = [xT; yT];

t = chebfun('t',[0 T]); N.init = [-2+2*t; 1+0*t];

plot(0,0,'.'), hold on, [x4,y4] = N\0; arrowplot(x4,y4)
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Again there is a second solution, also a hyperbola, that passes the other way
around.

N.init = [-2+2*t; 1-1.5*sin(pi*t/T)];

[x5,y5] = N\0; arrowplot(x5,y5,LS,'--')
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The initial velocities are much greater than before. In space travel, a speedy
journey may cost a lot of energy!

u40 = deriv(x4,0); v40 = deriv(y4,0); disp([u40 v40])

u50 = deriv(x5,0); v50 = deriv(y5,0); disp([u50 v50])

1.8848 0.3469

1.6315 -1.1912

As we mentioned, the calculations above are classical. When a third body
is introduced, however, everything changes and only numerical computations
are available. For example, suppose that instead of one sun at (0, 0) we have
two fixed stars, one at (0, 0) and the other at (0, 1). All your experience with
elliptical orbits is now irrelevant. To see a little of the complexity, let us consider
solutions up to time T = 12 beginning with x′(0) = 0.8 with y′(0) = 0.549 and
y′(0) = 0.4. We see the beginnings of two orbits that will remain bounded but
are certainly not ellipses.

T = 12; N = chebop(0,T); u0 = .8;

N.op = @(t,x,y) ...

[diff(x,2) + x/(x^2+y^2)^1.5 + x/(x^2+(y-1)^2)^1.5; ...

diff(y,2) + y/(x^2+y^2)^1.5 + (y-1)/(x^2+(y-1)^2)^1.5];

N.lbc = @(x,y) [x-x0; y-y0; diff(x)-u0; diff(y)-0.549];

[x6,y6] = N\0; subplot(1,2,1)

plot([0 0],[0 1],'.'), hold on, arrowplot(x6,y6);

N.lbc = @(x,y) [x-x0; y-y0; diff(x)-u0; diff(y)-0.40];

[x7,y7] = N\0; subplot(1,2,2)

plot([0 0],[0 1],'.'), hold on, arrowplot(x7,y7);

-4 -2 0 2 4

-2

0

2

4

-4 -2 0 2 4

-2

0

2

4

Here are the same orbits extended to time T = 140. On the left we see
apparent periodicity. This is not typical; it results from the particular choice
v′(0) = 0.549.

N.domain = [0 140];

N.lbc = @(x,y) [x-x0; y-y0; diff(x)-u0; diff(y)-0.549];

[x6long,y6long] = N\0; subplot(1,2,1)

arrowplot(x6long,y6long), hold on, plot([0 0],[0 1],'.')

Copyright © 2018 Society for Industrial and Applied Mathematics



16. Multiple solutions of nonlinear BVPs 207

N.lbc = @(x,y) [x-x0; y-y0; diff(x)-u0; diff(y)-0.40];

[x7long,y7long] = N\0; subplot(1,2,2)

arrowplot(x7long,y7long), hold on, plot([0 0],[0 1],'.')
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Still more complicated orbits can be found by exploring values v′(0) such as
0.456, 0.455, and 0.454.

No solar system, of course, has two stars fixed motionless in space. However,
our two-star model still has relevance to real problems. First, we could build
a system just like this involving marbles rolling on a surface with two suitably
shaped drains in a fixed position (there are demonstrations along these lines at
some science museums). Second, there are many binary star systems that differ
from this only in that the two stars are in orbit around each other, which just
adds a few more terms to the equations. Third, a single star like our sun may
have planets orbiting around it, and spacecraft trajectories are often chosen to
swing close to some of the planets to get to their destination fast with less cost
in fuel. The plot of the 2016 movie The Martian turns on such an unexpected
choice of orbit.

History. We do not know who first focused on the phenomenon that a
nonlinear BVP can have multiple solutions, but certainly one of earliest and
most consequential examples of this kind concerns the buckling of columns.
Euler published his great paper on this subject in 1759 (in French), “On the
strength of columns.” He writes, “And so we see that, however small the force
F acting horizontally, it must always produce a certain deflection, which is
proportional to F itself. But it is not the same when the force acts vertically, or
if the column must sustain a load from above. At first it seems that such a force,
no matter how great, could not bend the column: for there is no reason why
it should bend in one direction rather than another. But the least inequality
in the parts of the column, or the least stress which it feels from any side, will
soon furnish a sufficient reason for it to bend in a particular direction.”

Our favorite reference. Many features of our world, from the fun-
damental laws of physics to the pattern of stripes on a tiger, originated in a
process of symmetry breaking, in which a choice is made among a multiplicity
of potential solutions. For a popular account of such effects see Stewart and
Golubitsky, Fearful Symmetry: Is God a Geometer?, first published in 1993.
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Summary of Chapter 16. Nonlinear ODE BVPs can have no solutions,
one solution, finitely many solutions, or infinitely many solutions. Some
strategies for investigating multiple solutions include (a) phase plane anal-
ysis, (b) shooting, (c) path-following, and (d) deflation. In general, finding
all solutions of a nonlinear BVP is difficult.

Exercise 16.1. Fisher equation. The function y(x) satisfies y′′ + y − y2 = 0 for x ∈
[−1, 1] with y(−1) = 1, y(1) = 0. (a) If y(0) ≈ 0.6, what is y(0.5)? Plot the solution.
(b) If y(0) ≈ −2.5, what is y(0.5)? Plot the solution. (c) Sketch both of the orbits
just described in the phase plane.

Exercise 16.2. Bounce pass. A ball is thrown from player A to player B, 5 meters
away, starting and finishing at height 1 meter. This is an idealized ball that travels as
a point mass with no air resistance or rotation and bounces perfectly with equal angles
and speeds of impact and rebound. The pass is a slow one: it takes a full 3 seconds
to get from A to B. (a) Assuming the ball does not bounce, sketch its trajectory. You
do not need to write any differential equations. (b) Assuming the ball bounces once,
sketch all of its possible trajectories. Again you do not need to write any differential
equations. (c) Now consider all possible solutions to this BVP, with any number of
bounces. Assume it takes 0.45 seconds for a point mass to fall from a height of 1
meter. Exactly how many solutions are there all together? Sketch them.

Exercise 16.3. Multiple solutions of cubic oscillator. Figure 16.6 shows phase plane
plots of two of the five solutions of (16.2) indicated in Figure 16.10. Expand the plot
to include all five solutions. How do you think the conjectures stated after Figure 16.6
about solutions with various winding numbers should be corrected?

Exercise 16.4. Deflation. (a) Equation (16.2) can be written N(y) = 0, where N is
a nonlinear operator applying to functions on [0, 1] with boundary values equal to 1.
Compute the solution to (16.2) shown in Figure 16.3, and call this function Y . Now
consider the new nonlinear operator M(y) = N(y)(1 + ‖y − Y ‖−1), where ‖ · ‖ is the
2-norm. Note that M(y) = 0 for y 
= Y if and only if N(y) = 0. Use Chebfun to
solve M(y) = 0 numerically. Which solution from Figure 16.10 do you get? (b) This
process is automated by the Chebfun deflate command. Show that you get the same
solution with deflate(N,Y,1,1). Which solution do you get with deflate(N,Y,2,0)?
(For information on deflation, see Farrell, Birkisson, and Funke, “Deflation techniques
for finding distinct solutions of nonlinear partial differential equations,” SIAM Journal
on Scientific Computing 37 (2015), pp. A2026–A2045.)
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As parameters vary, the solutions of an ODE may change in structural proper-
ties. This is the subject of bifurcation theory.

For a prototypical example, consider a marble resting on a surface whose
height as a function of horizontal position y is

h(y) = −cy2, (17.1)

where c is a constant. For any value of c, the marble is in equilibrium at the
fixed point y = 0: there is no net force on it. But it is clear that the equilibrium
will be stable if c < 0, neutrally stable if c = 0, and unstable if c > 0.63 The
critical value c = 0 is the bifurcation point at which the behavior switches
from one class to the other.

y = chebfun('y',[-1.3 1.3]);

marble = .14i + .12*exp(pi*1i*(0:60)/30);

for k = 1:3

c = -.4+.2*k; surface = -c*y^2;

subplot(1,3,k), plot(surface), hold on

fill(real(marble),imag(marble),[0 0 0])

end

63As mentioned in the first footnote of Chapter 15, there is some inconsistency between
formal and more casual uses of terms related to stability. Our use of “stable” and “unstable”
here matches the formal definitions given in that chapter. We did not define “neutrally stable,”
which here corresponds to a case that is unstable, but with unstable trajectories growing just
algebraically, not exponentially.

209
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Let us examine the ODE implicit in these pictures. We make the physics
as elementary as possible, regarding the marble simply as a point mass moving
along a surface in a gravitational field with constant 1. (Thus this marble has
no internal angular momentum.) Since the slope of the surface at position y is
h′(y) = −2cy, the ODE for its position y(t) as a function of time t is

y′′ = 2cy. (17.2)

Following the pattern of Chapter 15, we plot some typical trajectories in a
neighborhood of the fixed point (0, 0) in the (y, y′) phase plane.

th = (pi/6)*(1:12)+.000001; u0 = cos(th); v0 = sin(th);

cc = chebfun('exp(1i*pi*x)'); L = chebop(0,2.5);

for j = 1:3

subplot(1,3,j), plot(0,0,'.'), hold on, plot(cc)

c = -.4+.2*j; L.op = @(t,y) diff(y,2) - 2*c*y;

for k = 1:12

L.lbc = [u0(k); v0(k)] + 1e-4*[1;1];

y = L\0; arrowplot(y,diff(y))

end

end
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The three images show a center, a degenerate node, and a saddle point, corre-
sponding to c = −0.2, 0, and 0.2. The Jacobian matrices are

J∗ =

(
0 1

−0.4 0

)
,

(
0 1
0 0

)
,

(
0 1
0.4 0

)
,

with eigenvalues

{λ1, λ2} = {di,−di}, {0, 0}, {d,−d}, d =
√
0.4 .
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As an example of the interpretation of these results, what is the physics of
the third problem of Figure 17.1, the unstable configuration with the marble
at the top of a hill? From the phase plot we can see the answer. Almost any
nonzero initial position in the phase plane will lead to divergence to infinity in
a northeasterly or southwesterly direction: to be precise, in the direction of a
positive or negative multiple of the eigenvector (1,

√
0.4) of J∗. The exception

is the special situation in which the marble begins with position (y, y′) exactly
equal to a multiple of the other eigenvector, (1,−√

0.4). In this case the marble
is moving up the hill with just the right amount of energy to reach the top with
velocity zero at t = ∞. (In general, the set of initial points that converge to a
fixed point of a dynamical system is called the stable manifold of that point.)
Of course, this is a physically unstable situation, which would be undone by the
slightest perturbation.

For problems depending on a parameter, it is common to draw a bifurcation
diagram indicating the dependence of some measure of a fixed point — an
equilibrium — on the parameter. For the marble on the surface, the bifurcation
diagram is very simple.

plot([-2 0],[0 0],'-',[2 0],[0 0],'--')
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For each value of c there is a single fixed point y∗, and the diagram plots
the dependence of y∗ on c. For this very simple problem, the dependence is
trivial since the fixed point is y∗ = 0 for all c. For c < 0 the equilibrium is
stable, and the curve is shown solid. For c > 0 it is unstable, and the curve is
shown dashed. In general, dashed curves in bifurcation diagrams correspond to
unstable steady states of a system, which one would not ordinarily expect to
observe in an experiment.

There is an interesting way to trace parts of a bifurcation diagram dynami-
cally: set up a time-dependent problem in which the parameter of interest varies
slowly in time, slowly enough that at each t, the behavior is approximately that
of a constant-coefficient system. (In quantum physics this would be called an
adiabatic transition from one parameter value to another.) For example, sup-
pose we modify (17.2) to the equation

y′′ = 2c(t)y, c(t) = −2 + t/150. (17.3)

Here is the solution with y(0) = 0.02, y′(0) = 0.
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L = chebop(0,600); L.lbc = [0.02;0]; L.maxnorm = 0.9;

L.op = @(t,y) diff(y,2) - 2*(-2+t/150)*y;

y = L\0; plot(y)
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For t < 300 we see quasi-steady oscillation around y = 0, with frequency de-
creasing to 0 as t approaches 300. After this, the character of the problem
changes and an exponential explosion begins. There is no steady state; the
orbit is diverging to ∞.

By varying features of the marble problem, we can begin to explore the rich
world of bifurcation theory. A good way to start is to introduce a quartic term
in (17.1),

h(y) = −cy2 + y4. (17.4)

Now the surfaces look like this.

y = chebfun('y',[-1.4 1.4]);

for k = 1:3

c = -2+k; surface = -c*y^2 + y^4;

subplot(1,3,k), plot(surface), hold on

fill(real(marble),imag(marble),[0 0 0])

end

The slope is h′(y) = −2cy + 4y3, and (17.2) becomes

y′′ = 2cy − 4y3. (17.5)

Here are some trajectories in the (y, y′) phase plane.
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N = chebop(0,2.5);

for j = 1:3

subplot(1,3,j), plot(0,0,'.'), hold on

c = -2+j; N.op = @(t,y) diff(y,2) - 2*c*y + 4*y^3;

if c>0, plot(sqrt(c/2)*[-1 1],[0 0],'.'), end

for k = 1:12

N.lbc = [u0(k); v0(k)];

y = N\0; arrowplot(y,diff(y))

end

end
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The bifurcation diagram for this problem is drawn below. This is called a
pitchfork bifurcation, or more fully a supercritical pitchfork bifurcation.
For c > 0, we se that the marble has stable rest positions at x = ±√c/2.

plot([-2 0],[0 0],'-',[2 0],[0 0],'--')

ystar = chebfun('y'); c = 2*ystar^2; hold on, plot(c,ystar)
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Let us again consider a variable coefficient problem with a slowly changing
coefficient c(t),

y′′ = 2c(t)y − 4y3, c(t) = −2 + t/150. (17.6)

This time we see a continuous transition from oscillation about 0 to oscilla-
tion about a nonzero value, beautifully matching one branch of the bifurcation
diagram.
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N = chebop(0,600); N.lbc = [0.02;0];

N.op = @(t,y) diff(y,2) - 2*(-2+t/150)*y + 4*y^3;

y = N\0; plot(y)
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The solution settles on the upper rather than the lower branch for no particular
reason, a phenomenon known as symmetry breaking (discussed further in Chap-
ters 18 and 22). If we alter the initial conditions, it might as easily find the
lower branch. Here is an example of that behavior, where the only difference is
that the initial amplitude y(0) has been increased from 0.02 to 0.05.

N.lbc = [0.05;0]; y = N\0; plot(y)
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In the curves above, the departure from the steady state has been seeded by a
nonzero initial condition. Another approach is to start from a zero condition but
introduce perturbations along the way. Here we carry out such an experiment,
with the perturbation consisting of 0.003 times a smooth random function f(t)
of the kind described in Chapter 12,

y′′ = 2c(t)y − 4y3 + 0.003f(t), c(t) = −2 + t/150. (17.7)

The details differ, but the overall behavior is as before, with the trajectory again
happening to find the lower branch of the bifurcation diagram.

N.lbc = [0;0]; rng(2), rhs = .003*randnfun(1,[0 600],'big');

y = N\rhs; plot(y)
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A conspicuous feature of the last three plots is persistent oscillations, an
effect we saw in Chapter 8 in the discussion of resonance. To construct problems
that are not so influenced by past history, we can introduce a damping term
in the ODE. Specifically, from now on we shall add the term −0.2y′, so that
(17.5), for example, becomes

y′′ = 2cy − 4y3 − 0.2y′. (17.8)

The trajectories in the phase plane change their shapes. Now they always spiral
into fixed points, just as the marble in Figure 17.5 will eventually come to rest
if there is friction.

N = chebop(0,5);

th = (pi/2)*(1:4)+.000001; u0 = cos(th); v0 = sin(th);

for j = 1:3

subplot(1,3,j), plot(0,0,'.'), hold on

c = -2+j; N.op = @(t,y) diff(y,2) - 2*c*y + 4*y^3 + .2*diff(y);

if c>0, plot(sqrt(c/2)*[-1 1],[0 0],'.'), end

for k = 1:4

N.lbc = [u0(k); v0(k)];

y = N\0; arrowplot(y,diff(y))

end

end
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Here is a trajectory for the damped time-dependent problem

y′′ = 2c(t)y − 4y3 − 0.2y′ + 0.003f(t), c(t) = −2 + t/150, (17.9)

with the same random forcing function 0.003f(t) as before.
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N = chebop(0,600); N.lbc = [0;0];

N.op = @(t,y) diff(y,2) - 2*(-2+t/150)*y + 4*y^3 + .2*diff(y);

y = N\rhs; plot(y)

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

* * *

Let us review what we have done so far in this chapter. We have looked
at two dynamical systems: first the quadratic problem (17.1)–(17.2), then the
quartic problem (17.4)–(17.5). For each one we displayed four figures showing
the physical interpretation by a marble on a surface, the phase plane, a bifur-
cation diagram, and a trajectory for a problem with slowly varying c(t). In the
second case we actually showed four such trajectories: two for different initial
conditions, then one driven by a small random forcing term 0.003f(t), then a
fourth of the same kind but with damping included in the equation.

We are now going to follow the same pattern for one final kind of bifurca-
tion: a subcritical pitchfork bifurcation. The simplest starting point of this
discussion could be equations (17.4) and (17.8) again, but with a sign change
on the quartic term:

h(y) = −cy2 − y4 (17.10)

and
y′′ = 2cy + 4y3 − 0.2y′. (17.11)

This gives a new marble diagram,

y = chebfun('y',[-1.4 1.4]);

for k = 1:3

c = -2+k; surface = -c*y^2 - y^4;

subplot(1,3,k), plot(surface), hold on

fill(real(marble),imag(marble),[0 0 0])

end
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and a new bifurcation diagram,

plot([-2 0],[0 0],'-',[2 0],[0 0],'--')

ystar = chebfun('y'); c = -2*ystar^2;

hold on, plot(c,ystar,'--')
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However, let us immediately modify the problem further to make it more real-
istic, and more interesting, by adding a stabilizing y6 term:

h(y) = −cy2 − y4 + y6 (17.12)

and
y′′ = 2cy + 4y3 − 6y5 − 0.2y′. (17.13)

Now the marble diagram looks like this.

y = chebfun('y',[-1.4 1.4]);

for k = 1:3

c = -.4+.1*k; surface = -c*y^2 - y^4 + y^6;

subplot(1,3,k), plot(surface), hold on

fill(real(marble),.5*imag(marble),[0 0 0])

end
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The bifurcation diagram becomes more complicated.

plot([-2 0],[0 0],[2 0],[0 0],'--')

ystar = chebfun('y',[-1 1]/sqrt(3)); c = -2*ystar^2 + 3*ystar^4;

hold on, plot(c,ystar,'--')

ystar = chebfun('y',[1/sqrt(3) 1.1]); c = -2*ystar^2 + 3*ystar^4;

plot(c,[ystar,-ystar])
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New dynamical possibilities are implied by this figure. One implication is that
if c increases slowly through c = 0, one may expect a sudden jump transition to
an amplitude y ≈ ±√2/3. A simulation confirms this prediction.

N.lbc = [0;0];

N.op = @(t,y) diff(y,2)-2*(-2+t/150)*y-4*y^3+6*y^5+.2*diff(y);

y = N\rhs; plot(y)
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Another implication is that if we now let c decrease through 0, we may observe
the effect known as hysteresis, in which the jump back to the initial state
occurs at a parameter value different from the initial one.

y0 = y(600); yp0 = deriv(y,600); N.lbc = [y0;yp0];

N.op = @(t,y) diff(y,2)-2*(2-t/150)*y-4*y^3+6*y^5+.2*diff(y);

y = N\rhs; hold on, treverse = chebfun('600-t',[0 600]);

plot(treverse,y')
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Application: FitzHugh–Nagumo equations of neural signals

One of the great achievements of 20th century science was the model of
propagation of neural signals by Alan Hodgkin and Andrew Huxley in 1952,
which won them the 1963 Nobel Prize for Physiology or Medicine. In the words
of J. D. Murray in his book Mathematical Biology I (Springer, 2002), from
which this discussion is adapted, “The theory of neuron firing and propagation
of nerve action potentials is one of the major successes of real mathematical
biology.”

Hodgkin and Huxley worked on the neuron of the giant squid, expressing
the current out of the axon of the neuron in terms of the oscillations of an
activator–inhibitor system. The full description requires a PDE, but the model
is interesting even when reduced to an ODE by ignoring variation along the
length of the axon. FitzHugh and Nagumo subsequently simplified the equations
even further to a two-variable ODE system now known as the FitzHugh–Nagumo
equations,

v′ = v − 1

3
v3 − w + I, w′ = 0.08(v − 0.8w + 0.7). (17.14)

Here v(t) represents the electric potential across the membrane of the neuron,
which is experimentally accessible. The w(t) component is an approximation
of the current through the membrane due to movement of ions. Finally, I is a
current applied to stimulate the cell experimentally. This will be our bifurcation
parameter.

In view of the plus and minus signs in (17.14), we can say that v is self-
activating but inhibited by w. Conversely, w is activated by v but otherwise
decays (down to the level w = 0.7/0.8). This a bit like the interaction of rabbits
and foxes in the Lotka–Volterra model, but with different details. While v
and w tend to grow and decrease in opposition to one another, they are also
given some inhomogeneous growth. If I, the external forcing for v, is too small,
then v does not recover fast enough to excite the system. However, when I
passes a threshold I1, the neuron begins to fire, with v reaching peaks and
troughs repeatedly. If I continues to increase, it passes another threshold I2
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past which w is pushed into a higher steady state that again shuts down the
activation of v.

We can see all three of these behaviors by allowing I to grow slowly in time,
with a small random perturbation included to make the system noisy. We plot
just the component w; the behavior of v is similar.

N = chebop([0 1000]); t = chebfun('t',[0 1000]);

I = t/500 + .01*randnfun(2,[0 1000],'big');

N.op = @(t,v,w) [ diff(v)-(v-v^3/3-w)

diff(w)-0.08*(v-0.8*w+0.7) ];

N.lbc = @(v,w) [v;w];

[v,w] = N\[I; 0*I]; plot(w)
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This image reveals that there must be a pair of bifurcations as the parameter I is
increased. At t ≈ 180, with I ≈ 0.36, the oscillation switches on, and at t ≈ 700,
with I ≈ 1.4, it switches off again. Bifurcations like this where an oscillation
turns on or off are known as Hopf bifurcations, and they are characterized
by a pair of eigenvalues of the Jacobian matrix crossing the imaginary axis to
move into or out of the right half of the complex plane.64

We can confirm these guesses as follows. A fixed point v∗, w∗ of (17.14) is
characterized by the conditions

v∗ −
1

3
v3∗ − w∗ + I = 0, v∗ − 0.8w∗ + 0.7 = 0,

and eliminating w∗ with the aid of the second equation gives

I = −v∗ +
v3∗
3

+
v∗ + 0.7

0.8
. (17.15)

By inverting this equation we get a plot v∗ as a function of I.

v = chebfun('v',[-2,2]); I = -v + v^3/3 + (v+.7)/.8;

vstar = inv(I); plot(vstar)

64There are many examples of Hopf bifurcation in our lives, such as that annoying vibration
that sets in when your car passes a particular speed.
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By differentiating the two equations of (17.14) with respect to v∗ and w∗ we find
the corresponding Jacobian matrix, which depends only on v∗ since w enters
the equations linearly:

J∗ =

(
1− v2∗ −1

0.08 −0.064

)
. (17.16)

We now plot the maximal real part of the eigenvalues of J∗, the spectral abscissa
(introduced in Chapter 14), as a function of I.

J = @(v) [1-v^2 -1; .08 -.064];

abscissa = chebfun(@(I) max(real(eig(J(vstar(I))))),[0 3], ...

'splitting','on');

plot(abscissa,'m'), hold on

Ibifurc = roots(abscissa); plot(Ibifurc,0*Ibifurc,'.')
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The two bifurcation points are shown as black dots. They match our earlier
estimates nicely.

Ibifurc

Ibifurc =

0.3313

1.4187

Copyright © 2018 Society for Industrial and Applied Mathematics



222 Exploring ODEs

You may wonder why the plot of the spectral abscissa is not smooth, but
breaks into four regions separated by discontinuities of the derivative. Actually,
this effect appeared already in Figure 14.7. The discontinuities correspond to
transitions between regimes where the dominant eigenvalues of J∗ are a complex
conjugate pair (the second and the fourth parts of the curve) and regimes where
there is a single dominant real eigenvalue (the first and third). As predicted,
when the spectral abscissa passes through zero for this problem, it is with a pair
of complex conjugate eigenvalues, signaling a Hopf bifurcation:

eig(J(vstar(Ibifurc(1))))

ans =

-0.0000 + 0.2755i

-0.0000 - 0.2755i

The magnitude of the imaginary part of these eigenvalues, 0.2755, gives the fre-
quency of the linearized oscillation. This corresponds to a period of 2π/0.2755 ≈
22.8, slightly less than the period observed in Figure 17.19.

Here are plots of trajectories in the v-w plane for I = 0.31, below the bifur-
cation, and I = 0.34, above.

dom = [0 75]; N = chebop(dom);

N.op = @(t,v,w) [ diff(v)-(v-v^3/3-w)

diff(w)-0.08*(v-0.8*w+0.7) ];

I = chebfun('0.31+0*t',dom); vs = vstar(0.31); ws = (vs+.7)/.8;

subplot(1,2,1), plot(vs,ws,'.'), hold on

N.lbc = @(v,w) [v-vs;w-ws-.2];

[v,w] = N\[I; 0*I]; arrowplot(v,w)

I = chebfun('0.34+0*t',dom); vs = vstar(0.34); ws = (vs+.7)/.8;

subplot(1,2,2), plot(vs,ws,'.'), hold on

N.lbc = @(v,w) [v-vs;w-ws-.2];

[v,w] = N\[I; 0*I]; arrowplot(v,w)
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The equations above are simple enough that the calculation could be done
analytically. The trace of J∗, the sum of its diagonal entries, is 0.936− v2∗, and
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this will be equal to the sum of the eigenvalues. When the eigenvalues form
a conjugate pair, both have the same real part, and thus the Hopf bifurcation
will occur when the trace passes through zero, that is, v∗ = ±√

0.936. Thus by
(17.15), the two bifurcation points correspond to the parameter values

Ic = ±a+
±a3

3
+

±a+ 0.7

0.8
, a =

√
0.936.

History. The observation that a system may change stability when a pa-
rameter passes through a critical value was well known to 19th century applied
mathematicians such as Helmholtz, Kelvin, and Rayleigh. The technical use of
the term “bifurcation” may be due to Poincaré in 1885. Further foundations of
the mathematical theory of bifurcations were laid by Andronov and Pontryagin
in the Soviet Union in the 1930s.

Our favorite reference. For a marvelously rich discussion of all kinds
of bifurcation effects see Seydel, Practical Bifurcation and Stability Analysis,
3rd ed., Springer, 2009. The original edition appeared in 1994.

Summary of Chapter 17. Bifurcation refers to the change of the qual-
itative nature of a solution to a nonlinear problem as a parameter varies
through a critical value. Typically what changes at the critical value is the
stability structure of a fixed point of the system. For example, if an eigen-
value crosses into the right half-plane, then a stable solution may become
unstable, so that trajectories jump instead to other solutions. If it is a
complex conjugate pair of eigenvalues that crosses into the right half-plane,
we have a Hopf bifurcation, leading to the onset of oscillations.

Exercise 17.1. Van der Pol equation. Consider the fixed point y = y′ = 0 of the van
der Pol equation y′′ + y − μ(1 − y2)y′ = 0, as in (9.6). (a) Determine the Jacobian
matrix and its eigenvalues analytically, and show that there is a Hopf bifurcation as
μ passes from negative to positive. (b) A different bifurcation takes place as μ passes
through −2 or 2. Explain.

Exercise 17.2. FitzHugh–Nagumo experiment and noise. Rerun the experiment of Fig-
ure 17.19 without the random perturbation term. What is the change in the output?
Can you explain why?

Exercise 17.3. Slowly-varying logistic map. This book deals with continuous-time
processes, also known as flows, defined by equations like y′ = f(y). Every topic we
consider has an analogue for discrete-time processes, also known as maps, defined by
equations like yn+1 = f(yn). Execute the code

r = linspace(2,4,npts); y = 0*r; y(1) = .5;

for j = 1:npts-1, y(j+1) = r(j)*y(j)*(1-y(j)); end

plot(r,y,'.','markersize',3)

for npts = 102, 103, . . . , 107 and show the plots that result. Write down five careful
sentences describing what you think these plots reveal in the light of the discussion of
this chapter. Make specific reference to relevant figure numbers.
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Exercise 17.4. Bifurcation diagram for the nonlinear pendulum. Consider the nonlin-
ear pendulum equation (9.6), y′′ = − sin(y), on the interval t ∈ [0, d] with boundary
conditions y(0) = y(d) = 0. (a) Making reference to the phase plane diagram, ex-
plain why for d ≤ π this problem has a unique solution and describe that solution.
(b) Explain why there is a bifurcation at d = π and describe the two new solutions
that appear for d > π. (c) Explain why there is another bifurcation at d = 2π and
describe the two new solutions that appear there. Meanwhile what has happened to
the three solutions already present? (d) Exactly how many solutions will there be for
d = 100, and what will they look like?

Exercise 17.5. Subcritical pitchfork marble. Consider the ODE (17.13) for a marble
on a surface with c = −0.2 sketched in Figure 17.15, whose bifurcation diagram was
shown in Figure 17.16. Consider the BVP for this problem y(0) = y(T ) = 0, where
T > 0 is a fixed constant. Assume in what follows that we are only interested in
solutions with y(t) ≥ 0 for all t ∈ [0, T ]. (a) Describe physically, in terms of the
marble rolling along the surface, three structurally different types of solutions that
may exist for this problem (for appropriate values of T ). (b) Draw a sketch of the
phase plane and interpret your three solutions in this context.

Exercise 17.6. Emergence of a limit cycle. The system u′ = −v + u(μ − u2 − v2),
v′ = u + v(μ − u2 − v2), where μ is a real parameter, has a fixed point (u, v) =
(0, 0). (a) Compute solutions for t ∈ [0, 20] starting from (u, v) = (2, 0) for μ =
−1,−0.5, . . . , 1. Plot each curve in the (u, v) plane with axes equal. What dependence
on μ do you observe? (b) Analyze the stability of the fixed point and discuss the
bifurcation situation.
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As we have seen in the last chapter, a central idea in the study of ODEs is the
investigation of the dependence of solutions on parameters. This is important
both scientifically, since varying parameters may reveal the range of behaviors
of a problem, and algorithmically, since solutions can often be calculated most
reliably by varying a parameter incrementally from one range to another. In
this chapter we pursue these ideas.

Dependence on parameters can be of interest for linear problems, as we shall
see in our investigation of boundary and interior layers in Chapter 20. The heart
of this subject, however, is nonlinear problems, where the varying of parameters
may be essential to the computation of some solutions and to the elucidation of
the structure of a problem.

As a starting example, suppose we are faced with the problem

εy′′ + y − y2 = 0, x ∈ [0, 1], y(0) = 1, y(1) = 0 (18.1)

and seek a solution with ε = 2−10. If we try calling Chebfun directly, it fails, as
Newton iterations often do when started from an initial guess not close enough
to a solution. Larger values of ε lead to ready convergence, however. Taking
advantage of this effect, we can creep up on the solution we want, decreasing ε
steadily in the process known as continuation.65 The number ε is called the
continuation parameter. The following code starts with ε = 2−3 and reduces
the value successively by factors of

√
2 until 2−10 is reached.

65Other terms include embedding and homotopy methods. Such ideas are important not
just for ODEs (and PDEs), but also for finding solutions of nonlinear algebraic systems of
equations.
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N = chebop(0,1); N.lbc = 1; N.rbc = 0; epsvec = 2.^-(3:.5:10);

for ep = epsvec

N.op = @(x,y) ep*diff(y,2) + y - y^2;

y = N\0; plot(y), hold on, N.init = y;

end
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The key feature of this code segment is that for each value of ε after the first,
an initial guess is specified in the N.init field corresponding to the converged
solution from the previous value. Note that the solution obtained shows a
boundary layer at x = 1; its width is O(ε1/2) (see Exercise 18.2).

The family of solutions of (18.1) we have just plotted is not the only one.
If we start from the initial guess y(x) = 1 − x − 3ex(x − x2), another family
emerges, which we plot in a new color. Again there is a boundary layer at
x = 1. Images like these show that continuation may offer a powerful tool for
investigating problems with multiple solutions.

x = chebfun('x',[0,1]); N.init = 1-x-3*exp(x)*(x-x^2);

for ep = epsvec

N.op = @(x,y) ep*diff(y,2) - y^2 + y;

y = N\0; plot(y), hold on, N.init = y;

end
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Next, let us turn to equation (16.5),

εy′′ + y + y2 = 1, x ∈ [−1, 1], y(±1) = 0. (18.2)

Suppose we want a solution with ε = 2−10. This time, a call to Chebfun is
successful:
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N = chebop(-1,1); N.lbc = 0; N.rbc = 0; ep = 2^-10;

N.op = @(x,y) ep*diff(y,2) + y + y^2;

y = N\1; plot(y)
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This solution is valid, but it is far from the simplest solution for this choice
of ε. To find another, the following code segment uses continuation with ε =
1/2, 1/4, . . . , 1/1024. Here we obtain solutions with boundary layers of width
O(ε1/2) at both ends.

N = chebop(-1,1); N.lbc = 0; N.rbc = 0; epsvec = 2.^-(1:10);

for ep = epsvec

N.op = @(x,y) ep*diff(y,2) + y + y^2;

y = N\1; plot(y), hold on, N.init = y;

end
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Using a continuation parameter may have a number of benefits, including
these:

1. The computation may be faster because fewer Newton steps are needed.

2. Convergence may be achieved in cases where a cold start would fail.66

3. In problems with multiple solutions, continuation may help pick out the
solution of interest.

66When we use an initial condition from a nearby problem to improve our results, this is
called a warm start.
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In the experiment we have just shown, benefit 3 has been the crucial one.
For a third example, let us look at the Bratu equation,

y′′ + λexp(y) = 0, x ∈ [0, 1], y(0) = y(1) = 0. (18.3)

In (16.4), λ took the value 3. Now, suppose we want it to range over the values
0, 0.25, . . . , 3.5. The continuation approach gives a simple family of curves.

N = chebop(0,1); N.lbc = 0; N.rbc = 0;

lamvec1 = 0:.25:3.5; mvec1 = [];

for lam = lamvec1

N.op = @(x,y) diff(y,2) + lam*exp(y);

y1 = N\0; plot(y1), hold on

N.init = y1; mvec1 = [mvec1 y1(0.5)];

end
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Starting from another initial guess, we can find the other branch of solutions,
which we superimpose on the same plot with a new vertical scale.

N = chebop(0,1); N.lbc = 0; N.rbc = 0;

lamvec2 = 0.5:.25:3.5; mvec2 = [];

x = chebfun('x',[0 1]); N.init = 6*sin(pi*x);

for lam = lamvec2

N.op = @(x,y) diff(y,2) + lam*exp(y);

y2 = N\0; plot(y2)

N.init = y2; mvec2 = [mvec2 y2(0.5)];

end
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At this point we have shown five examples of families of solutions to
parameter-dependent nonlinear ODEs. In each case we superimposed collec-
tions of solutions on a single plot. There is another approach to such problems
that is often fruitful, however, and that is to focus on a single scalar quantity
that is characteristic of the solution of interest, an idea we have already explored
in the last chapter on bifurcation.

For the Bratu problem, a natural scalar to measure is the maximum of y(x),
that is, y(0.5). This quantity was stored at each step of the iterations above in
the vectors mvec1 and mvec2. Thus we can immediately plot y(0.5) as a function
of λ for the two families of solutions just computed, giving a bifurcation diagram
for (18.3).

plot(lamvec1,mvec1,'.-'), hold on, plot(lamvec2,mvec2,'.-')
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The point of interest is around λ = 3.5, where we have what is a called
a fold or a saddle-node bifurcation, looking like a pitchfork without the
central tine. To investigate the structure near such points, it is time to advance
from continuation to path-following. The idea of path-following is that we
will not just vary a parameter such as λ, but we will follow a path of solutions.
For example, what happens to one of the solution branches in this plot as λ
approaches 3.5? Clearly in some sense it bends around to turn back in the other
direction, making y(0.5) a double-valued function of λ. Let us show another plot,
then explain what is going on.

H = chebop(0,1); H.op = @(x,y,lam) diff(y,2) + lam*exp(y);

H.lbc = @(y,lam) y; H.rbc = @(y,lam) y; lam0 = 0;

[y,lamvec,mvec,lamfun,mfun] = ...

followpath(H,lam0,'measure',@(y) y(0.5),'maxstepno',17);

plot(lamfun,mfun), hold on, plot(lamvec, mvec,'.')

Copyright © 2018 Society for Industrial and Applied Mathematics



230 Exploring ODEs

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

The plot shows a trajectory of solutions that passes around the turning point.
Obviously more was involved in generating this plot than just varying λ. The
data are the dots (not the curve, which is just a smooth interpolant), and they
have been generated by a process called pseudo-arclength continuation, imple-
mented in the Chebfun code followpath, whose details we shall not describe.
The idea is to extrapolate from one dot to the next not just with respect to λ,
but with respect to λ and also the solution y. A trajectory is in fact being
followed in a high-dimensional space, though it is convenient to imagine that
it is being followed in the two-dimensional space described by λ and the scalar
measure y(0.5).

The Bratu equation has just two solutions, but (18.2) has four or more, for
ε = 0.2 at least, as shown in Figure 16.13. To get a sense of a more complicated
bifurcation structure let us apply path-following to (18.2). We will use ε−1 as
a parameter to track them, with y′(1) as the scalar measure.

First, we compute the smoothest family of solutions, which arises from Cheb-
fun’s default initial guess.

H = chebop(-1,1); H.op = @(x,y,epi) diff(y,2)/epi +y+y^2-1;

H.lbc = @(y,ep) y; H.rbc = @(y,lam) y; epi0 = 0.01;

meas = @(y) feval(diff(y),1);

MSN = 'maxstepno'; DI = 'direction';

SM = 'stepmax'; ME = 'measure';

[y1,epi1,m1,epif1,mf1] = followpath(H,epi0,ME,meas,MSN,12,SM,1);

plot(y1)
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Here is the second symmetric family of solutions.

x = chebfun('x'); H.init = 5*(1-x^2); epi0 = 0.5;

[y2,epi2,m2,epif2,mf2] = followpath(H,epi0,ME,meas,MSN,27);

plot(y2)
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Here is the first nonsymmetric family of solutions.

epi0 = 10; N.op = @(x,y) diff(y,2)/epi0 + y+y^2-1;

H.init = sin(pi*x);

[y3,epi3,m3,epif3,mf3] = followpath(H,epi0,ME,meas,MSN,13,DI,-1);

plot(y3)
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The second nonsymmetric family of solutions is the same, but with x replaced
by −x.

H.init = -sin(pi*x);

[y4,epi4,m4,epif4,mf4] = followpath(H,epi0,ME,meas,MSN,13,DI,-1);

plot(y4)
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Let us now superimpose the ε - y′(1) data from all four of these computations,
retaining the same colors. We see an approximation to quite an interesting
bifurcation diagram.

plot(epif1,mf1), hold on, plot(epi1,m1,'.')

plot(epif2,mf2), plot(epi2,m2,'.')

plot(epif3,mf3), plot(epi3,m3,'.')

plot(epif4,mf4), plot(epi4,m4,'.')
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Each curve in the diagram has something to tell us. For ε−1 = 0, (18.2) reduces
to the linear equation y′′ = 0 with Dirichlet boundary conditions, with the
unique solution y = 0. For any ε > 0, this solution evolves into the smooth
mode captured by the green curves, always an even function of x. This solution
satisfies y(x) < 0 for all x ∈ (−1, 1).

The blue curve corresponds to a different even solution that exists for any
ε > 0 but not for ε = 0; as ε → 0, its amplitude diverges to infinity. This mode
persists too for all values of ε.

The bifurcation diagram shows that something new happens when ε−1 rises
above a bifurcation point at about 4.5, that is, when ε falls below about 0.2
(more precisely, about 0.2139). In a symmetry-breaking pitchfork bifurcation,
just like what we saw in the final pages of the last chapter, the blue solution
splits into three, two of which are no longer even functions of x.

As ε shrinks further, more and more solution branches appear. We shall not
attempt to track them, but from Figure 18.3 we know they must exist.
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Application: Arrhenius chemical reaction

The phenomenon of spontaneous combustion or thermal runaway was men-
tioned in Chapter 3, and it can be modeled by the Bratu equation (18.3). Let
us rewrite that equation with y replaced by T , indicating temperature,

T ′′ + λexp(T ) = 0, x ∈ [0, 1], T (0) = T (1) = 0. (18.4)

The function T (x) represents the temperature distribution in a one-dimensional
body with coordinate x. In (18.4), the body is undergoing a heat-generating
chemical reaction whose reaction rate increases exponentially with T . The equa-
tion balances heat diffusion, the second derivative, against the reaction term,
and a solution to the BVP corresponds to a steady-state temperature distribu-
tion. If λ is small enough, such a solution is possible, with heat leaving at the
boundaries at x = 0 and 1 fast enough to balance the heat generation in the
interior. For larger λ, the heat transfer at the boundaries is not fast enough.
The medium keeps heating up until the temperature explodes to ∞ in a finite
time, and there is no steady state. The physics of such processes was worked
out by the Soviet physicist Frank-Kamenetskii in 1939.

Of course, this must be an idealized model if it predicts an infinite temper-
ature. As a step towards more realistic chemistry, one may replace the expo-
nential law in (18.4) by what is known as the Arrhenius reaction rate, which
grows exponentially for smaller temperatures but then levels off. We will pick
an explicit constant and write the equation in the form

T ′′ + λ exp(T/(1 + 0.2T )) = 0, x ∈ [0, 1], T (0) = T (1) = 0. (18.5)

Note that for small T , the exponential term grows exponentially as before, but
as T → ∞, this term is limited by the value exp(5).

An analysis of equations like (18.5) was presented by J. R. Parks of the
Monsanto Chemical Company in “Criticality criteria for various configurations
of a self-heating chemical as functions of activation energy and temperature
of assembly,” Journal of Chemical Physics, 1961. More details of the relevant
mathematics can be found in Brown, Ibrahim, and Shivaji, “S-shaped bifurca-
tion curves,” Nonlinear Analysis, Theory, Methods & Applications, 1981. What
we find for this equation is that the bounded reaction rate shuts off the explo-
sion, allowing solutions for all λ. Moreover, the dependence on λ reveals an
elegant S-shaped bifurcation curve, which we can track with followpath.

H = chebop(0,1); H.op = @(x,T,lam) diff(T,2) + lam*exp(T/(1+.2*T));

H.lbc = @(T,lam) T; H.rbc = @(T,lam) T; lam0 = 1;

[T,lamvec,mvec,lamfun,mfun] = ...

followpath(H,lam0,'measure',@(T) T(0.5),'stepmax',2,'maxstepno',35);

semilogy(lamfun,mfun)
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The curve shows that for most values of λ there is a single solution to (18.4).
For λ approximately between 3.5 and 4.5, however, there are three solutions.
For λ = 4, the amplitudes T (0.5) will be approximately 1, 7, and 30, and we
can use this information to find the solutions and plot them.

N = chebop(0,1); N.lbc = 0; N.rbc = 0;

lam = 4; N.op = @(x,T) diff(T,2) + lam*exp(T/(1+.2*T));

x = chebfun('x',[0 1]);

N.init = sin(pi*x); T = N\0; plot(T), hold on

N.init = 7*sin(pi*x); T = N\0; plot(T)

N.init = 30*sin(pi*x); T = N\0; plot(T)
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History. Pseudo-arclength continuation is an idea closely associated with
a software package, AUTO, written by Eusebius Doedel and growing out of his
work with Herbert Keller at Caltech in the late 1970s. AUTO is written in
Fortran and it has evolved and been used for research and applications now for
four decades. A standard reference on continuation methods is Allgower and
Georg, Numerical Continuation Methods: An Introduction, Springer, 2012.

Our favorite reference. A complicated bifurcation diagram is traced
in extraordinary detail in S. J. Chapman and P. E. Farrell, Analysis of Car-
rier’s problem, SIAM Journal on Applied Mathematics 77 (2017), pp. 924–950.
Gradually reducing the value of ε in the Carrier equation (16.6), while also
using the technique of deflation to discover new branches (see Exercise 16.4),
the authors follow the curves connecting a pitchfork bifurcation at ε ≈ 0.2198,
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a fold bifurcation at ε ≈ 0.0814, another pitchfork bifurcation at ε ≈ 0.0551,
another fold bifurcation at ε ≈ 0.0295, and so on in an infinite sequence of ever
increasing multiplicity and complexity.

Summary of Chapter 18. A powerful technique for the study of nonlin-
ear problems is continuation, in which one moves incrementally from one
solution to nearby solutions by varying a parameter. A refinement of this
idea is path-following, in which a trajectory is followed involving not just
a parameter but also the solution itself. These are fundamental tools of
bifurcation analysis.

Exercise 18.1. Allen–Cahn equation. One solution of the BVP εy′′ + y − y3 = 0,
y(±1) = 0 is 0, but there is another one you will find by setting ε = 0.1 and starting
from the initial guess y(x) = 1−x2. (a) Plot this solution and report its slope y′(−1).
(b) Plot the solution of the same structure and report y′(−1) with ε = 0.01 and
ε = 0.001. (c) In the other direction, what happens if you increase ε above 0.1? How
far can you go and still find a nonzero solution? Based on your explorations, make a
plot of y′(−1) as a function of ε.

Exercise 18.2. Nonlinear boundary layer. In the text it is stated that the width of the
boundary layer in Figure 18.1 is O(ε1/2). Verify this numerically by determining, for
each ε in the plot, the value δ such that y(1− δ) = 0.5. Make a table of δ(ε) and also
the quotient δ(ε)/ε1/2, and plot δ(ε) against ε on a log-log scale.

Exercise 18.3. Deforming the S-shaped curve. (a) Rerun the example of Figure 18.14
with the coefficient 0.2 of (18.4) changed to 0.15 and 0.35. (b) To two digits of accuracy
at least, what is the largest coefficient choice that gives a curve that is triple-valued
for some values of λ?

Exercise 18.4. Hysteresis with the S-shaped curve. The subcritical pitchfork bifur-
cation of Figure 17.16 led to a jump transition and then hysteresis in Figure 17.18.
Devise a similar experiment to generate a demonstration of hysteresis for the S-shaped
bifurcation curve of Figure 18.14.
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Suppose we have an ODE defined for t ∈ (−∞,∞) whose coefficients are 2π-
periodic, or, in short, a periodic ODE. Will the solutions be 2π-periodic
too?

Almost any experiment will show you that they don’t have to be. For ex-
ample, consider the problem

y′ + (1 + cos(t))y = 1, y(0) = 0. (19.1)

By Theorem 11.1, a unique solution exists for all t, negative and positive. This
solution is not periodic, however, as we see by plotting it for t ∈ [0, 10π].

L = chebop(0,10*pi);

L.op = @(t,y) diff(y) + (1+cos(t))*y; L.lbc = 0;

y = L\1; plot(y)

0 2 4 6 8 10
0

1

2

3

237

Copyright © 2018 Society for Industrial and Applied Mathematics



238 Exploring ODEs

Although this solution isn’t periodic, it is very close to periodic after an initial
phase. It would seem that there exists a truly periodic solution to this ODE
that will oscillate between extremes of about 0.5 and 2.4. (From now on in this
chapter, for simplicity, periodic usually means 2π-periodic.) Chebfun will find
this solution if you specify the boundary condition 'periodic'.

L = chebop(0,2*pi);

L.op = @(t,y) diff(y) + (1+cos(t))*y; L.bc = 'periodic';

y = L\1; plot(y)
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The minimum and maximum are as expected,

ymin = min(y), ymax = max(y)

ymin = 0.5625

ymax = 2.3974

and the value at t = 0 is a little bit above the minimum,

y0 = y(0)

y0 = 0.6601

If we solve the IVP on [0, 10π] with this value specified as the initial condition,
the periodic behavior is seen.

L = chebop(0,10*pi);

L.op = @(t,y) diff(y) + (1+cos(t))*y; L.lbc = y0;

y10pi = L\1; plot(y10pi)
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Encouraged by this experiment, let us try a second-order periodic equation,

y′′ + (1 + cos(t))y = 1, y(0) = y′(0) = 0. (19.2)

Again the first solution we find is nonperiodic.

L = chebop(0,10*pi);

L.op = @(t,y) diff(y,2) + (1+cos(t))*y; L.lbc = [4;0];

y = L\1; plot(y)
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This time, the curve is not settling down to a periodic form, but oscillating and
growing exponentially. Nevertheless, again there exists a periodic solution.

L = chebop(0,2*pi);

L.op = @(t,y) diff(y,2) + (1+cos(t))*y; L.bc = 'periodic';

y = L\1; plot(y)
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As before, we can recover periodic oscillations over [0, 10π] if we set the initial
conditions appropriately.

Nonlinear periodic ODEs often have periodic solutions too. For example,
the equation

y′′ + (1 + cos(t))(y + (y/4)3) = 1 (19.3)

is a nonlinear variant of (19.2). Here we compute a periodic solution and im-
mediately plot it on [0, 10π].
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L = chebop(0,2*pi);

L.op = @(t,y) diff(y,2) + (1+cos(t))*(y+(y/4)^3); L.bc = 'periodic';

y = L\1;

y10pi = chebfun(@(t) y(t),[0 10*pi],'trig'); plot(y10pi)
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Of course, as usual, the behavior of nonlinear problems can vary greatly.
If (y/4)3 is changed to (y/3)3 in (19.3), experiments indicate that there is no
solution. For another example, in Chapter 1 we considered the van der Pol
equation (1.2),

0.3y′′ − (1− y2)y′ + y = 0.

Like all autonomous equations, this ODE is not just 2π-periodic, but T -periodic
for any period T . For any T , it has the T -periodic solution y = 0. For T =
2π, and for most other values of T , this is the only T -periodic solution. For
the special value T ≈ 4.0725, however, there is another nontrivial T -periodic
solution corresponding to the limit cycle plotted in Chapter 1. In fact, this
solution is one of an infinite family of distinct T -periodic solutions, since it
could be shifted in t by any constant Δt.

Let us take stock of the situation. We have seen that a periodic ODE
may or may not have periodic solutions, and that it will almost certainly have
nonperiodic ones. The remainder of this chapter is organized around three
questions for periodic ODEs:

1. Does there exist a periodic solution?

2. If so, is it unique?

3. What can we say about nonperiodic solutions?

These questions have rich histories going back to the 19th century, and as usual
with ODEs, there are applications involving both time and space. For example,
periodicity in time is associated with the dynamics of the solar system or of
rotating or oscillating machinery, and periodicity in space is associated with
propagation of sound and light waves in crystals. We will focus mainly on linear
problems, with brief comments on nonlinear ones at the end. With regret, we
shall mainly look just at questions (1) and (2), though the Application is of type
(3).
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Before turning to second-order periodic equations, the traditional focus in
this subject area, let us consider the first-order case. Following the notation of
Theorem 2.3, we start with the scalar linear problem

y′ − a(t)y = g(t), (19.4)

where a and g are assumed to be continuous and 2π-periodic. We can answer
questions (1)–(2) above without much difficulty. First we note that by The-
orem 10.1 there is a unique solution y(t) of (19.4) associated with any initial
condition y(0) = y0. If y(2π) �= y(0), then by definition y(t) is not 2π-periodic.
If y(2π) = y(0), on the other hand, then since the coefficients are periodic, the
solution on [2π, 4π] will be the same as on [0, 2π], the solution on [4π, 6π] will be
the same as on [2π, 4π], and so on, implying that the solution on all of (−∞,∞)
is 2π-periodic. Thus the question of 2π-periodicity reduces to the question of
whether y(2π) = y(0).

One special case of (19.4) is the situation where a(t) = 0,

y′ = g(t). (19.5)

Here the ODE reduces to an integral,

y(t) = y(0) +

∫ t

0

g(s)ds, (19.6)

implying that the solution for any initial condition y(0) = y0 will be periodic if
and only if ∫ 2π

0

g(s)ds = 0. (19.7)

Thus the answer to question (1) is that there is a periodic solution if and only
if (19.7) holds, and the answer to (2) is that it is never unique since we could
always add a constant.

The more substantial special case of (19.4) is the homogeneous case g(t) = 0,

y′ − a(t)y = 0. (19.8)

Here, following Theorem 2.2 (separation of variables), the solution is given by

y(t) = eh(t)y(0), (19.9)

where h(t) is defined by

h(t) =

∫ t

0

a(s)ds. (19.10)

In particular, we have
y(2π) = eh(2π)y(0), (19.11)

which implies that y(2π) = y(0) if and only if(
1− eh(2π)

)
y(0) = 0.
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This equation holds if and only if y(0) is zero or exp(h(2π)) = 1, that is,

h(2π) = 2πi× integer. (19.12)

If (19.12) holds, (19.8) is said to be critical; otherwise it is noncritical. Thus
we see that if (19.8) is noncritical, then (19.8) has the unique periodic solution
y(t) = 0: the answers to (1) and (2) are yes and yes. If it is critical, then any
value y(0) in (19.9) gives a 2π-periodic solution, so the answers are yes and no.

We shall now see that the behavior of the inhomogeneous problem (19.4) de-
pends on the same condition (19.12) of criticality. By Theorem 2.3, the solution
can be written

y(t) = eh(t)y(0) +

∫ t

0

eh(t)−h(s)g(s)ds, (19.13)

where h(t) is still defined by (19.10). Thus the value at t = 2π is

y(2π) = eh(2π)y(0) +

∫ 2π

0

eh(2π)−h(s)g(s)ds, (19.14)

so the solution will be 2π-periodic if and only if

(
1− eh(2π)

)
y(0) =

∫ 2π

0

eh(2π)−h(s)g(s)ds. (19.15)

This leads to the following theorem encompassing the two special cases just
considered.

Theorem 19.1. First-order scalar linear periodic ODEs (FLaShi).
Consider the equation

y′ − a(t)y = g(t), (19.16)

where a(t) and g(t) are continuous and 2π-periodic. If the equation is noncritical
in the sense that (19.12) does not hold, then there exists a unique 2π-periodic
solution y. If it is critical, then there exist infinitely many 2π-periodic solutions
if the right-hand side of (19.15) is zero, and no 2π-periodic solutions if it is
nonzero.

Proof. If the equation is noncritical, we may divide (19.15) by 1− eh(2π) to
get

y(0) =

∫ 2π

0

eh(2π)−h(s)g(s)ds

/(
1− eh(2π)

)
,

producing a 2π-periodic solution (19.13) as claimed. Uniqueness follows since
this condition on y(0) determines y(t) uniquely. If the equation is critical, then
the left-hand side of (19.15) is zero regardless of the value of y(0). If the right-
hand side is zero, then each choice of y(0) gives a distinct 2π-periodic solution,
whereas if the right-hand side is nonzero, no choice of y(0) gives a periodic
solution.

The last few pages have considered scalar problems. For a system of equa-
tions, the pattern is similar. Extending Chapter 14, consider the equation

y′ −A(t)y = g(t), (19.17)
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where y(t) for each t is an n-vector, g(t) is a given 2π-periodic continuous n-
vector function of t, and A(t) is a given 2π-periodic continuous n × n matrix
function of t. The general solution of (19.17) is

y(t) = Y(t)c +Y(t)

∫ t

0

Y−1(s)g(s)ds (19.18)

for n-vectors c, where Y(t) is the fundamental matrix, the n×n matrix func-
tion whose columns are the linearly independent solutions of the homogeneous
problem y′ −A(t)y = 0, y(1)(t), . . . ,y(n)(t) with Y(0) = I, the n× n identity.
The values at t = 0 and t = 2π are

y(0) = c

and

y(2π) = Y(2π)c+Y(2π)

∫ 2π

0

Y−1(s)g(s)ds,

so the solution will be 2π-periodic if and only if

(I−Y(2π)) c = Y(2π)

∫ 2π

0

Y−1(s)g(s)ds. (19.19)

The criticality condition will be the condition that I − Y(2π) is singular, or
equivalently,

Y(2π) has an eigenvalue equal to 1. (19.20)

We say that (19.17) is critical if this condition holds and noncritical otherwise,
i.e., all eigenvalues of Y(2π) are different from 1. Theorem 19.1 generalizes as
follows.

Theorem 19.2. First-order linear periodic systems of ODEs
(FLashi). Consider the n-dimensional system

y′ −A(t)y = g(t), (19.21)

where A(t) and g(t) are continuous and 2π-periodic. If the equation is non-
critical as defined by (19.20), then there exists a unique 2π-periodic solu-
tion y. If it is critical, then there exist infinitely many 2π-periodic solutions

if
∫ 2π

0 Y−1(s)g(s)ds is in the range of the matrix I − (Y(2π))−1, and no 2π-
periodic solutions if it is not in this range.

Proof. If (19.21) is noncritical, we may multiply (19.19) on the left by
(I−Y(2π))−1 to get

c = (I−Y(2π))−1Y(2π)

∫ 2π

0

Y−1(s)g(s)ds,

that is,

c = ((Y(2π))−1 − I)−1

∫ 2π

0

Y−1(s)g(s)ds,
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and this vector corresponds to a 2π-periodic solution (19.18) as claimed.
Uniqueness follows since a given c corresponds to one and only one solution
y(t) = Y(t)c. If the equation is critical, then (19.19) is a singular system of
equations, having infinitely many solutions if the right-hand side is in the range
of I−Y(2π) and no solutions if it is not in that range. For the right-hand side

of (19.19) to be in the range of I−Y(2π) is the same as for
∫ 2π

0 Y−1(s)g(s)ds
to be in the range of (Y(2π))−1 − I.

Having written down these results for a first-order system of ODEs, let us
immediately specialize them to the case that has had the most attention. Hill’s
equation is the scalar, homogeneous, second-order ODE

y′′ + f(t)y = 0, (19.22)

where f is real and 2π-periodic.67 Although one could introduce a nonzero
right-hand side, the equation is conventionally considered in this homogeneous
form. Note that there is no first-order term, so there is no damping. Mathieu’s
equation is the special case

y′′ + (a+ b cos(t))y = 0, (19.23)

which is the simplest instance of Hill’s equation in which the periodic coefficient
is not simply a constant. It corresponds to taking the first nonconstant term
in a Fourier series of f and is thus a natural first step in the study of (19.22).
Again the equation is usually considered in this homogeneous form.

As always, (19.22) is equivalent to a first-order system of two variables via
the identification y = (y1, y2)

T = (y, y′)T , which transforms it to the equations

y′1 = y2, y′2 + f(t)y1 = 0. (19.24)

For this system of ODEs, Y(t) takes the form

Y(t) =

(
u(t) v(t)

u′(t) v′(t)

)
,

where u and v are the unique solutions of the IVPs

u′′ + f(t)u = 0, u(0) = 1, u′(0) = 0

and
v′′ + f(t)v = 0, v(0) = 0, v′(0) = 1.

If we write the vector c as c = (a, b)T , the solution (19.18) (here with g = 0)
becomes y(t) = au(t) + bv(t). The solution will be 2π-periodic if and only if
y(2π) = y(0) and y′(2π) = y′(0), that is,

D

(
a

b

)
=

(
a

b

)
,

67In the literature the period is often taken to be π instead of 2π.
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with D defined by

D =

(
u(2π) v(2π)

u′(2π) v′(2π)

)
. (19.25)

The criticality condition will be

D has an eigenvalue equal to 1. (19.26)

By the usual reasoning we see that ifD has no eigenvalue equal to 1, then (19.22)
has a unique periodic solution, namely y = 0, corresponding to a = b = 0,
whereas if D has an eigenvalue equal to 1, then (19.22) has infinitely many
periodic solutions, corresponding to a nonzero eigenvector (a, b)T .

We summarize these results in a theorem.

Theorem 19.3. Hill’s equation (fLaSHi). Consider the Hill equation

y′′ + f(t)y = 0, (19.27)

where f(t) is real, continuous, and 2π-periodic. If the equation is noncritical
as defined by (19.25)–(19.26), then there exists a unique 2π-periodic solution y,
namely y(t) = 0. If it is critical, then there exist infinitely many 2π-periodic
solutions.

Equations (19.22)–(19.27) are homogeneous, meaning that in the generic case
the only solution is the zero function. One reason such equations are interesting
nonetheless is that we are effectively speaking here of eigenvalue problems. In
the Mathieu equation (19.23), for example, −a plays the role of an eigenvalue of
the operator y �→ y′′ + b cos(t)y with periodic boundary conditions. For b = 0,
the nonzero eigenvalues are −1,−4,−9, . . . , and each is a double eigenvalue
because of the translational symmetry. For nonzero b the symmetry is broken
and the eigenvalues become simple. This has dynamical consequences, a hint of
which appears in Exercise 19.10.

We close this chapter with a few more remarks concerning periodic solutions
of autonomous nonlinear ODEs, which are T -periodic for any T . For a second-
order scalar problem of this type, or a system of two first-order equations,
a phase plane analysis may quickly give an understanding of what periodic
solutions may exist. For example, the phase plane portrait of the damped
linear oscillator (8.4) makes it clear that y = 0 will be the unique T -periodic
solution of this equation for any T . For another example, the phase plane of the
nonlinear pendulum equation (9.7), y′′ = − sin(y), explains why this problem
has nonzero T -periodic solutions for all T in the range (2π,∞) (Exercise 19.5).
Similarly, the Lotka–Volterra system (10.3) has nonzero T -periodic solutions for
a range of values of T (Exercise 19.8). The van der Pol oscillator (1.2), with its
unique limit cycle, has nonzero T -periodic solutions only when T takes exactly
the right value, as mentioned below (19.3) (or an integer multiple of this value).

Suppose we have an autonomous problem like the van der Pol oscillator with
a limit cycle, corresponding to a nonzero T -periodic solution for a particular
value of T . As mentioned earlier, this solution will not be unique, since t can be
shifted by any amount Δt, but one can make it unique, or make its multiplicity
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finite rather than infinite, by imposing one or more anchor conditions. For
example, here is the van der Pol equation with the anchor condition y(0) = 1
and an unknown period T :

0.3y′′ − (1− y2)y′ + y = 0, y(0) = 1, y T -periodic. (19.28)

From a phase diagram such as Figure 9.11, it is clear that there will be two
solutions to this problem (for minimal T ), depending on where in the oscillation
the anchor condition is reached, and the two solutions will have y′(0) > 0 and
y′(0) < 0.

Although (19.28) has the form of a T -periodic equation for unknown T , it
can be converted to a 2π-periodic problem if we transform the independent
variable to s = 2πt/T ∈ [0, 2π]:

0.3
4π2

T 2

d2y

ds2
− 2π

T
(1− y2)

dy

ds
+ y = 0, y 2π-periodic with y(0) = 1. (19.29)

This is a 2π-periodic problem with an unknown parameter, but a trick that is
sometimes used is to think of T not as a number but as a solution to the trivial
differential equation

dT

ds
= 0, T is 2π-periodic. (19.30)

The unknown parameter has become an unknown constant value of one compo-
nent of a solution of a system of ODEs, namely (19.29)–(19.30)! This formula-
tion is not really simpler in any genuine way, but it has the advantage that one
can now attempt to solve the problem simply by applying a software tool for
solving nonlinear ODEs.

On p. 240 question 3 was raised concerning nonperiodic solutions of periodic
ODEs. This is a very important subject which is dealt with by Floquet theory.
For a scalar problem, the main result asserts that every solution can be written
as a complex exponential exp(iax) for some a, real or complex, times a periodic
function, a pattern readily seen in Figure 19.4. For systems of equations a
becomes a matrix A. We shall not discuss this further except in the following
application.

Application: band gaps and forbidden frequencies

The material world is made of atomic and molecular structures that are often
periodic, at least on a microscopic scale, and electromagnetic waves propagate
through these structures in distinctive ways. The resulting field of X-ray crys-
tallography has been the basic tool by which structure of all kinds of molecules
are determined, as recognized by Nobel Prizes to von Laue (1914), Bragg and
Bragg (1915), Watson and Crick (1962), Hodgkin (1964), and others.68 With

68William and Lawrence Bragg were father and son, and when the prize was announced,
25-year-old Lawrence was serving in the trenches in World War I. Incredibly, he remained
in the trenches for a further year after winning the award. Nobel Prize winners get better
treatment nowadays.
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the advent of quantum mechanics it was seen that electrons too are associated
with waves, whose distinctive modes of propagation though periodic structures
determine whether a material is an insulator, a conductor, or a semiconductor.

Here we shall give an indication of a fundamental phenomenon of wave prop-
agation in crystals that was investigated by Felix Bloch, another Nobel Prize
winner, in the beginning of the quantum era. Let us return to the Schrödinger
equation as given in (6.11), now (just for convenience) with periodic boundary
conditions,

−y′′/2 + V (x)y = λy, x ∈ [0, d], y(0) = y(d), y′(0) = y′(d). (19.31)

The important new feature is that we will take the potential function V (x) to
be periodic, consisting of a sequence of spikes with spacing 1,

V (x) = 60(cos(πx))16. (19.32)

(This is a variant of the Kronig–Penney model of a 1D crystal.) To keep the
example simple we set d = 8, so V extends over just 8 periods. Here is a plot
of the potential, in black, and the first 33 eigenfunctions, each one raised up a
distance equal to its eigenvalue as in Chapter 6.

d = 8; L = chebop(0,d); L.bc = 'periodic';

V = chebfun('60*cos(pi*x)^16',[0 d],'trig');

L.op = @(x,y) -diff(y,2)/2 + V*y;

neigs = 33; [W,D] = eigs(L,neigs);

W = simplify(W,1e-4); e = sort(diag(D));

for k = 1:neigs, W(k) = e(k)+3*W(k); end, plot(W), hold on

plot(V)
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The striking thing about this plot is that the lower eigenfunctions are
grouped into bands. At the bottom, hard to distinguish, are eight eigenfunctions
with eigenvalue λ ≈ 5. Then there are eight eigenfunctions less sharply focused
with λ ≈ 20 and another eight broadly distributed with λ ≈ 45. The final nine
eigenfunctions shown correspond to values λ greater than the maximum value
of the potential V (x). Here is a plot.

plot(e,'.')
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The eigenvalues fall in groups of 8. If we had taken thousand or millions of
periods, these would have fallen so close together as to produce effectively a
continuum of eigenvalues, more or less like this:

for j = 0:3

plot(j*d+[1 d],e(j*d+[1 d])), hold on

end
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The implications of this kind of structure for physics are enormous. A peri-
odic medium may have forbidden frequencies at which no wave can propagate.
To a condensed matter physicist, these represent an energy gap or band gap in
the spectrum, and the gaps determine how electrons can propagate. Roughly
speaking, a material is an insulator if it has an energy gap, a conductor if there
is no gap, and a semiconductor if there is a gap but it is very small. One place
to learn more is in the classic textbook Introduction to Solid State Physics by
Kittel, first published in 1966, where it is pointed out that the difference in
conductivity between an insulator and a conductor (a conductor of the usual
sort, that is, not a superconductor) may be a factor as high as 1032.

Where do band gaps come from? To understand this we can begin by re-
calling what the eigenfunctions of the Schrödinger problem would look like if
the potential function V (x) were constant rather than periodic. They would
simply be sines and cosines, sin(kx) and cos(kx), for each value of the wave
number k. In a structure with period L, however, interference effects occur
when k is close to an integer multiple of π/L, corresponding to a wavelength
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close to one of the values 2L, 2L/2, 2L/3, . . . . The interfering waves may lead to
reflection rather than propagation, and in X-ray crystallography this is known
as as Bragg reflection.

To see the effect concretely, in our computed example, let us return to Fig-
ure 19.7 and zoom in on the highest eigenfunction of the first band, eigenfunction
8, and the lowest eigenfunction of the second band, eigenfunction 9.

plot(W(:,8:9)), hold on

for k = 8:9

w = W{k}; plot(w); hold on

plot([0 8],mean(w)*[1 1],'--');

end

plot(V)

0 1 2 3 4 5 6 7 8
0

5

10

15

20

Both eigenfunctions have the same wavelength, namely 2, and if the potential
function were constant they would just be translates of one another correspond-
ing to exactly the same eigenvalue. However, the periodic potential has broken
the symmetry between the sines and the cosines. Eigenfunction 8 is concen-
trated between the spikes and is little affected by them, with an eigenvalue not
so different from what it would be if the potential were zero. Eigenfunction
9, on the other hand, is concentrated within the spikes, making the potential
weigh heavily so that the eigenvalue is much higher.

History. The study of periodic ODEs dates to the 1880s with the work
of Hill, Floquet, and Mathieu. George William Hill (1838–1914), unusually for
mathematicians of that era, was an American, and he was concerned with astro-
nomical calculations related to the 3-body and 4-body problems. The general
theory is due to Gaston Floquet (1847–1920) in “Sur les équations différentielles
linéaires à coefficients périodiques” (you don’t have to speak French to translate
this one!), which appeared in Annals of the École Normale Supérieure 12 (1883),
pp. 47–88. Physicists often give credit to Bloch.

Our favorite reference. An extensive treatment of periodic problems
can be found in R. Grimshaw, Nonlinear Ordinary Differential Equations, CRC
Press, 1991. This book includes a chapter on linear periodic problems, a chapter
on periodic solutions of autonomous nonlinear problems, and further chapters
on more advanced related topics.
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Summary of Chapter 19. If the coefficients of an ODE are T -periodic
for some T , then there may or may not exist T -periodic solutions. If the
ODE is linear, there is an associated criticality condition. If the equation is
noncritical, it has a unique solution, whereas if it is critical, it has no solu-
tions or infinitely many solutions depending on the inhomogeneous forcing
data.

Exercise 19.1. Periodic solutions via shooting. Suppose we seek a 2π-periodic solution
to y′ = −y3 + sin(t). (a) Produce a plot showing the solutions emanating from
initial values y(0) = −1.5,−1.3, . . . , 1.3, 1.5. Based on this plot, estimate by eye the
value of y(0) that gives a periodic solution. (b) Prove that if y(0) ∈ [−1, 1], then
y(2π) ∈ [−1, 1]. (c) Look up the Brouwer fixed point theorem and state it. Use it to
prove that this ODE has a periodic solution. (d) Compute this solution with Chebfun
using the 'periodic' flag. You will need to provide an initial guess with roughly the
form of the true solution. What is y(0)?

Exercise 19.2. An unstable variant. Now consider the equation of Exercise 19.1 with
the other sign, w′ = w3 + sin(t). (a) Explain why shooting is much more difficult in
this case with reference to a computer plot showing solutions emanating from several
initial values w(0). Instead of the whole interval [0, 2π] you may use a shorter interval
such as [0, 0.5] or [0, 1]. (b) On the other hand, the plots suggest an easy way to reduce
this problem to that of Exercise 19.1. Explain this reduction and use it to derive an
analytic formula for w in terms of the solution y of Exercise 19.1.

Exercise 19.3. Criticality depends on the interval. (a) Explain how the theorems of this
chapter allow for the possibility that a 2π-periodic linear ODE might have a unique
2π-periodic solution but not a unique 4π-periodic solution. (b) Find an example of
this behavior.

Exercise 19.4. Two electrons and a nucleus. As in Exercise 13.5, consider the idealized
problem of two electrons of mass 1 and charge −1 orbiting a nucleus of charge +2 fixed
at the origin of the x-y plane. Let z(t) be the position of one electron represented with
the usual complex variable z = x+ iy, and suppose the configuration is symmetric so
that the other electron is at z(t). (a) Write down the ODE governing the evolution
of z(t) assuming an inverse-square electrostatic force law with constant 1. (b) Plot
the trajectories z(t), t ∈ [0, 40] corresponding to the initial position z(0) = ia and
z′(0) = 1 for a = 1 and 2. (c) Find a value of a (to 3 digits of accuracy or more)
that gives a periodic solution. (Use periodic boundary conditions in Chebfun or not,
as you prefer.) What is the period?

Exercise 19.5. Nonlinear pendulum. Consider T -periodic solutions of the nonlinear
pendulum equation y′′ = − sin(y) satisfying y(0) = 0. Explain why there is one such
solution for T ∈ (0, 2π], three such solutions for T ∈ (2π, 4π], five such solutions for
T ∈ (4π, 6π], and so on.

Exercise 19.6. Logistic equation with periodic harvesting. As a generalization of Ex-
ercise 3.15, consider the equation y′ = (1 − y/Y )y − sin(t)2, where Y is a positive
constant. (a) Solve the equation with Chebfun with Y = 5 for t ∈ [0, 15] and make a
plot of trajectories from initial values y(0) = 0.5, 1, . . . , 8. (b) Use Chebfun to find the
oscillatory periodic solution that the curves are approaching. Use the mean command
to find the mean value of this solution. What would the mean be (figure this part
out analytically) if sin(t)2 were replaced by its average value 1/2? (c) Find and plot
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another periodic solution to this equation. Again compare the mean to what it would
be if sin(t)2 were replaced by 1/2.

Exercise 19.7. Periodic caffeine intake. Figure 2.8 showed the caffeine concentration
in the bloodstream for a drinker enjoying three cups of coffee in a 24-hour period.
Suppose the drinker has the same three cups at the same times every day. Compute
the periodic solution, taking the time interval to be [−2, 22]. How does the maximum
caffeine concentration for the periodic solution compare to that in Figure 2.8?

Exercise 19.8. Lotka–Volterra system. (a) In Chapter 10 the period T of the Lotka–
Volterra system (10.6) was computed for initial populations (u0, v0) = (1, 1) of rabbits
and foxes, respectively. Now let u0 vary from 0.2 to 4 and plot the dependence of T
on u0. (b) For u0 → 0.2, determine T analytically.

Exercise 19.9. Tokieda’s teacup. Place a teacup on a table with the handle positioned
in a direction we shall call north. Practice tapping gently on the rim with a spoon
so that you hear a clean tone. Note that if you tap in the N, E, S, or W positions,
you hear one tone, whereas if you tap in the NE, SE, SW, or NW positions, you hear
a higher tone, often about one semitone higher (a factor of 21/12). (There is a video
of Tadashi Tokieda demonstrating this effect at https://youtu.be/MfzNJE4CK_s.) To
explain this, we can imagine that the cup is a ring oscillating in certain eigenmodes.
(a) First, to model a simple ring with no handle to break the symmetry, compute the
first five eigenvalues and eigenfunctions of the differential operator y′′ with periodic
boundary conditions. Note that eigenvalues 2n and 2n + 1 are equal for each n ≥ 1
because of rotational symmetry. (b) Now add the handle — an extra mass at one point
along the ring — by considering the differential operator y′′/m(x), where m(x) =
1+0.6 exp(−20(x−π)2). Again compute the first five eigenvalues and eigenfunctions.
Because of the added mass, all the frequencies will now be lower. Because of the
broken symmetry, there will no longer be any degeneracies. It is modes 4 and 5 that
we mainly hear when tapping the cup, corresponding to the ring alternately getting
taller/thinner and shorter/fatter. Measure the ratio of frequency 5 to frequency 4 and
discuss the result. Plot the eigenfunctions and explain why they are positioned where
they are. (c) What connection do you see with the Application of this chapter? (The
next exercise is also related.)

Exercise 19.10. Mathieu equation. Consider the Mathieu eigenvalue problem y′′ +
b cos(t)y = −λy with periodic boundary conditions on [0, 2π]. For the rest of this
exercise fix b = 1. (a) Determine the smallest six eigenvalues λ1 < · · · < λ6 and plot
the associated eigenfunctions. Comment on the relationships with the case b = 0.
(b) Now solve y′′ + (a + b cos(t))y = exp(sin(t)) for t ∈ [0, 100π] with initial data
y(0) = y′(0) = 0 for four choices of a: the means of λ2 and λ3, λ3 and λ4, λ4 and λ5,
and λ5 and λ6. Use L.maxnorm = 0. Plot the results and comment on the differences
between these curves.
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20. Boundary and interior layers

We have seen examples of boundary and interior layers already in Chapters 4,
7, and 18. This is a topic where the use of a tool like Chebfun is particularly
compelling. With a computation or two, one quickly sees where layers lie and
how their thickness depends on parameters.

To start the discussion, here is a reprise of the example of equation (5.3),

y′′ = y, x ∈ [0, 40], y(0) = y(40) = 1. (20.1)

L = chebop(0,40); L.op = @(x,y) diff(y,2) - y; L.lbc = 1;

L.rbc = 1; y = L\0; plot(y)
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Just by looking at the image, one sees immediately at some level what is going
on: the solution “wants to be zero” and more or less achieves this aim, apart
from regions near the boundaries, where it goes through rapid transitions to

253
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satisfy the boundary conditions. What does it mean that it “wants to be zero”?
This ODE is easy to analyze: the general solution is A exp(−x) + B exp(x).
This implies that all components grow exponentially either as x increases or as
x decreases. Therefore, the only way y can deviate much from zero without
deviating hugely from zero is for this to happen near a boundary.

Problems with boundary or interior layers usually contain a large or a small
parameter. In (20.1), the parameter is the length of the interval, 40. To move to
a more standardized formulation, let us transplant the equation to the interval
[−1, 1] with a small constant ε multiplying the highest-order derivative:

εy′′ = y, x ∈ [−1, 1], y(−1) = y(1) = 1. (20.2)

The rescaling multiplies y′′ by (20)2, so the right choice if we wish to match
(20.1) is ε = (20)−2. As mentioned in Chapter 7, a problem like this with a small
parameter multiplying the highest derivative is called a singular perturbation
problem. Here is the solution to (20.2), looking the same as for (20.1).

L = chebop(-1,1); ep = (1/20)^2;

L.op = @(x,y) ep*diff(y,2) - y; L.lbc = 1; L.rbc = 1;

y = L\0; plot(y)
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This example is so simple that we can quickly work out exact formu-
las. The general solution to the rescaled problem (20.2) is A exp(−ε−1/2x) +
B exp(ε−1/2x), or, as we may rewrite it with redefinitions of A and B,

y(x) = A exp(−ε−1/2(1 + x)) +B exp(−ε−1/2(1− x)). (20.3)

The boundary conditions correspond to the equations

A+B exp(−2ε−1/2) = B +A exp(−2ε−1/2) = 1,

with solution

A = B =
1− exp(−2ε−1/2)

1− exp(−4ε−1/2)
= 1 +O(exp(−2ε−1/2)).

Therefore (20.3) can be written

y(x) = exp(−ε−1/2(1 + x)) + exp(−ε−1/2(1− x)) +O(exp(−3ε−1/2)). (20.4)
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At x = 0, for example, we have

y(0) = 2 exp(−ε−1/2) +O(exp(−3ε−1/2)),

which for ε = (20)−2 becomes

y(0) = 2 exp(−20) +O(exp(−60)).

We confirm this result numerically:

y(0), 2*exp(-20)

ans = 4.1223e-09

ans = 4.1223e-09

Although this example is very simple, it illustrates a general idea. Consider
the approximation (20.4), a sum of two terms. The first term consists of an
approximation at the left boundary, and the second at the right. Together, they
provide an accurate approximation to the solution throughout [−1, 1]. Such
combinations are the business of boundary layer analysis, which constructs
approximate solutions to all kinds of problems by combining different approx-
imations in different regions. This is an advanced art, applicable for nonlinear
as well as linear problems. In the remainder of this chapter, we will take some
introductory steps into this subject for linear equations.

The starting point of boundary layer analysis is this principle:

1. Outside a boundary or interior layer, terms involving ε are negligible.

For example, for equation (20.2), outside any boundary or interior layers, we
can expect

y = 0

to hold approximately. This equation applicable outside layers is called the
outer equation.

If (20.2) is modified to include a further term, the outer equation will adjust
accordingly. For example, suppose we consider

εy′′ = y + 2x, x ∈ [−1, 1], y(−1) = y(1) = 1. (20.5)

Now the outer equation is

y = −2x,

and the solution changes shape to look like y = −2x away from x = ±1.

L.op = @(x,y) ep*diff(y,2) - y - 2*x;

y = L\0; plot(y)
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To proceed further with boundary layer analysis we add a pair of principles
applicable inside a transition layer (i.e., a boundary or interior layer):

2. Inside a layer, a low order derivative is negligible compared with a higher
order one.

3. Inside a layer, a variable coefficient can be approximated by a constant, at
least if it is locally nonzero.

Let us see how these ideas work out in a slightly more complicated example,
equation (7.8):

εy′′ + xy′ + xy = 0, x ∈ [−2, 2], y(−2) = −4, y(2) = 2. (20.6)

With ε = 0.001, the solution shows an interior layer at x = 0, as we saw already
in Figure 7.6.

L = chebop(-2,2); L.op = @(x,y) .001*diff(y,2) + x*diff(y) + x*y;

L.lbc = -4; L.rbc = 2; y = L\0; plot(y)

hold on
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For a boundary layer analysis of this result, applying principle (1), we replace
ε by zero in (20.6) and get the outer equation

xy′ + xy = 0. (20.7)
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Thus we immediately have a prediction as to the behavior of a solution to (20.6).
In every region, (i) y′′ will be very large (of order ε−1), or (ii) x will be close to
zero, or (iii) y(x) will approximate Ce−x for some C.

From the picture it is clear that case (iii) applies for |x| � 0, with outer
solutions −4 exp(−(x + 2)) on the left and 2 exp(−(x − 2)) on the right. Here
are thick dashed lines marking these approximations:

fleft = chebfun('-4*exp(-(x+2))',[-2,.2]); plot(fleft,'--');

fright = chebfun('2*exp(-(x-2))',[-.1,2]); plot(fright,'--')
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To explain the rest of the solution, we apply principle (2). In a transition layer,
we can expect y′′ to be much larger than y′ and y′ to be much larger than y.
An approximation of (20.6) in a layer is accordingly

εy′′ + xy′ = 0. (20.8)

First, let us use this equation to see why there is no boundary layer at x = 2.
Applying principle 3, we approximate (20.8) further by

εy′′ + 2y′ = 0. (20.9)

The general solution to this equation is A+B exp(−2ε−1x), and the minus sign
in the second of these terms implies that it decreases rather than increases with
increasing x. Similarly, at x = −2,

εy′′ − 2y′ = 0, (20.10)

with general solution A + B exp(2ε−1x), and again the sign is such that no
boundary layer is possible.

Only x = 0 remains a candidate for a transition layer, matching the shape
of the solution in the plot. Let us accordingly consider (20.8) for x ≈ 0. Here
we rescale variables to see what is happening. We define

s = xε−1/2, u(s) = y(x),

which leads to
y′′(x) = ε−1u′′(s), y′(x) = ε−1/2u′(s),
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whereupon (20.8) becomes

u′′ + su′ = 0, u(−∞) = −4e−2, u(∞) = 2e2. (20.11)

One solution of the ODE part of this equation is u(s) = A for any constant A,
and the other can be obtained by setting w = u′, yielding the equation w′+sw =
0. Separation of variables gives w(s) = B exp(−s2/2) for a constant B, or after
integration and redefinition of B, u(s) = B erf(s/

√
2), where erf is the error

function. Thus we have

u(s) = A+B erf

(
s√
2

)
, A = e2 − 2e−2, B = e2 + 2e−2.

Here we superimpose on the plot a new dashed line corresponding to this ap-
proximation.

A = exp(2)-2*exp(-2); B = exp(2)+2*exp(-2);

ep = .001; s = @(x) x/sqrt(ep);

fmiddle = chebfun(@(x) A + B*erf(s(x)/sqrt(2)),[-.8 .8]);

plot(fmiddle,'--')
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This completes our study of (20.6). Now let us look at the same equation,
except with a sign change on the second derivative term:

−εy′′ + xy′ + xy = 0, x ∈ [−2, 2], y(−2) = −4, y(2) = 2. (20.12)

The solution looks completely different. Instead of an interior layer, we have
boundary layers at each end, but they are so thin as to be almost invisible in
the plot.

L.op = @(x,y) -.001*diff(y,2) + x*diff(y) + x*y;

y = L\0; plot(y)
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An experienced eye immediately conjectures that the boundary layers are prob-
ably of width O(ε) rather than O(ε1/2), as a closeup at the left boundary con-
firms.

plot(y{-2,-1.98})
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The scaling of the widths of boundary and interior layers is of fundamental
importance in applications. Let us illustrate this matter further with a constant-
coefficient equation, an advection-diffusion problem:

εy′′ + y′ + y = 0, x ∈ [0, 1], y(0) = y(1) = −1. (20.13)

Here are the solutions for ε = 0.1, 0.02, and 0.004.

L = @(ep) chebop(@(x,y) ep*diff(y,2)+diff(y)+y,[0,1],'dirichlet');

y = @(ep) L(ep)\(-1);

for ep = [.1 .02 .004]

plot(y(ep)), hold on

end
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Let us informally define the width of a boundary layer to be the distance from 0
to the value of x at which the solution first reaches y(x) = 0.5 (compare Exer-
cise 18.2). The widths for four values of ε show convincing O(ε) dependence.

width = @(ep) min(roots(y(ep)-0.5));

for ep = 10.^(-1:-1:-4)

disp([ep width(ep)])

end

epsilon boundary layer width

0.10000 0.0412988

0.01000 0.0034865

0.00100 0.0003443

0.00010 0.0000344

Here is another variation on the theme of (20.6) and (20.12), with the left-
hand boundary condition made positive to enhance the effect:

0.001y′′ + xy′ − y = 0, x ∈ [−2, 2], y(−2) = 4, y(2) = 2. (20.14)

The transition here is called a corner layer.

L = chebop(-2,2); L.lbc = 4; L.rbc = 2;

L.op = @(x,y) .001*diff(y,2) + x*diff(y) - y;

y = L\0; plot(y)
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Almost anything is possible with interior and boundary layers, and we give this
example as just another illustration.

Application: why is New York hotter than San Francisco?

New York is hot in July, around 9 degrees hotter than San Francisco (25◦C
vs. 16◦ are typical 24-hour averages). Yet in January, New York is 9 degrees
colder than San Francisco (1◦ vs. 10◦). What’s going on? Why is the weather
so much more moderate on the west coast of the USA than the east coast? We
shall explain the effect in words first, then explore the mathematics and the
connection with boundary layers.

The first key fact is that in the middle latitudes of Earth, prevailing winds
blow from west to east. This means that San Francisco’s weather comes from
over the ocean, whereas New York’s comes from over the land.

The second key fact is that ocean is liquid, and land is solid. When the
summer sun beats down on the land, it heats up, but only down to a depth of
a few meters, because the heat transfer is limited by conduction, which is slow.
This lets the surface get very hot. Water, on the other hand, transfers heat
by the much faster mechanism of convection — fluid motion. The stirring isn’t
enough to bring the summer heat down to the great depths, but it certainly
brings it deeper than a few meters. The heat is spread over a much greater
volume, so that the surface of the ocean never gets anywhere near as hot as the
surface of the land, and San Franciscans can get by without air conditioning.

To model this effect mathematically, we shall be very rough, since the point
is just to understand the main mechanism. Let us imagine that the earth is 100
meters deep, with a temperature T fixed at 13◦C at the bottom (the average of
the figures reported above for both New York and San Francisco). Our depth
variable will be x, in units of meters, running from −100 to 0. At the earth’s
surface, let us imagine that heat flows in at the rate of 100 watts per square
meter in July and flows out at the same rate in January, with a sinusoidal
dependence on t in between,

incoming heat in W/m2 = 100 exp(2πit),

where t is measured in years. (We use a complex exponential for the usual
reason of convenience explained in Chapter 4; the physical temperature is the
real part.) To get to an ODE, we start with a PDE, the heat equation,

ρc
∂T

∂t
=
(year
sec

)
k
∂2T

∂x2
, (20.15)

where ρ denotes density, c is heat capacity, and k is conductivity. (PDEs are
considered systematically in Chapter 22.) We measure ρ in kilograms per cubic
meter, c in joules per kilogram per degree, and k in watts per meter per degree.
The quotient (year/sec), which is equal to about 3.1×107, is included to reconcile
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our choice of units of years for t and watts (joules per second) in the definition
of k. With the not too unreasonable choices

ρ = 3000, c = 2000,

(20.15) reduces to
∂T

∂t
= 5.3k

∂2T

∂x2
. (20.16)

Meanwhile the boundary condition at x = −100 is

T (−100, t) = 13,

and our assumption concerning the heat influx gives the boundary condition at
x = 0,

∂T

∂x
(0, t) = 100k−1 exp(2πit).

We now reduce the problem to an ODE by separating variables, assuming the
solution takes the form

T (x, t) = 13 + e2πit(y(x)− 13)

for some function y. The PDE (20.16) becomes

2πi(y − 13) = 5.3ky′′, (20.17)

and the boundary conditions become

y(−100) = 13, y′(0) = 100k−1. (20.18)

We are ready to compute a solution. Taking k = 3 as a reasonable value
of the conductivity, here is the temperature distribution we get from (20.17)–
(20.18).

L = chebop(-100,0);

k = 3; L.op = @(y) 5.3*k*diff(y,2) -2i*pi*(y-13);

L.lbc = 13; L.rbc = @(y) diff(y)-100/k;

y = L\0; plot(real(y))
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Note how hot it is in the boundary layer at the surface! New York’s summers
begin to make sense. Note also the dip below 13◦C in the temperature at a
depth of about 3 meters. This effect is genuine, reflecting a bit of wavelike
behavior in the conduction of heat.69

As for mild San Francisco, we are not about to go into details of the physics
of convection in the upper ocean. To get the general idea, however, let’s imagine
that ocean is like land, but with 100 times greater conductivity. The heat now
reaches much deeper, giving a much more moderate surface temperature.

k = 300; L.op = @(y) 5.3*k*diff(y,2) -2i*pi*(y-13);

L.rbc = @(y) diff(y)-100/k;

y = L\0; plot(real(y))
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The details of our models have hardly been precise, but the main message
of Figs. 20.11 and 20.12 is genuine. New York is hotter than San Francisco in
the summer because its weather is controlled by a thinner boundary layer.

History. Boundary-layer analysis began with an epochal contribution by
the German fluid mechanician Ludwig Prandtl. An important feature of fluid
mechanics is viscosity, that is, friction, but viscous effects are often insignificant
away from solid boundaries. Prandtl realized that one could exploit this effect
mathematically by dropping certain terms from the Navier–Stokes partial dif-
ferential equations of fluid mechanics near a wall and dropping other terms away
from the wall. These simplifications led to major advances in engineering, mak-
ing it possible to solve problems that had previously been inaccessible. Prandtl
presented these methods in 1904, and ever since then, boundary-layer analysis
has been recognized as one of the fundamental tools of applied mathematics.

Our favorite reference. Generations of applied mathematics graduate
students at MIT have learned asymptotics from the exceptionally rich book by
Bender and Orszag, Advanced Mathematical Methods for Scientists and Engi-
neers, McGraw-Hill, 1978.

69The thick stone walls of Italian villas exploit this effect to keep cool by day and warm by
night. A thickness of 3m/20 = 15cm ought to be of the right order of magnitude, since days
are about 202 times shorter than years and the effect in question involves a square root.

Copyright © 2018 Society for Industrial and Applied Mathematics



264 Exploring ODEs

Summary of Chapter 20. Singular perturbation problems, where a
small parameter ε multiplies the highest derivative, typically have solu-
tions featuring rapid transitions known as boundary or interior layers. The
development of approximate solutions for such problems starts from three
principles. (1) Outside a layer, terms involving ε are negligible. (2) Inside
a layer, a low order derivative is negligible compared with a higher order
one. (3) Inside a layer, a variable coefficient can be approximated by a
constant, at least if it is locally nonzero.

Exercise 20.1. Corner layer. (a) Plot the solution of εy′′ + xy′ − y = 0, y(−1) = 1,
y(1) = 1, ε = 0.001 (compare Figure 20.10). Which two terms are balanced to
determine the outer solution, outside the transition region x ≈ 0? Write down the
outer equation and solve it to explain the behavior of y in this region. (b) Which two
terms are balanced for x ≈ 0? Write down the inner equation and show how it can
capture the shape of y(x) in this region. (c) Plot y again, but now on a semilogy scale
and zooming in with axis([-.1 .1 1e-4 1]). On the same plot, superimpose curves
corresponding to the other two terms of the ODE, εy′′ and xy′. For what range of
values of x are the two terms that are balanced for the outer solution at least 10 times
bigger than the omitted term? What is the answer to the same question for the inner
solution?

Exercise 20.2. Cusp. (a) If we change the equation of the previous exercise by just one
coefficient, εy′′ + xy′ − y/2 = 0, the solution changes in an interesting way. Plot the
solution for ε = 10−3. Find the outer equation and explain the shape of the solution.
(b) Use tic and toc to measure the computing time for this problem with ε = 10−3,
10−4, and 10−5. The reason for the slow-down is that Chebfun is utilizing a Chebyshev
grid of thousands of points, requiring the solution of a matrix problem of dimension in
the thousands. Change the chebop domain to L.domain = [-1 0 1] and repeat the
same timings; also plot the solution in the case ε = 10−6. Now Chebfun has introduced
a breakpoint at x = 0, so that separate Chebyshev grids are utilized on either side,
and this makes the matrices smaller. (Although the user can introduce breakpoints
like this at fixed locations, Chebfun does not offer adaptive gridding capabilities for
ODE BVPs.)

Exercise 20.3. Variable oscillations. Solve εy′′ + (x2 − 1)y = 0, x ∈ [−2, 2] with
y(−2) = 1 and y(2) = 2 for ε = 10−5 and plot y. Explain the nature of this solution and
derive an approximate formula for the wavelength of the oscillations in the oscillatory
regions. (Compare Figure 7.5.) Note that, for this problem, principle 1 of our general
method of boundary layer analysis does not apply because if the term involving ε is
dropped, there is just one other term remaining, with nothing to balance it.

Exercise 20.4. A double boundary layer. (a) Solve ε3y′′+x3y′+(x3−ε)y = 0, x ∈ [0, 1]
with y(0) = 2 and y(1) = 1 for ε = 0.005 and plot the resulting solution. This problem
has two boundary layers at x = 0, one of width O(ε) and the other of width O(ε1/2).
Find a way to show this graphically based on solutions computed for various values
of ε. (b) A good global approximation for y is y(x) ≈ 2 exp(−x/ε)+ e[exp(−ε/2x2) +
exp(−x)− 1]. What is the maximum error of this approximation for ε = 10−1, 10−2,
and 10−3?

Exercise 20.5. Exponential ill-conditioning and pseudo-nonuniqueness. (a) Solve εy′′−
xy′ + y = 1, x ∈ [−1, 1] with y(−1) = 0 and y(1) = 0 for ε = 1/8, 1/16, 1/32, . . .
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until you get a solution that looks completely unlike the others. Mathematically,
this solution is not correct. However, it is a pseudo-solution in the sense that the
residual εy′′−xy′+ y− 1 is very small. Confirm this by computing maxx∈[−1,1] |εy′′ −
xy′ + y − 1| for each of your values of ε. (b) Explain this effect by boundary layer
analysis as follows. Find a formula for outer solutions to this problem and note that
it matches the observed incorrect solution. Now find formulas for inner solutions
corresponding to boundary layers at x ≈ ±1 and note that these provide enough
boundary conditions to match any choice of the outer solution. Thus, although the
linear operator L that maps right-hand side functions to solutions of this BVP is
mathematically nonsingular, hence has no null function, it has pseudo-null functions
with exponentially small residual. This ODE BVP is exponentially ill-conditioned, and
we may think of it as exponentially close to being underdetermined. (The reason this
has happened is because of the sign change in the coefficient of y′ in this equation at
x = 0. This is related to the theories of exponential dichotomy and pseudospectra. See
Chapters 10 and 11 of Trefethen and Embree, Spectra and Pseudospectra, Princeton,
2005.)

Exercise 20.6. Exponential ill-conditioning of the adjoint problem. Show that the ad-
joint of the operator L of Exercise 20.5 is L∗: v 	→ εv′′ + xv′ + 2v with boundary con-
ditions v(±1) = 0. Solve the problem L∗v = 1 numerically for ε = 1/8, 1/16, 1/32, . . . .
What goes wrong now when when ε gets sufficiently small?
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21. Into the complex plane

Most of the familiar mathematical functions are defined for complex arguments
as well as real ones. For example, here are the Taylor series of two functions
about the point t0 = 0:

et = 1 + t+
t2

2
+

t3

3!
+ · · · , 1

1 + t2
= 1− t2 + t4 − t6 + · · · .

To define the value of a function when t is complex, we can use the same series,
so long as t is close enough to t0 for convergence.

We say that a function y(t) is analytic at a point t0 if it has a Taylor series
at t0 that converges to y in some neighborhood of t0. If y is initially defined just
for real values, then the neighborhood will be an interval (a, b) with a < t0 < b.
Once we’ve got a convergent power series, it can be used to define values in
the complex plane too, and this is the process called analytic continuation.
It is a basic fact of complex variables that every power series has a radius of
convergence r ∈ [0,∞] with the property that the series converges for all real
or complex numbers t with |t − t0| < r and diverges for all t with |t − t0| > r.
Thus a power series always converges inside a disk, the disk of convergence,
which is the largest disk centered at t0 inside which the function is analytic.

For y(t) = et, the disk of convergence has radius r = ∞, regardless of the
choice of t0, because the exponential function is analytic for all values of t. A
function y(t) that is analytic for all real and complex values of t is said to be
entire. For 1/(1 + t2) and t0 = 0, we have r = 1, because the function has
singularities at t = ±i (poles), where the value blows up to ∞. For t0 = 1 with
the same function, we would have r =

√
2.

267
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It is a general idea of mathematics that one can learn things about a function
by examining its singularities in the complex plane. For example, how would
you explain to a student in a calculus class why the function y(t) = 1/(1+t2) has
a Taylor series that converges just for t ∈ (−1, 1)? The answer is the presence of
those singularities at ±i, and if your student doesn’t know about the complex
plane, it is not clear how you could really give a satisfactory explanation.

Here is another example. The function y(t) = tanh(10t) makes a rapid
transition from −1 to +1 near t = 0.

y = chebfun('tanh(10*t)'); plot(y)
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How does this transition come about? One way to understand it is to note
that y has poles in the complex plane quite near to t = 0, at ±πi/20, ±3πi/20,
±5πi/20, . . . . As t increases along the real axis, y changes quickly as it passes
these special points. A contour plot of |y(t)| for t ranging over a rectangular
region in the complex plane reveals the four poles of y closest to the origin.

x = linspace(-1.2,1.2,201); y = linspace(-0.5,0.5,101);

[xx,yy] = meshgrid(x,y); zz = xx + 1i*yy;

ff = tanh(10*zz); levels = [1 2 4];

contour(x,y,abs(ff),levels)

hold on, plot(pi*.05i*(-3:2:3),'.')
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If the poles were ten times closer, y would make its transition ten times faster.
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For another example, what can we make of the function

y(t) = − log(1.1 + cos(πt))? (21.1)

A plot reveals spikes near odd integer values of t.

f = chebfun('-log(1.1+cos(pi*t))',[-4 4]); plot(f)
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As before, these points of rapid change are associated with nearby singularities
in the complex plane, which lie in pairs just above and below each odd integer.

x = linspace(-4,4,201); y = linspace(-1.5,1.5,101);

[xx,yy] = meshgrid(x,y); zz = xx + 1i*yy;

ff = -log(1.1+cos(pi*zz)); levels = 2.5:.5:7;

contour(x,y,abs(ff),levels)

hold on, plot(acos(1.1)/pi+(-3:2:3),'.')

plot(-acos(1.1)/pi+(-3:2:3),'.')
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This contour plot requires more interpretation than the previous one. Before,
each singularity ts was a pole, with y ∼ C/(t − ts) for some constant C. In
this second contour plot, however, the two rows of singularities are not poles
but branch points. A function with a branch point is not analytic and single-
valued in any punctured neighborhood of the point, because if you continue
it analytically all the way around, you reach a different value from the one
you started with. To make a function y with branch points single-valued and
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analytic, it is customary to restrict the domain by introducing branch cuts
connecting the branch points, along which y is not defined. Given a func-
tion with certain branch points, there is no unique set of branch cuts that the
mathematics forces you to choose. Computer programming languages, however,
generally take log(t) and t1/2 to have branch lines extending along the negative
real axis from 0 to −∞, and this determines where the branch cuts lie for more
complicated functions like (21.1). In the figure, the branch lines have ended up
as vertical rays extending upward to ∞ from the branch points in the upper
half-plane and downward to ∞ from the branch points in the lower half-plane.

Everything we have said in the last three pages about functions in general
applies to the particular case of solutions of ODEs. Many of them make sense
in the complex plane, and their behavior in the plane can both be interesting in
its own right and also shed light on behavior, such as rapid transitions, on the
real axis.

As the simplest possible example, consider the IVP

y′ = y, y(0) = 1. (21.2)

The unique solution is et, an entire function in the complex t-plane, and thus
for example at t = i we have

y(i) = exp(i) = cos(1) + i sin(1) ≈ 0.5403 + 0.8415i.

We can interpret (21.2) in the complex plane in two ways. One is to regard it as
a differential equation that applies not just for real values of t but also complex
ones. The value y(i), for example, might be determined by integrating the ODE
along the imaginary line segment extending from t = 0 to t = i. Chebfun doesn’t
work with complex intervals directly, but we can achieve the necessary effect by
parametrizing the interval [0, i] as is for s ∈ [0, 1]. The equation becomes

dy

ds
=

dt

ds

dy

dt
= iy, (21.3)

or in Chebfun,

L = chebop(0,1); L.lbc = 1; L.op = @(s,y) diff(y) - 1i*y;

y = L\0; y(1)

ans = 0.5403 + 0.8415i

The other interpretation of (21.2) for complex t is that we may start from
the solution y(t) for real t, and then analytically continue it into the complex
plane. This idea defines the same function as before, provided one uses the same
branch cuts for the analytic continuation as for the ODE solution.

For example, here we solve (21.2) in the usual manner on the real interval
[0, 1], and then evaluate the result at the complex point t = i.

L = chebop(0,1); L.op = @(t,y) diff(y) - y; L.lbc = 1;

y = L\0; y(1i)
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ans = 0.5403 + 0.8415i

Since Chebfun’s solutions of ODEs are numerical rather than symbolic, it is
entirely appropriate to wonder why this worked! The reason is that Chebfun’s
solution function y is actually a polynomial representation of exp(t) on [0, 1],
which also approximates the function in a larger region of the complex plane.
So Chebfun has performed a numerical version of analytic continuation for us.
As a rule, this trick works reasonably well for complex values of t close to the
interval of definition, but not for values further out, and certainly not for values
of t that lie further from the interval than some singularities of y.

Let us illustrate this by considering an example with a singularity. The
nonlinear IVP

y′ = −2ty2, t ∈ [−4, 4], y(−4) =
1

17
(21.4)

has the unique solution we examined at the start of the chapter,

y(t) =
1

1 + t2
,

with poles at t = ±i. The solution looks as it should,

N = chebop(-4,4); N.lbc = 1/17; N.op = @(t,y) diff(y) + 2*t*y^2;

y = N\0; plot(y)

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

At t = i/2, the correct value of y is 4/3, as Chebfun confirms:

y(1i/2)

ans = 1.3333 + 0.0000i

At t = 3i/2, however, on the far side of the pole at i, the correct value of y is
−4/5, whereas Chebfun gets a huge incorrect value.

y(3i/2)

ans = 1.4284e+06 + 2.7297e+05i
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One can never expect a simple evaluation like this to work, if the point of evalu-
ation is further from the interval of computation than some of the singularities
of the function.70

There is an alternative approach in Chebfun, however, that can often be
used for numerical analytic continuation even beyond singularities, especially
when the singularities are poles. The Chebfun command aaa approximates a
function not by the usual Chebfun method involving polynomials, but by a
rational function r(t) = p(t)/q(t) of some adaptively determined type (n, n),
which means that the numerator and denominator degrees are ≤ n.71 For
example, the command

[r,pol] = aaa(y,'tol',1e-8);

constructs a rational approximation to y and evaluates its poles, which match
those of y:

pol

pol =

0.0000 + 1.0000i

0.0000 - 1.0000i

This time, the value at t = 3i/2 comes out correct.

r(3i/2)

ans = -0.8000 + 0.0000i

Although rational approximations will usually not give precise information,
especially since singularities of solutions to ODEs in the complex plane are
usually more complicated than just poles, they are often good at giving a rough
idea of the nature of such singularities near the domain of approximation. For
example, in Chapter 13 we plotted one component of a solution to the Lorenz
equations (13.1),

N = chebop(0,5); N.lbc = [-15; -15; 20];

N.op = @(t,u,v,w) [diff(u)-10*(v-u); ...

diff(v)-u*(28-w)+v; diff(w)-u*v+(8/3)*w];

[u,v,w] = N\0; plot(u);

70This statement can be made mathematically precise with the use of Bernstein ellipses,
ellipses in the complex t-plane whose foci are at the two endpoints of the interval of definition
of the chebfun. A chebfun will normally give a degree of good approximation in the largest
region of analyticity bounded by such an ellipse, as discussed in Chapter 8 of Trefethen,
Approximation Theory and Approximation Practice, SIAM, 2013.

71See Nakatsukasa, Sète, and Trefethen, “The AAA algorithm for rational approximation,”
submitted manuscript, 2016.
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You might guess that these spikes are associated with nearby singularities in the
complex plane, and here are the poles of the aaa rational approximation. Note
that the sharpest spikes correspond to singularities closest to the real axis.

[r,pol] = aaa(u,'tol',1e-8); plot(pol,'.')
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One should not imagine that the function plotted in Figure 21.6 truly has
poles at all the points shown in Figure 21.7. Rather, it is likely that it has a
singularity — probably not just a pole — near the point in each group that lies
closest to the real axis. The rest of the dots are probably lining up along branch
cuts.

Solutions to linear ODEs have no singularities unless the leading-order coeffi-
cient passes through 0 or the coefficients are singular, but solutions to nonlinear
ODEs may have all kinds of singularities, which may be movable in the sense
that they appear at locations dependent on initial data. A natural question for
a mathematician is, are there nonlinear ODEs whose movable singularities are
only poles, never branch points? It turns out that a full answer to this question
is known in the case of second-order ODEs of the form y′′ = F (t, y, y′), where F
is a rational function. Paul Painlevé showed that all such equations possessing
this property that the movable singularities are poles can be organized into 50
classes, 44 of which can be reduced to other known functions.72 The remaining

72Painlevé was not your average mathematician. In 1917 and again in 1925, he served as
Prime Minister of France, and he is buried in the Panthéon in Paris.
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six classes are called the Painlevé equations, and their solutions are known
as Painlevé transcendents. The Painlevé I equation is

y′′ = 6y2 + t, (21.5)

and the Painlevé II equation is

y′′ = 2y3 + ty + α, (21.6)

where α is a parameter.

Let us take a look at (21.5), the Painlevé I equation. In Chapter 3, we
saw that the first-order ODE y′ = y2 and various generalizations have solu-
tions which blow up to ∞. The blowup points are simple poles. For (21.5), a
second-order equation of a similar form, one gets double poles instead of simple
poles. For example, here is a solution to (21.5) on the interval [−15, 2.27] with
“middle conditions” y(0) = y′(0) = 0. For t < 0, the solution is oscillatory and
nonsingular, but for t > 0 the curve is approaching a double pole at t ≈ 2.6.

N = chebop(0,2.27); N.op = @(t,y) diff(y,2)-6*y^2-t;

N.lbc = [0;0]; y = N\0; plot(y), hold on

N = chebop(-15,0); N.op = @(t,y) diff(y,2)-6*y^2-t;

N.rbc = [0;0]; y = N\0; plot(y)
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The reader of this chapter will suspect that if y(t) oscillates like this on the
negative t-axis, there must be singularities nearby in the left half of the complex
t-plane. This is true, and in fact, there is an infinite array of double poles
extending to ∞ in all directions.

The Painlevé I equation does have smooth solutions for certain boundary
data, which we can isolate most easily by solving a BVP. Here is an example:

y′′ = 6y2 + t, t ∈ [−24, 0], y(−24) = 2, y(0) = 0. (21.7)

N = chebop(-24,0); N.op = @(t,y) diff(y,2) - 6*y^2 -t;

N.lbc = 2; N.rbc = 0; y = N\0; plot(y)
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Because of the exponential sensitivities introduced by the nonlinear term, one
is hardly likely to find such smooth solutions by solving an IVP. To illustrate
this sensitivity, here we superimpose on the figure the solution to an IVP (or
if you prefer a final-value problem) corresponding to the same solution just
plotted, except that the boundary conditions are both specified at the right-
hand boundary, with a small perturbation introduced in the derivative:

y′′ = 6y2 + t, t ∈ [−24, 0], y(0) = 0, y′(0) = 0.999999α. (21.8)

Here α ≈ −0.451427 is the value of y′(0) corresponding to the solution of (21.7).

yp = diff(y); alpha = yp(0); N.lbc = [];

N.rbc = [0; 0.999999*alpha];

y = N\0; hold on, plot(y)
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The new solution matches the smooth one approximately for t ∈ [−5, 0], but
then diverges to an oscillatory form.

It is impossible to understand Painlevé equations very fully by looking just on
the real axis, however, as is shown beautifully by the complex plane explorations
of the paper by Fornberg and Weideman cited as our favorite reference below.
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Application: Jacobi sine function

Letm ∈ [0, 1) be a parameter and consider the nonlinear second-order initial-
value problem

y′′ = −(1 +m)y + 2my3, y(0) = 0, y′(0) = 1. (21.9)

If m is zero, the equation is just y′′ = −y and the solution is y(t) = sin(t).
As m increases, the nonlinearity becomes stronger. Here is what we find for
m = 0.998 over the interval t ∈ [0, 100].

N = chebop(0,100); N.lbc = [0;1];

m = 0.998; N.op = @(y) diff(y,2) + (1+m)*y - 2*m*y^3;

y = N\0; plot(y)
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Like sin(t), this function oscillates between −1 and 1, but its shape is squarer.
The period T is about three times longer than for sin(t), reflecting how much
time this function spends lingering near ±1:

[~,maxima] = max(y,'local'); T = maxima(3) - maxima(2)

T = 17.9814

Now sin(t) is completely smooth, analytic throughout the complex t-plane.
The function y(t), on the other hand, makes rapid transitions between −1 and 1,
which will become more abrupt as m increases toward 1. We may accordingly
guess that if this function is analytically continued into the complex plane, there
will be singularities above and below the t-axis near t = 0, T/2, T, . . . . A call to
aaa confirms this prediction. In the next figure, the dots show the poles of the
aaa rational approximant, and the vertical lines mark Re(t) = 0, T, . . . , 6T .

[r,pol] = aaa(y,'tol',1e-8);

plot([-10 110],[0 0]), hold on

for k = 0:6

plot(k*T*[1 1],[-30 30])

end

plot(pol,'.')
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This is a striking configuration. In fact, the function y defined by (21.9) is
doubly periodic in the complex t-plane, periodic not only in the real but also
the imaginary direction. (The poles of the mathematically exact function keep
going forever in a perfectly regular array, but aaa has just estimated some of
the poles near [0, 100].) It is the function known as the Jacobi sine function
with parameter m = 0.998, written sn(t, 0.998). Although it is analytic for real
values of t, it has poles for complex t, and they lie in an infinite doubly periodic
array. Here is the period in the imaginary direction (close to π, but different):

imagpol = sort(abs(imag(pol)));

T2 = 2*min(abs(imag(pol)))

T2 = 3.1432

If we include horizontal lines in the plot too, we get an image marking funda-
mental domains of periodicity.

for k = -10:10

plot([-10 110],k*T2*[1 1])

end

plot(pol,'.')
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Here, arbitrarily, we verify the double periodicity by comparing r(t) for t = 5− i
and the same value plus T , iT2, and T + iT2. (See Exercise 21.8.)
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t = 8-1i; r(t+[0; T; 1i*T2; T+1i*T2])

ans =

1.0852 + 0.2778i

1.0852 + 0.2778i

1.0852 + 0.2778i

1.0852 + 0.2778i

Doubly periodic functions, also known as elliptic functions, are among the
core topics of complex analysis.

History. The idea of giving physical meaning to imaginary space or time
has proved fruitful for quite a few problems of engineering and physics, from the
design of transonic airplane wings to the explanation of the Big Bang. Stephen
Hawking presented the latter idea in his 1988 blockbuster book A Brief History
of Time. The elegant, singularity-free frame of reference in which to understand
the universe, Hawking suggests, is one in which t runs in the imaginary direction.
In that direction, he proposes, the universe’s boundary conditions are periodic,
so there are no boundaries and no singularities. It’s only if you turn a right angle
and do analytic continuation into the real-t direction — analytically continuing
back to around t = −14,000,000,000 years, to be precise — that you encounter
the mother of all singularities.

Our favorite reference. There is an excellent classic book by Einar
Hille on Ordinary Differential Equations in the Complex Domain, but our fa-
vorite reference for this topic, with spectacular figures illustrating the functions
in question, is Fornberg and Weideman, “A numerical methodology for the
Painlevé equations,” Journal of Computational Physics, 2011.

Summary of Chapter 21. Many ODEs make sense for complex as well
as real arguments. Solutions y(t) for complex t can be defined by applying
the ODE in the complex plane, or by analytic continuation from solutions
for real t. If y(t) changes rapidly as t varies through certain real values,
there are usually one or more singularities of y nearby in the complex
t-plane. Typically such singularities will be branch points, requiring asso-
ciated branch cuts, but in the case of Painlevé equations the only movable
singularities (i.e., lying at data-dependent locations) are poles.

Exercise 21.1. Painlevé I change of variables. Suppose y(t) is a solution to (21.5).
Show that another solution is ω3y(ωt), where ω = exp(2πi/5).

Exercise 21.2. Multiple solutions to Painlevé BVP. Compute and plot another solution
to (21.7) by starting from the initial guess y(t) = − exp(−10(t + 1)2). What is its
minimum value?

Exercise 21.3. Some singularities are just pseudo-singularities. (a) Repeat the cal-
culation of Figure 20.4 for the ODE of (20.6), εy′′ + xy′ + xy = 0 with ε = 0.001.
Then plot the poles of the AAA approximants of the solution y, as in Figures 21.7 and
21.12, for tol = 10−4, 10−6, and 10−8. You will see that the poles of these approxi-
mations vary with the tolerance. They are not approaching any actual singularities of
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the true solution y, because y, despite its steep interior layer near x = 0, cannot have
any singularities since the equation is linear with analytic coefficients and a nonzero
leading-order coefficient. (b) In such a case y, though analytic as a function of x,
must increase rapidly in magnitude as x leaves the real axis. (One can prove this via
Cauchy’s estimate.) To confirm this, examine values of x along the imaginary axis.
First, make the substitution x = is as in (21.3) and write down the form that the
ODE takes when transformed to the s variable. (c) Now solve (20.6) numerically for
x ∈ [0, 0.2i], that is, s ∈ [0, 0.2], taking as initial data the appropriately transformed
values y(0) and y′(0) from the solution of (a). Make a semilogy plot of |y(x)| against
|x|. How big is |y(0.2i)|?
Exercise 21.4. Bypassing blowup. As we have discussed at several points in the book,
positive solutions to y′ = y2 blow up to ∞ in finite time. The situation changes,
however, if y is even very slightly complex. (a) Draw a quiver plot of y′ = y2 in the
complex y-plane and describe the shape of the complex trajectories in this plot. (b)
Solve y′ = y2 + f with y(0) = 1 for t ∈ [0, 1], where f is the complex random func-
tion generated by rng(1), f = 0.01*randnfun([0 1],'big','complex'). Plot the
solution with axis equal. (For analysis of such problems see Herzog and Mattingly,
“Noise-induced stabilization of planar flows I”, Electronic Journal of Probability, 2015.)

Exercise 21.5. Jacobi sine function. A chebfun y2 representing the Jacobi sine function
as plotted in Figure 21.11 could be constructed directly from the MATLAB function
ellipj(t,0.998). Do this and plot abs(y-y2) to give an indication of accuracy of
this Chebfun ODE solution.
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Many ODE BVPs that arise in applications are related to time-dependent PDEs.
In the simplest case the solution y(x) of the BVP is a time-independent or
steady solution of the PDE, that is, a solution y(x, t) of the PDE that is
independent of t. Often a solution of a PDE may converge to time-independent
form as t → ∞.

Laplace and heat equations. The archetypal pair of equations related in
this way are the Laplace equation, an ODE BVP when restricted to one space
dimension, and the heat equation, a PDE IBVP (initial boundary-value prob-
lem). Specifically, the 1D Laplace equation is the equation y′′ = 0, that
is, d2y/dx2 = 0. In this chapter, since time derivatives will also come into
play, we will write this in the notation yxx = 0, where yxx is an abbreviation
for ∂2y/∂x2. For example, here is the 1D Laplace equation with homogeneous
Dirichlet boundary conditions on [−π, π]:

yxx = 0, x ∈ [−π, π], y(±π) = 0. (22.1)

We hardly need a computer to see that the solution is y(x) = 0.
Now let us consider how (22.1) may arise in describing steady solutions

of the 1D heat equation, ut = uxx. Here is an initial boundary-value
problem (IBVP) for this equation with a particular choice of initial data, a
pulse centered at x = 1:

ut = uxx, x ∈ [−π, π], u(±π, t) = 0, u(x, 0) = exp(−50(x− 1)4). (22.2)

Physically, the zero solution just mentioned represents the effect that eventually,
all the heat described by (22.2) will flow out the ends of the interval, where the
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temperature is held at zero. A plot of the initial condition together with the
solution at times t = 0.01, 0.1, and 1 shows the beginning of this process.73

In this and other figures of this chapter displaying PDE solutions at various
times t, we plot the curves in orange, with the initial curve in brown.

u0 = chebfun('exp(-50*(x-1)^4)',[-pi,pi]);

pdefun = @(t,x,u) diff(u,2);

bc.left = @(t,u) u; bc.right = @(t,u) u;

opts = pdeset('plot','off');

t = [0 .01 .1 1]'; [t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0)
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It is apparent in this figure that, until the last curve, the boundaries have
had little effect. We can confirm this by integrating the curves to determine the
total heat at each time, which doesn’t diminish much until t = 1.

disp([t sum(u)'])

t heat

0 0.6817

0.0100 0.6817

0.1000 0.6817

1.0000 0.5874

As t increases further, the left boundary begins to be important as well as the
right one, as is clear from these images for t = 1 (again) and 2, 4, 8, 16.

u = u(:,end);

t = [1 2 4 8 16]'; [t,u] = pde15s(pdefun,t,u,bc,opts);

plot(u), hold on, plot(u(:,1))

73As the experiments of this chapter show, Chebfun can be very effective in solving certain
PDEs. PDEs are not Chebfun’s main focus, however, and its syntax is not as simple nor its
capabilities as comprehensive for PDEs as for ODEs.

Copyright © 2018 Society for Industrial and Applied Mathematics



22. Time-dependent PDEs 283

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

Note how the pulse is now moving to the center, approaching its asymptotic
form C exp(−t/4) cos(x/2), as determined originally by Joseph Fourier around
1807. The integrals confirm that the total heat content is now diminishing
speedily, with 98% of the heat gone by t = 16.

disp([t sum(u)' 0.76*exp(-t/4)])

t heat 0.76*exp(-t/4)

1 0.5874 0.5919

2 0.4590 0.4610

4 0.2786 0.2796

8 0.1025 0.1029

16 0.0139 0.0139

The Laplace and heat equations may be the archetypes, but these simple lin-
ear equations give only a hint of the rich relationship between time-dependent
PDEs and associated ODE BVPs. We will now look at some further exam-
ples illustrating the phenomena of stability, instability, and symmetry-breaking
bifurcation.

Stability and instability. Let us add an exponential term to (22.1) and (22.2)
to make them into ODE and PDE versions of the nonlinear Bratu equation,
considered in Chapters 16 and 18. Here is (16.4) again, with the constant on
the nonlinear term adjusted to compensate for the change in domain from [0, 1]
to [−π, π].

yxx +
3ey

4π2
= 0, x ∈ [−π, π], y(±π) = 0. (22.3)

As shown in Chapter 16, there are two solutions to this ODE BVP. We plot
one of them as a dashed line, the one we shall find is unstable.

N = chebop(-pi,pi); N.op = @(x,y) diff(y,2) + (.75/pi^2)*exp(y);

N.lbc = 0; N.rbc = 0;

y1 = N\0; plot(y1), hold on

x = chebfun('x',[-pi pi]); N.init = .2*(pi^2-x^2);

y2 = N\0; plot(y2,'--')
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Now let us embed the problem in a time-dependent PDE with initial condition
u(x, 0) = u0(x),

ut = uxx +
3eu

4π2
, x ∈ [−π, π], u(±π, t) = 0, u(x, 0) = u0(x). (22.4)

First of all, suppose we take u0(x) = 0. Then as t → ∞, the solution increases
and approaches a steady state, the lower solution of (22.3) just plotted.

u0 = 0*x; pdefun = @(t,x,u) diff(u,2)+(.75/pi^2)*exp(u);

t = (0:2:12)'; [t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0), plot(y1), plot(y2,'--')
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Many other initial conditions also lead to the same steady state, which is a
stable solution of this PDE. For example, in this plot we choose u0 to have a
few wiggles and include extra values t = 0.05, 0.2 to show how transient their
influence is.

u0 = sin(x)+.3*sin(3*x)+.1*sin(13*x); t = [0 0.05 0.2 2:12]';

[t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0), plot(y1), plot(y2,'--')
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Fig. 22.5. Solution to (22.4) at t = 0, .05, .2 and 2, 4, . . . , 20

As another example, next we take u0 to be 0.9 times the upper solution of
the BVP (22.3). Despite that starting point, the PDE converges to the other,
lower solution. The upper solution of the BVP is an unstable solution of the
PDE.

u0 = 0.9*y2; t = (0:4:32)'; [t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0), plot(y1), plot(y2,'--')
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If we take u0 to be a little larger than the upper solution of the BVP, the same
instability is manifested as divergence to ∞ in finite time, at t ≈ 6.914 for this
particular initial condition.

u0 = 1.1*y2; t = [0 4 6 6.5 6.8 6.9 6.913]';

[t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0), plot(y1), plot(y2,'--')
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As we have discussed at many points in this book, phenomena of stability and
instability are of pervasive importance in the mathematical sciences. Generally
speaking, a stable solution is likely to be observable in an experiment and an
unstable one is not. Also, generally speaking, a stable solution is likely to emerge
as a steady state of a time-dependent process and an unstable one is not. Still,
a study of unstable solutions may be important to a full understanding of a
problem, and they can often be determined by solving time-independent BVPs.

Symmetry-breaking bifurcation. We have seen in Chapters 16–18 that the
number of solutions of an ODE BVP may change as a parameter varies. Often
when new solutions appear, this corresponds to a loss of stability of an old
solution, and the new solutions are less symmetric than the original one.74

To illustrate this effect, let us look at the time-dependent Allen–Cahn
equation,

ut = εuxx + u− u3, x ∈ [−1, 1], u(±1, t) = 0, u(x, 0) = u0(x). (22.5)

For ε > ε1 ≈ 0.406, the unique steady solution of this problem is u ≡ 0, as
we illustrate here with ε = 0.6. The associated ODE BVP, which appeared in
Exercise 18.1, is

εyxx + y − y3 = 0, x ∈ [−1, 1], y(±1) = 0, (22.6)

and we show its (zero) solution superimposed on the plot.

x = chebfun('x'); ep = 0.5; pdefun = @(t,x,u) ep*diff(u,2)+u-u.^3;

u0 = 0.5*cos(pi*x/2)+.7*sin(pi*x); t = (.5:.5:4)';

[t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0), y1 = 0*x; plot(y1)
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Reducing ε to 0.15, on the other hand, illustrates a different situation. Here,
the zero solution is still valid, but it is unstable. With the same initial condition
as before, the curve approaches a positive form as t → ∞. By symmetry, if the
initial condition were negated, the steady solution as t → ∞ would be negated
too.

74Symmetry-breaking bifurcations are at the root of phase transitions in physics. Physicists
believe that some particularly important phase transitions occurred soon after the Big Bang,
when a single unified force separated into the different fundamental forces recognized today
such as the electromagnetic and weak forces.
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ep = 0.15; pdefun = @(t,x,u) ep*diff(u,2)+u-u.^3;

[t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0)

N = chebop(-1,1); N.lbc = 0; N.rbc = 0;

N.op = @(x,y) ep*diff(y,2) + y - y^3; N.init = u0;

y2 = N\0; y3 = -y2; plot(y1,'--'), plot([y2 y3])
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What if one starts from an initial condition that is an odd function of x,
hence equally close to the upper and lower solutions? For this value of ε, the
solution quickly converges to zero.

u0 = .7*sin(pi*x); [t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0), plot(y1,'--'), plot([y2 y3])
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The zero solution is not truly stable, however. It is a saddle point, and if it is
perturbed by a function that is not odd, the perturbations will generally grow.

If ε is reduced further for this problem, below another bifurcation point
ε2 ≈ 0.1, a further set of solutions appears.

ep = 0.02;

pdefun = @(t,x,u) ep*diff(u,2)+u-u.^3; u0 = .3*sin(pi*x);

[t,u] = pde15s(pdefun,t,u0,bc,opts);

plot(u), hold on, plot(u0)

N.op = @(x,y) ep*diff(y,2) + y - y^3;

N.init = cos(pi*x/2); y2 = N\0; y3 = -y2;

N.init = sin(pi*x); y4 = N\0; y5 = -y4;

plot(y1,'--'), plot([y2 y3]), plot([y4 y5],'--')
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We have marked the new solutions with dashed curves, because in fact these
again are saddle points, not stable points. If the initial condition were not an
odd function, the solution would eventually converge to one of the stable steady
states of a single sign.

Time-harmonic solutions and resonance. Up to now we have looked at PDEs
of first order in t. An ODE BVP may also be relevant to time-oscillatory
solutions of a PDE that is of second order in t. (We considered such problems
in Exercise 6.3 and in the Application of Chapter 20, “Why is New York hotter
than San Francisco?”) Suppose we have a linear PDE

utt = Lu+ eiωtf, (22.7)

where L is a linear operator acting on functions of x, ω is frequency, and f is a
function of x. A time-harmonic solution of (22.7) is a solution of the form

u(x, t) = eiωty(x) (22.8)

for some function y. Inserting (22.8) in (22.7) gives

−ω2u = Lu+ eiωtf,

or after dividing by eiωt,
−ω2y = Ly + f, (22.9)

known as the reduced equation associated with (22.7). One of the funda-
mental techniques of mathematical physics is to solve reduced equations to find
time-harmonic solutions of time-dependent equations.75

Further links between ODEs and PDEs. The difference between ODEs and
PDEs is nothing more than the number of independent variables, so it is hardly
surprising that connections between the two arise in many ways. In this chapter
we have emphasized steady-state forms that a solution of a PDE may settle
down to as t → ∞. A related situation is that sometimes as t → ∞ the solution
of a PDE approaches not a fixed function but a traveling wave, a function

75In quantum mechanics, the technique is applied to the Schrödinger equation, which dif-
fers from (22.7) in being of first order in t. We saw this in the Application of Chapter 6,
“Eigenstates of the Schrödinger equation.”

Copyright © 2018 Society for Industrial and Applied Mathematics



22. Time-dependent PDEs 289

u(x, t) = y(x − ct) for some constant wave velocity c that in most cases is not
known a priori. Here again ODEs play a natural role. Another way ODEs arise
from PDEs is in separation of variables, and the time-harmonic solutions just
looked at fall in this category. Separation of variables applies also in purely
spatial problems, for example, if a radially symmetric elliptic PDE is factored
into an ODE in r and an ODE in θ: this is the most familiar way in which one
encounters the Bessel equation (Exercise 22.1). Another PDE-ODE link arises
for problems that have similarity solutions. And if we move up one or more
dimensions, it is worth noting that just as a PDE in one space dimension may
reduce to an ODE in some limit, so a PDE in two or more space dimensions
may reduce to a PDE in one dimension less. For example, steady solutions of
the heat equation in a 2D spatial domain will be described by solutions of the
Laplace equation, a PDE, in the same domain.

Application: solitons and the KdV equation

The simplest of all time-dependent PDEs is the first-order 1D linear wave
equation (or advection equation),

ut = −ux, (22.10)

whose solutions consist of an arbitrary wave form y(x) traveling rightward at
speed 1 without changing shape,

u(x, t) = y(x− t). (22.11)

For example, here we start with a Gaussian of amplitude 50 centered at x = −1
and run to t = 2 using the Chebfun spin command (“stiff PDE integrator”).
The wave slides along to x = 1 without changing shape.

dom = [-5,5]; x = chebfun('x',dom); u0 = 50*exp(-30*(x+1)^2);

S = spinop(dom,[0 2]); S.lin = @(u) -diff(u); S.init = u0;

u1 = spin(S,160,.01,'plot','off'); plot([u0 u1])
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For a nonlinear equation, on the other hand, change of shape will be the rule.
In this application we look at the most famous of all nonlinear wave equations,
the KdV (Korteweg–de Vries) equation, which we write in the form

ut = −0.03(u2)x − 0.01uxxx. (22.12)

The equation blends first-order nonlinear advection, involving (u2)x or equiva-
lently 2uux, with third-order linear dispersion, involving uxxx. The constants
0.03 and 0.01 have no great significance and have been chosen to make the be-
havior approximately match that of ut = −ux for our initial condition. In the
next figure we solve (22.12) to t = 2 as before with spin, which is made for
nonlinear problems like this.

S = spinop(dom,[0 2]); S.init = u0;

S.lin = @(u) -0.01*diff(u,3); S.nonlin = @(u) -0.03*diff(u.^2);

u1 = spin(S,160,.01,'plot','off'); plot([u0 u1])

-5 -4 -3 -2 -1 0 1 2 3 4 5
-20

0

20

40

60

80

100

120

To first approximation, Figure 22.13 is like Figure 22.12. However, the peak
is moving a little more slowly, and it is losing amplitude. Meanwhile a tail
of dispersive oscillations is appearing behind. (The small oscillations ahead of
the main pulse are due to the use of periodic boundary conditions in all spin
simulations.) A complicated mix of effects like this is what one must expect to
see, in general, with a nonlinear PDE.

But the KdV equation has special properties that this experiment does not
reveal. It has special solutions, called solitary waves or solitons, that travel at
fixed speed with exactly uniform shape. For any constant c > 0, the associated
soliton profile is given by the formula

y(x) = 50c sech(
√
100c(x+ 1)/2)2, (22.13)

where sech(x) = 1/ cosh(x), the reciprocal of the hyperbolic cosine. Moreover,
the speed at which the soliton moves is equal to c, which means that tall solitons
move faster than short ones. Here we see this behavior with a simulation for
t ∈ [0, 2] and c = 1. Note that the sech2 function is much like a Gaussian, the
difference in shape being too little to notice by eye.
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c = 1; soliton1 = 50*c*sech(sqrt(100*c)*(x+1)/2)^2;

S.init = soliton1;

u1 = spin(S,160,.01,'plot','off'); plot([S.init u1])
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Since we took c = 1, this soliton has traveled at speed 1. If we double the
height, we double the speed.

c = 2; soliton2 = 50*c*sech(sqrt(100*c)*(x+2)/2)^2;

S.init = soliton2;

u1 = spin(S,160,.005,'plot','off'); plot([S.init u1])
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Another property of the KdV equation is truly extraordinary. Solitons can
pass through one another. For example, if we start with a solution consisting
of two well-separated solitons, the rear one taller than the front one, then the
rear one will catch up, pull ahead, and eventually return to the same shape and
speed it had before. Here is an illustration.

S.init = soliton1 + soliton2;

u1 = spin(S,160,.005,'plot','off'); plot([S.init u1])
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Note the locations of the peaks in this figure for the curve at t = 2. The speeds
have returned to essentially their initial values 2 and 1, but the tall soliton is a
bit further along than x = 2, and the short soliton is not as far along as x = 1.
This is because a shift of each soliton is introduced during the time of their
interaction around t = 1. The details of these nonlinear interactions are subtle
and fascinating, as the reader can easily explore with further computations. A
waterfall plot gives the idea.

spin(S,160,.005,'plot','waterfall');

A soliton is an example of a traveling wave, which we defined earlier as a
solution of a time-dependent PDE of the form

u(x, t) = y(x− ct) (22.14)

for some function y(x). Of course we know that in the case of the KdV equation,
the formula for y must be (22.13), but let us suppose we do not know this.
Inserting (22.14) in (22.12) gives −cyx = −0.03(y2)x − 0.01yxxx, that is,

yxxx = 100cyx − 3(y2)x.

This looks like a nonlinear third-order ODE. However, all three terms are
differentiated, so we can integrate it once to get the second-order equation

yxx = 100cy− 3y2 + C

Copyright © 2018 Society for Industrial and Applied Mathematics



22. Time-dependent PDEs 293

for some constant C. Now let us use this ODE to find the shape of a traveling
wave solution. If we assume that y and its derivatives approach 0 as |x| → ∞,
then we have C = 0, and the equation becomes

yxx = 100cy− 3y2. (22.15)

This could be dealt with analytically, or one could try various things on the
computer. For example, suppose we regard (22.15) as an IVP on the interval
x ∈ [−2, 2], with c = 1. With initial conditions y(−2) = 0 and y′(−2) = 10−4

we get a soliton of just the expected amplitude 50. The horizontal location has
no particular significance; it would be different with a different value of y′(−2).

N = chebop(-2,2); N.op = @(y) diff(y,2) - 100*y + 3*y^2;

N.lbc = [0; 0.0001];

y = N\0; plot(y)
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We have not mentioned the scientific uses of the KdV equation. These began
with water waves, and the story is often told of John Scott Russell’s chase on
horseback of a solitary wave in the Union Canal in Scotland in 1834. Two
centuries later, the important applications are in optics. Light pulses traveling
through optical fibers experience nonlinear effects combined with dispersion,
and the KdV equation and its relatives are fundamental nowadays in optical
technology.

History. There are few equations with more impact in the history of math-
ematics than the KdV equation. The understanding of solitons and their in-
teractions came in the 1960s and led to sensational new discoveries related to
so-called completely integrable dynamical systems; some of the key names were
Zabusky, Kruskal, and Lax. The technical details are exhilarating, and so are
the wider implications, for it was work around the KdV equation that led to
some of our deepest understanding of the significance of nonlinearity. All this
was sparked by computers. Though the KdV equation goes back to the 19th
century, the great advances began with a 1955 paper by Fermi, Pasta, and Ulam,
who worked on the Maniac I computer at Los Alamos.

Our favorite reference. The PDE Coffee Table Book was a group
project at Oxford in the late 1990s coordinated by Trefethen together with
Kristine Embree. The idea was to present 100 PDEs in the simplest possible
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terms, each getting exactly a two-page spread with just the right information
about mathematics, applications, and history, and always with a colorful com-
puted illustration. Alas, the project halted when it was only 34% complete, but
that 34% is worth checking out: see The (Unfinished) PDE Coffee Table Book,
https://people.maths.ox.ac.uk/trefethen/pdectb.html.

Summary of Chapter 22. Many ODE BVPs are related to associated
time-dependent PDEs in one space dimension. The ODEs may arise as
limits t → ∞ in which solutions approach a steady state, a steady oscilla-
tion, or a traveling wave. ODEs may also arise from purely spatial PDEs
by the process of separation of variables.

Exercise 22.1. Bessel equation for a circular drum. A 2D membrane with a fixed
boundary Γ oscillates according to the wave equation utt = Δu, where Δ is the Lapla-
cian operator, Δu = uxx+uyy. This is a PDE in two space variables and time. (a) As-
sume that u takes the form u(x, y, t) = exp(iωt)v(x, y) for a fixed frequency ω and
function v. Show that this assumption reduces the equation to a PDE eigenvalue equa-
tion in two space variables. (b) Now assume that Γ is the unit circle and that v takes
the polar coordinates form v(r, θ) = exp(ikθ)y(r) for a fixed integer wave number k.
Using the polar coordinates representation of the Laplacian, Δv = vrr+r−1vr+r−2vθθ ,
show that this reduces the problem to an ODE eigenvalue problem involving Bessel’s
equation.

Exercise 22.2. Asymptotic behavior of advection-diffusion problem. (a) Execute
chebgui and run the demo labeled “Advection-diffusion equation 2” under the tab
Demos/PDE-scalar. The IBVP here is ut = 0.3uxx + 10ux for x ∈ [−1, 1] with ini-
tial condition u(x, 0) = exp(−10x4/(1 − x2)) and boundary conditions u(±1) = 0.
Describe in words how the solution behaves as t → ∞. (b) This behavior can be ana-
lyzed by looking for solutions of this equation of the form u(x, t) = eλty(x), where y
is a fixed function of x. Write down the formulas showing that y and λ are solutions
of an eigenvalue problem. Determine y and λ, either analytically or numerically, for
the value of λ corresponding to the slowest decay of u(x, t) as t → ∞. Show that y
has a shape corresponding to the observations of part (a). (c) By pressing the “Ex-
port solution” button in Chebgui and then typing max(u(:,end)), find the value of
maxx∈[−1,1] u(x, 0.25) (since the final time of this simulation is t = 0.25). Combine
this figure with the result of part (b) to estimate maxx∈[−1,1] u(x, 5) to an accuracy of
within 1%. (d) The asymptotic rate of decay is different if the advection term 10ux is
removed from the equation. (Physically, heat transfer is faster with convection than
just conduction — the oceanic effect that we found makes San Francisco cooler than
New York in the summer.) Estimate maxx∈[−1,1] u(x, 5) in this case.

Exercise 22.3. Metastability of Allen–Cahn equation. (a) Execute chebgui or pde15s,
as you prefer, for the Allen–Cahn equation ut = 0.05uxx + u = u3 for x ∈ [−5, 5]
and t ∈ [0, 50] with boundary conditions u(−5) = u(5) = −1 and initial condition
u(x, 0) = −1+2 exp(−x2). Show how the initial function quickly changes to a “stalag-
mite” form that looks like a steady state. (b) Now run the calculation for t ∈ [0, 1000]
and show that the apparent steady state was not truly steady, only metastable. Es-
timate the time at which the stalagmite is extinguished — say, the time t at which
maxx∈[−5,5] u(x, t) becomes negative. How does this critical time change if the diffu-
sion coefficient 0.5 is increased to 0.6 or 0.7? (With values of the diffusion coefficient
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much less than 0.5 the time soon becomes nearly infinite in practice — too long to
be measured by a Chebfun computation — though it is always finite in principle.)
(c) Write down the ODE in the variable y for a time-independent solution of the
Allen–Cahn equation. One solution of the ODE is y(x) = −1. The waveform observed
for t = 50 in part (a) is a “pseudo-solution”: it nearly satisfies the ODE, though not
exactly. Insert this solution in the ODE to quantify “nearly.”

Copyright © 2018 Society for Industrial and Applied Mathematics



Copyright © 2018 Society for Industrial and Applied Mathematics



Appendix A. Chebfun and its ODE algorithms

This is not a book of numerical analysis, yet its heart is numerical explorations.
Here we outline Chebfun’s ODE algorithms, with references to papers giving
further details listed at the end, and mention some of the people who developed
them.

Functions. The Chebfun project began at Oxford in 2002 with Trefethen and
his DPhil student Zachary Battles [3,19]. The starting idea, which remains the
project’s central vision, is to utilize Chebyshev interpolants and expansions to
enable “numerical computing with functions.” Specifically, Chebfun overloads
MATLAB commands for discrete vectors to analogues for continuous functions,
aiming to deliver speedy results that are accurate to close to machine precision.

In Chebfun, each function (or piece of a function, for piecewise representa-
tions) is represented by a polynomial whose domain is a real interval, [−1, 1]
by default. Polynomials are manipulated via Chebyshev series and coefficients
defined by the formulas

f(x) =
∞∑
k=0

akTk(x), ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx, (A.1)

where Tk is the degree k Chebyshev polynomial (for k = 0, the factor 2/π
changes to 1/π). If f is Lipschitz continuous, the series converges uniformly
and absolutely, and the smoother f is, the faster the convergence.

For example, f(x) = 50x exp(−200x2)−tanh(ex−1) can be constructed and
plotted like this:

f = chebfun(@(x) 50*x*exp(-200*x^2)-tanh(exp(x)-1));

297
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plot(f), n = length(f)-1;
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The approximation f is called a chebfun, with a lowercase c. To compute
quantities like the maximum, the integral, or the norm, Chebfun uses fur-
ther Chebyshev-based algorithms, all invoked by overloads of familiar MATLAB
commands.

max(f), sum(f), norm(f)

ans = 1.465550685258784

ans = -0.191484396292624

ans = 0.870958861441616

Algebraic and other operations are also overloaded in the expected manner:

min(exp(sin(1/(1+f^2))))

ans = 1.365723734142705

Zeros of functions are computed by the command roots:

roots(f)

ans =

-0.141201098066150

-0.000000000000000

0.138729956795104

The relative accuracy of each computation is usually about 16 digits, and in
principle the user need have no knowledge of the underlying algorithms. For
example, this function f is approximated by a polynomial of degree in the
hundreds. Here are the absolute values of its Chebyshev series coefficients,
plotted on log scale. (As it happens, for this function the even coefficients
decrease much faster than the odd ones, eventually reaching a plateau around
10−16 because of rounding errors.)

plotcoeffs(f)
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To find this approximation, Chebfun samples f on Chebyshev grids {x(n)
j } with

n+ 1 = 17, 33, 65, . . . points, defined by

x
(n)
j = − cos(jπ/n), 0 ≤ j ≤ n. (A.2)

On each grid, it determines the Chebyshev series coefficients of the degree n
polynomial interpolant through the samples. When the coefficients hit a plateau
of rounding errors at a relative magnitude of about 10−16, the grid refinement
stops and the series is trimmed [1]. For this function, the plateau is first detected
on the grid of 257 points, and we can see what the Chebyshev series looks like
before trimming by instructing Chebfun to sample in exactly 257 points:

f = chebfun(@(x) 50*x*exp(-200*x^2)-tanh(exp(x)-1),257);

plotcoeffs(f)
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The mathematics behind most Chebfun algorithms is presented in the book
Approximation Theory and Approximation Practice [18], and user information
can be found in the Chebfun Guide [10] and web site [6]. The collection of
hundreds of examples posted at [6] may be particularly useful.

Two new team members joined the Chebfun project during 2006–07, Ricardo
Pachón and Rodrigo Platte, and they introduced piecewise representations for
problems with discontinuities [14], which were later incorporated in the BVP
solution algorithms by Nick Hale and Toby Driscoll. Piecewise representations
are exploited at many points in this book, starting with the problems (2.15)
(“Sydney Opera House”) and (2.16) (“Batman”).
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Linear BVPs. The same Chebyshev grids and expansions that work so well
for approximating functions also have a distinguished history for solving dif-
ferential equations, where they go by the name of Chebyshev spectral methods
[17]. Beginning in 2008, following an initial proposal by Folkmar Bornemann,
Toby Driscoll created the BVP side of Chebfun, initially for linear problems
[8]. The principle is the same as before: solve the problem on grids of size
17, 33, 65 (actually, slightly different parameters are used), and in each case
examine the Chebyshev series for convergence. When a grid is found for which
convergence is achieved, the series is trimmed as usual, and the corresponding
chebfun is returned as a solution to the BVP. Each solution on a given grid
involves a discretization by so-called Chebyshev discretization matrices. Ini-
tially, Chebfun followed the traditional “square matrix” discretization strategy
described in [17] (and many other places), but later, Driscoll and Hale found
that a different “rectangular matrix” formulation offers greater reliability and
robustness, especially for problems with nonstandard boundary conditions or
multiple dependent variables [2,9,22].

For example, here is a “wavy Airy function” adapted from Chapter 7.

L = chebop(-50,20); % domain

L.op = @(x,y) diff(y,2) - (2+sin(x/2))*x*y; % diff'l operator

L.lbc = 0; L.rbc = 0; % boundary conds

y = L\1; % solution

plot(y) % plot
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This polynomial representation is of degree over 500:

plotcoeffs(y)

0 100 200 300 400 500 600
10 -15

10 -10

10 -5

10 0

10 5

Copyright © 2018 Society for Industrial and Applied Mathematics



Appendix A. Chebfun and its ODE algorithms 301

Since the problem domain is [−50, 20] rather than [−1, 1], the coefficients plotted
correspond to Chebyshev polynomials appropriately transplanted.

In the code segment above, the command that invokes the solution of the
BVP is y = L\1: MATLAB backslash. This is a continuous analogue of MAT-
LAB’s use of backslash to solve a matrix problem Ax = b via x = A\b. In
both cases, the purpose of the compact notation is to highlight the conceptually
simple solve operation required while suppressing algorithmic details. Just as
an advanced MATLAB user can call linsolve instead of \ to specify nondefault
algorithmic parameters, an advanced Chebfun user can call solvebvp instead
of \, though we have not found the need for that in this book.

An interesting conceptual step was involved in advancing Chebfun from func-
tions to solutions of BVPs. To represent a function, one simply samples it at
more and more points. For BVPs, however, the function being sampled is not
known a priori. The “samples” at each particular point will vary from grid to
grid until the spectral approximation converges, and moreover the work involved
on each grid is proportional to the cube of the number of grid points. These
new features of the problem have certain engineering consequences but in the
end are not so significant.

Eigenvalue problems. Besides linear BVPs, in 2008 Driscoll also introduced
Chebfun commands eigs for eigenvalue problems (Chapter 6), expm for ex-
ponentials of linear operators, and fred and volt for Fredholm and Volterra
integral equations [7]. Like \, these operations are implemented via Chebyshev
discretization matrices of adaptively determined dimensions. Here, to illustrate
(compare Figure 6.8), are the first six eigenfunctions of the harmonic oscillator
of quantum mechanics, the Schrödinger equation −u′′ + x2u = λu on [−5, 5]
with u(±5) = 0 (an approximation to the infinite real line):

L = chebop(-5,5); L.op = @(x,u) -diff(u,2) + x^2*u;

L.lbc = 0; L.rbc = 0; [V,D] = eigs(L,6); plot(V)
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In standard MATLAB, users of eigs can specify whether they want to compute
eigenvalues of largest magnitude (the default), largest real part, largest imagi-
nary part, etc. In Chebfun the same options are available, but the default is a
different choice entirely: eigenvalues associated with smoothest eigenfunctions.
In applications, like the one just illustrated, these are typically the eigenfunc-
tions of interest, and this small point of eigenvalue calculations illustrates how
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new considerations may come into play when one takes the step from discrete
to continuous.

Nonlinear BVPs. In 2009 two further Chebfun graduate students joined
the project, Nick Hale and Ásgeir Birkisson. Birkisson began to work with
Driscoll on the challenge of extending Chebfun’s linear BVP algorithms to non-
linear problems. Nonlinearity requires a Newton iteration, as mentioned in
Exercise 5.10 and Chapter 16, and in the Chebfun spirit, we wanted to realize
this in “continuous mode” — or as it is often put in computational science, in
the mode of solve-then-discretize rather than discretize-then-solve. The reader
will be aware that Newton’s method for finding a root of a nonlinear equation
f(y) requires evaluation of the derivative f ′(y) at various points. Similarly, for
a system of equations f(y) = 0, one needs to evaluate a Jacobian matrix of
partial derivatives, Jij = ∂fi/∂yj. In Chebfun’s continuous setting, this matrix
becomes an infinite-dimensional Fréchet derivative linear operator that must be
discretized. Birkisson and Driscoll found a way to achieve this using automatic
differentiation [5], and together with Nick Hale they became the primary de-
velopers of the ODE side of Chebfun for the next five years. The linear part
of BVP solution is now contained in the Chebfun class linop, which the user
normally does not call directly.

Even for nonlinear problems, Chebfun’s basic BVP command is backslash.
One can use solvebvp, however, to output additional information about the
solution. For example, here we use solvebvp to solve the problem (16.8):

N = chebop(-1,1); N.lbc = 0; N.rbc = 0;

N.op = @(x,y) 0.2*diff(y,2) + y + y^2;

N.init = chebfun('sin(pi*x)');

[y,info] = solvebvp(N,1); plot(y)
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One of the fields of info then enables us to track the norms of the Newton
updates during the iteration, showing 8 steps and quadratic convergence.

semilogy(info.normDelta,'.-')
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Initial-value problems. By 2013, Chebfun was a powerful and user-friendly
tool for solving ODE BVPs and associated eigenvalue problems, and besides sim-
plicity, three of its impressive features, though we have not emphasized them in
this discussion, were its treatment of systems of equations, problems with discon-
tinuities, and nonstandard “boundary” conditions such as integral conditions.
Something big was still missing before this book could be written, however, and
that was an equally effective treatment of IVPs following the same syntax.

Algorithmically, IVPs and BVPs differ greatly, for the best general methods
for solving IVPs, whose roots go back to Adams, Bashforth, Runge, and Kutta
more than a century ago, are based on marching in time, in contrast to the
global spectral methods associated with Chebfun backslash. Global methods
can be used for IVPs, and for linear problems this is typically quite effective,
but for nonlinear problems the introduction of a Newton iteration is terribly
wasteful and generally leads to nonconvergence or at best to great slowdown.
Using backslash, Chebfun would have no chance of producing the solutions
of the Lorenz and van der Pol equations shown at many points in this book,
for example. (Conversely, using a shooting iteration based on marching as
mentioned in Chapter 16, one would have trouble with many BVPs.)

In MATLAB, the disjunction between BVPs and IVPs is reflected in the pro-
vision of the separate codes bvp4c, bvp5c for the former and ode45, ode113,

ode15s, etc. for the latter. These use different algorithms and different syn-
taxes. For Chebfun, Platte and Hale introduced Chebfun overloads of ode45
and ode113, among others, in 2008–09. The most important MATLAB ODE
IVP solver for our purposes is ode113, because it is usually most efficient for
the high-accuracy solutions aimed for in Chebfun (except for very stiff problems,
where ode15s is superior; for an example see the Oregonator in Appendix B).
This code is based on an Adams linear multistep method with variable order
ranging from 1 to 13. Hale’s algorithmic idea was to solve an IVP by calling
MATLAB’s ode113 with a tight tolerance specification, then convert the result
to a chebfun by the usual process of sampling on finer and finer grids.

For many purposes, however, including a book like this, it would not do to
confuse users with one syntax for BVPs and another for IVPs. We had to unify
the disparate algorithms within the backslash framework, and here a seemingly
small obstacle proved substantial: whereas Chebfun and its spectral methods
readily discretize BVPs of any order, ode113 expects every IVP to be formulated
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as a first-order system. So a method was needed to convert higher-order ODE
specifications automatically to first-order form, and in 2014 Birkisson achieved
this by a method based on operator overloading and the generation of syntax
trees of expressions as mathematical programs are evaluated [4].

For example, here is the solution of a van der Pol equation with a time-
varying coefficient:

N = chebop(0,40); N.lbc = [3; 0];

N.op = @(t,y) diff(y,2) - 0.2*t*(1-y^2)*diff(y) + y;

y = N\0; plot(y)
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The solution is a single long chebfun, a polynomial of high degree:

plotcoeffs(y)
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Thus finally, beginning in 2014, a Chebfun user could specify a BVP or an
IVP using the same backslash syntax and get a high-accuracy result quickly.
The algorithms are completely different in the two cases, but the inputs have
the same syntax and the outputs are always chebfuns. Advanced users can fine-
tune the computation with solvebvp or solveivp, and an IVP can be solved by
global spectral methods rather than marching, if desired, by calling solvebvp.

Periodic problems. Another new feature also appeared in 2014, introduced
by new Chebfun contributor Grady Wright, who was visiting Oxford on sab-
batical from Boise State University. From the beginning, Chebfun had been
based on nonperiodic Chebyshev discretizations, even though one could specify
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a 'periodic' flag as a boundary condition for a BVP. This was not really a sat-
isfactory way to deal with periodic problems, however, since Chebyshev matrices
have large condition numbers associated with the clustered grids, and derivatives
of Chebyshev representations of periodic functions quickly develop discontinu-
ities across the boundary. In 2014, Wright introduced Fourier-based “trigfun”
representations to Chebfun and the corresponding Fourier discretizations for
BVPs [21]. Together with Oxford graduate student Hadrien Montanelli, Wright
adapted Chebfun’s Chebyshev-based BVP capabilities to Fourier analogues for
periodic functions, as presented in Chapter 19.

PDEs in space and time. As illustrated in Chapter 22, besides ODEs, Cheb-
fun can also solve PDEs involving time t and one space variable x. The general
tool for such solutions, pde15s, was developed by Nick Hale beginning in 2009,
with further improvements later by Ásgeir Birkisson. This code uses spectral
discretization in x combined with MATLAB’s time-stepper ode15s in t, adapt-
ing grids and refining time steps adaptively to achieve chebfun outputs. Both
nonperiodic (Chebyshev) and periodic (Fourier) discretizations are available.
Unfortunately, there is no publication describing pde15s.

For time-dependent PDEs on a periodic 1D space domain, another more
specialized option was added by Hadrien Montanelli in 2015 [12]: the code spin,
which stands for stiff PDE integrator. This code uses exponential integrator
formulas to solve equations of the form ut = Lu + N(u), where L is a linear
differential operator and N is a nonlinear differential or algebraic operator of
lower order. Equations of this type include the Burgers, Korteweg–de Vries,
nonlinear Schrödinger, FitzHugh–Nagumo, Allen–Cahn, Cahn–Hilliard, Gray–
Scott, Nikolaevskiy, and Kuramoto–Sivashinsky equations, and demos for the
examples just listed are available with a syntax like spin('kdv').

Chebgui. An easy way for users to explore all of these many sides of Chebfun’s
differential equations capabilities is with the graphical user interface chebgui,

written by Birkisson and initially also Hale. In Chebfun, just type chebgui to
get started, and note the many example problems available under the Demos
tab. Chebfun code can be generated with the “Export to m-file” button, a good
starting point for more finely tuned computations.

Additional capabilities and higher dimensions. This completes our outline of
the solution of ODEs in Chebfun. We have given little attention to an aspect
of the problem that in practice adds a great deal of complexity to the design:
treatment of systems of equations, with its associated chebmatrix class in the
software. We have also not mentioned various additional features of Chebfun
that are numerically very interesting, though they have not played a role in this
book, including first-kind as opposed to second-kind Chebyshev grids, ultras-
pherical discretizations, ODEs with unknown parameters, differential-algebraic
equations (DAEs), and unbounded domains. Chebfun has capabilities in all of
these areas.

There is also a big part of Chebfun that does not relate directly to this
book: two- and three-dimensional spatial domains. Such capabilities began
with Chebfun2, designed by graduate student Alex Townsend around 2011–12
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[15], and a 3D extension Chebfun3 was released by postdoc Behnam Hashemi
in 2016 [11]. Building on the periodic trigfun representations, a new Spherefun
class for computing on spheres was introduced in 2015 by Townsend, Wright,
and Heather Wilber, a student of Wright’s at Boise State [16]. Later, at Cornell,
Wilber went on to produce a related Diskfun class in 2016 for computing on a
disk, again in collaboration with Townsend and Wright [20]. All four of these
multidimensional parts of Chebfun — Chebfun2, Chebfun3, Spherefun, and
Diskfun — come with PDE capabilities, including solution of reaction-diffusion
and other stiff PDEs with spin2, spin3, and spinsphere [13].

Numerical limitations. Finally, we must emphasize that Chebfun has lim-
itations. When the ODE side of Chebfun was developed, beginning in 2008,
the expectation was not that it would compete with existing software, merely
that it would be a convenient tool for exploring certain algorithms in a con-
tinuous setting. We were surprised to find how useful the tool was in practice
and that in some cases it was competitive after all, especially for BVPs solved
to high accuracy. Still, by pushing Chebfun too far, it is easy to make it slow
down, break, or at least require expert handling, as we now outline following
the paragraph at the end of Chapter 1. Stiffness. If an ODE features a wide
range of time scales, Chebfun is likely to have trouble. For example, the com-
putation will become very slow if the coefficient of the van der Pol equation
(1.2) is changed from 0.3 to 0.01. For such problems one can switch from the
default ode113 to the stiff solver ode15s, as illustrated in examples 32 and 43
in Appendix B. Scaling. Some ODEs feature variables that differ by many
orders of magnitude from 1, from other variables, or from values taken by the
same variable at other times. Taking advantage of floating point arithmetic,
some numerical ODE software can cope with such problems, but Chebfun will
have difficulty in its default mode. For a simple problem like y′ = −y on [0, 1]
with initial condition y(0) = 10−20, one can get a successful result by overriding
the default absolute tolerance. For a more difficult case like the same equation
on [0, 50], Chebfun will be sure to fail because its function representations are
global. Discontinuities in y. Chebfun can treat coefficients with discontinu-
ities in the independent variable, as a number of our examples beginning with
Figure 2.3 have shown, but it cannot handle discontinuities in the dependent
variable. Calculating the “bounce pass” trajectories of Exercise 16.2, for exam-
ple, is beyond Chebfun. Singularities. Many ODEs have singular coefficients
or leading-order coefficients that pass through zero, starting with the Bessel
equation with its zero coefficients at x = 0, and this is a familiar chapter of the
classical theory of ODEs. Sometimes Chebfun can handle such problems, but
not always, and if the solution itself has singularities, there will almost certainly
be difficulty. Side conditions. Some ODE software can impose side conditions
such as a nonnegativity constraint on a dependent variable, but Chebfun can-
not. For example, it has no very satisfactory way of treating the “leaky bucket”
problem y′ = y1/2 (see example 53 of Appendix B). This limitation is related to
the previous two. Large systems. Chebfun can solve a system of ODEs involving
explicitly named variables such as u, v, w, and there is also an option involving
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“chebmatrices” to use indexed variables such as u{1},u{2},u{3}, illustrated in
example 42 of Appendix B. However, its capabilities for working with systems
are not very developed. This has constrained our choice of illustrations in this
book, where no systems of more than three variables are to be found, and it
would make Chebfun an unattractive choice for many larger scale problems of
computational science.

It would hardly do to end on a negative note, however. The fact is that
Chebfun’s efficiency is often very good, and despite the limitations just outlined,
it is probably unrivaled in convenience. For more examples, turn the page to
Appendix B.
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Appendix B. 100 more examples

References, which are just representative, are listed at the end. As usual, for-
matting commands have been removed and can be obtained by downloading the
m-file from www.chebfun.org.

1. Van der Pol equation [Chap. 1]

N = chebop(0,5);

N.op = @(y) 0.05*diff(y,2)-(1-y^2)*diff(y)+y;

N.lbc = [1;0];

y = N\0; plot(y)

0 1 2 3 4 5
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-1

0

1

2

2. Chirp [Chap. 2]

L = chebop(0,10); L.lbc = 1;

L.op = @(t,y) diff(y)-cos(t^2)*y;

y = L\0; plot(y)

0 2 4 6 8 10
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2

2.5
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3. Growth with diminishing rate [Chap. 2]

L = chebop(0,40); L.lbc = 1;

L.op = @(t,y) diff(y)-exp(-t/4)*y;

y = L\0; plot(y)
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0
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60

4. Riccati equation [Chap. 3]

N = chebop(0,6); N.lbc = 0;

N.op = @(t,y) diff(y)-y+t*y^2-t;

y = N\0; plot(y)
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1

5. Bunching oscillations (B&O, p. 198) [Chap. 3]

N = chebop(@(t,y) diff(y)-cos(pi*t*y),[0 5]);

for a = 0:.2:2.8

N.lbc = a; y = N\0; plot(y), hold on

end

0 1 2 3 4 5
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3

6. Logistic equation [Chap. 3]

N = chebop(@(y) diff(y)-(1-y)*y,[0 5]);

for a = .25:.25:2

N.lbc = a; y = N\0; plot(y), hold on

end
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1
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2

7. Surprising complexity [Chap. 3]

N = chebop(0,15);

N.op = @(t,y) diff(y)-cos(t*y)*y-cos(t);

N.lbc = 0;

y = N\0; plot(diff(y))
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8. Equation with two steady states (Davis) [Chap. 3]

d = [0 2.7]; t = chebfun('t',d);

N = chebop(@(t,y) diff(y)-t*y*(y-2),d);

for a = -2.5:.25:2

N.lbc = a; y = N\0; arrowplot(t,y+1e-10)

hold on, plot(-flipud(t),flipud(y))

end -2 -1 0 1 2
-3
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0
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9. Equation with three steady states [Chap. 3]

N = chebop(0,4); N.maxnorm = 4;

N.op = @(t,y) diff(y)-y*abs(y)+t*y;

for y0 = -4:.1:4

N.lbc = y0; y = N\0; plot(y), hold on

end 0 1 2 3 4
-4

-2

0

2

4

10. Chase around the circle at 3/4 speed [Chap. 3]

d = [0 1.95*pi]; a = chebfun('exp(1i*t)',d);

N = chebop(d);

N.op = @(t,z) diff(z)-.75*(a(t)-z)/abs(a(t)-z);

N.lbc = 0; arrowplot(a), hold on, arrowplot(N\0)

11. Oscillation in a Lennard–Jones potential [Chap. 4]

N = chebop(0,70); N.lbc = [25;0];

N.op = @(r) 0.1*diff(r,2)-(r/12)^(-12)+(r/12)^(-6);

r = N\0; plot(r)
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r
12. Alternating growth and decay [Chap. 4]

L = chebop(0,200); L.lbc = [1;0];

L.op = @(t,y) diff(y,2)+.06*sin(t/10)*diff(y)+y;

y = L\0; plot(y)
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13. Transient damping [Chap. 4]

L = chebop(0,100); L.lbc = [1;0];

L.op = @(t,y) diff(y,2) + ...

0.2*exp(-(t-50)^2/16)*diff(y)+y;

y = L\0; plot(y)
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14. Washing hanging on the line [Chap. 5]

L = chebop(@(y) diff(y,2),[0 3],1,1);

x = chebfun('x',[0 3]);

rhs = .1+0*x+(abs(x-2)<.1);

y = L\rhs; plot(y)
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15. Third-order problem [Chap. 5]

L = chebop(-1,1);

L.op = @(y) 0.5*diff(y,3)+diff(y,2)+diff(y)+y;

L.lbc = [0;0]; L.rbc = 1;

y = L\0; plot(y)

-1 -0.5 0 0.5 1
0

0.25

0.5

0.75

1

16. Gaussian [Chap. 5]

L = chebop(-2,2);

L.lbc = 0; L.rbc = 1;

L.op = @(x,y) diff(y,2)+x*diff(y)+y;

y = L\0; plot(y)
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17. Beam with 4 interpolation pts (= spline) [Chap. 5]

L = chebop(@(y) diff(y,4),[0 3]);

L.bc = @(x,y) [y(0); y(1); y(2)-1; y(3)-1];

y = L\0; plot(y)

hold on, plot(0:3,[0 0 1 1],'.')
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18. Troesch equation [Chap. 5]

N = chebop(0,1);

N.op = @(y) diff(y,2)-6*sinh(6*y);

N.lbc = 0; N.rbc = 1;

y = N\0; plot(y)
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19. Schrödinger harmonic oscillator [Chap. 6]

x = chebfun('x',[-3 3]); V = x^2; h = 0.1; plot(V)

L = chebop(@(y) -h^2*diff(y,2)+V*y,[-3 3]);

L.lbc = 0; L.rbc = 0; [W,D] = eigs(L,10); hold on

for k = 1:10, plot(D(k,k)+0.06*W{k}), end
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20. V-shaped oscillator via quantumstates [Chap. 6]

x = chebfun('x',[-3 3]);

V = abs(x);

quantumstates(V);
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21. Lennard–Jones eigenstates [Chap. 6]

r = chebfun('r',[10 32]);

V = (r/12)^(-12)-(r/12)^(-6);

quantumstates(V);

10 15 20 25 30
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22. Orr–Sommerfeld eigenvalues [Chap. 6]

B = chebop(-1,1); B.op = @(x,u) diff(u,2)-u;

A = chebop(-1,1);

A.op = @(x,u) (diff(u,4)-2*diff(u,2)+u)/5772 ...

-1i*(2*u+(1-x^2)*(diff(u,2)-u));

A.lbc = [0;0]; A.rbc = [0;0];

lam = eigs(A,B,47); plot(lam,'.') -1 -0.8 -0.6 -0.4 -0.2 0
-1
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23. Bessel equation [Chap. 7]

L = chebop(0,150); L.lbc = 0; L.rbc = 1; nu = 50;

L.op = @(x,y) x^2*diff(y,2)+x*diff(y)+(x^2-nu^2)*y;

y = L\0; plot(y)
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24. Airy-like equation (L&G) [Chap. 7]

L = chebop(-1,1); L.lbc = 1; L.rbc = 2;

L.op = @(x,y) 1e-4*diff(y,2)+(x^2-0.25)*y;

y = L\0; plot(y)
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25. Nearly ill-posed problem [Chap. 7]

L = chebop(-1,1); x = chebfun('x');

L.op = @(x,y) -.05*diff(y,2)+x*diff(y)-y;

L.lbc = 0; L.rbc = 0;

y = L\exp(x); plot(y)
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26. Forcing at the resonant frequency [Chap. 8]

d = [0 80]; t = chebfun('t',d);

L = chebop(d); L.lbc = [0;0];

L.op = @(y) diff(y,2)+y;

y = L\sin(t); plot(y)
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27. The same with damping [Chap. 8]

d = [0 80]; t = chebfun('t',d);

L = chebop(d); L.lbc = [0;0];

L.op = @(y) diff(y,2)+.08*diff(y)+y;

y = L\sin(t); plot(y)
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28. Duffing equation (Davis, p. 399) [Chap. 8]

d = [0 30]; t = chebfun('t',d);

N = chebop(d); N.lbc = [-1;0];

N.op = @(y) diff(y,2)+y-.088*y^3;

y = N\sin(0.05*t); arrowplot(y,diff(y))
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29. Forcing at the resonant frequency [Chap. 9]

d = [0 80]; t = chebfun('t',d);

L = chebop(d); L.lbc = [0;0];

L.op = @(y) diff(y,2)+y;

y = L\sin(t); plot(y,diff(y))
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30. The same with damping [Chap. 9]

d = [0 80]; t = chebfun('t',d);

L = chebop(d); L.lbc = [0;0];

L.op = @(y) diff(y,2)+.08*diff(y)+y;

y = L\sin(t); plot(y,diff(y))
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31. Van der Pol equation limit cycle [Chap. 9]

T = 16; N = chebop(0,T); N.lbc = [1;1];

N.op = @(y) diff(y,2)-4*(1-y^2)*diff(y)+y;

y = N\0; y = y{4,T}; plot(y,diff(y))

hold on, plot(0,0,'.')
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32. Van der Pol equation in the stiff regime [Chap. 9]

N = chebop(0,4); N.lbc = [2;0];

N.op = @(y) .001*diff(y,2)-(1-y^2)*diff(y)+y;

pref = cheboppref; pref.ivpSolver = 'ode15s';

y = solveivp(N,0,pref); plot(y)
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33. Rayleigh equation limit cycle [Chap. 9]

N = chebop(0,20); N.lbc = [3;1]; N.maxnorm = 20;

N.op = @(y) diff(y,2)+6*(diff(y)^3-diff(y))+y;

y = N\0; y = y{4,18}; plot(y,diff(y))

hold on, plot(0,0,'.')
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34. Nonlinear pendulum heteroclinic paths [Chap. 9]

N = chebop(@(y) diff(y,2)+sin(y),[0 21]);

N.lbc = [-3.1;0];

y = N\0; arrowplot(y,diff(y))

hold on, plot(0,0,'.')
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35. Unforced Duffing equation [Chap. 9]

N = chebop(@(y) diff(y,2)+y-.088*y^3,[0 20]);

plot(0,0,'.'), hold on

for a = 0.28:.3:2.6

N.lbc = [0; a]; y = N\0; arrowplot(y,diff(y))

end -4 -2 0 2 4
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36. Cubic oscillator [Chap. 9]

N = chebop(@(t,y) diff(y,2)+y^3,[0 20]);

plot(0,0,'.'), hold on

for a = 0.1:.2:1.5

N.lbc = [0;a]; y = N\0; arrowplot(y,diff(y))

end -2 -1 0 1 2
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37. Close to a saddle point (Seydel, p. 82) [Chap. 9]

N = chebop(0,14.5); N.lbc = [0;.3];

N.op = @(y) diff(y,2)-y+y^2 + ...

0.45*diff(y)-0.5*y*diff(y);

N.lbc = [0;.3]; y = N\0; arrowplot(y,diff(y))

hold on, plot(0,0,'.') -1 0 1 2
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0
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1

38. Stable spiral point (scalar second-order) [Chap. 9]

L = chebop(0,29); L.lbc = [0;1];

L.op = @(y) diff(y,2)+.1*diff(y,1)+y;

y = L\0; arrowplot(y,diff(y))

hold on, plot(0,0,'.')
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39. Walk on the sphere [Chap. 10]

d = [0 60]; t = chebfun('t',d); L = chebop(d);

L.lbc = [1;0;0]; f = 1; g = 0; h = 2*sin(t);

L.op = @(t,x,y,z) [diff(x)-f*y-g*z;

diff(y)+f*x-h*z; diff(z)+g*x+h*y];

[x,y,z] = L\0; plot3(x,y,z), hold on

plot3(x([0 end]),y([0 end]),z([0 end]),'.')

40. Stable spiral point (first-order system) [Chap. 10]

L = chebop(0,29); L.lbc = [0;1];

L.op = @(t,u,v) [diff(u)-v; diff(v)+u+.1*v];

[u,v] = L\0; arrowplot(u,v)

hold on, plot(0,0,'.')
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41. Brusselator chemical reaction [Chap. 10]

N = chebop(0,15.3); N.lbc = [1;3.07]; a = 1; b = 3;

N.op = @(t,u,v) [diff(u)-a+(b+1)*u-u^2*v

diff(v)-b*u+u^2*v];

[u,v] = N\0; arrowplot(u,v)

hold on, plot([0 1],[0 3],'.') 0 1 2 3 4
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42. Full Brusselator (HNW) [Chap. 10]

N = chebop(0,60); N.lbc = [1;2;2];

N.op = @(t,u) [

diff(u{1})-1-u{1}^2*u{2}+(u{3}+1)*u{1}

diff(u{2})-u{1}*u{3}+u{1}^2*u{2}

diff(u{3})-1.2+u{3}*u{1}];

u = N\0; plot3(u{1},u{2},u{3})
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43. Field–Noyes Oregonator (stiff) (Danby) [Chap. 10]

s = 20; r = 0.1610; q = 8.375e-6;

N = chebop(0,250); N.lbc = [0;800;16];

N.op = @(t,u,v,w) [diff(u)-s*(v-u*v+u-q*u^2);

diff(v)-(-v-u*v+w)/s; diff(w)-r*(u-w)];

pref = cheboppref; pref.ivpSolver = 'ode15s';

[u,v,w] = solveivp(N,0,pref); semilogy([u v w])
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44. Phase plane, nonautonomous first-order [Chap. 10]

L = chebop(@(s,t,y) ...

[diff(t)-1; diff(y)-exp(-t)+2*y],[0 3]);

quiver(L,[-1.5 2.5 -.5 1]), hold on

L.lbc = [-1;0];

[t,y] = L\0; arrowplot(t,y) -1 0 1 2
-0.5

0

0.5

1

45. Homoclinic orbit [Chap. 10]

N = chebop(0,35); N.lbc = [0.16;0.01];

N.op = @(t,u,v) [diff(u)-u.^3+2.*u.*v.^2

diff(v)-2.*u.^2.*v+v.^3];

[u,v] = N\0; arrowplot(v,u)

hold on, plot(0,0,'.') 0 0.5 1

0

0.5

1

46. Cubic damping (Duan, p. 6) [Chap. 10]

L = chebop(0,40);

L.op = @(t,u,v) [diff(u)-v; diff(v)+u+v^3];

L.lbc = [0;1];

[u,v] = L\0; arrowplot(u,v)

hold on, plot(0,0,'.') -0.5 0 0.5 1
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47. Oscillatory system (HSD, p. 229) [Chap. 10]

a = 10; b = 1; N = chebop(0,11.8); N.lbc = [2.2;5];

N.op = @(t,u,v) [diff(u)-a+u+4*u*v/(1+u^2)

diff(v)-b*u*(1-v/(1+u^2))];

[u,v] = N\0; arrowplot(u,v)

hold on, plot(2,5,'.') 0 1 2 3 4
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48. Square limit cycle (HSD, p. 215) [Chap. 10]

N = chebop(0,60); N.lbc = [1.5;1.5];

N.op = @(t,u,v) [diff(u)+sin(u)*(.1*cos(u)+cos(v))

diff(v)+sin(v)*(.1*cos(v)-cos(u))];

[u,v] = N\0; arrowplot(u,v)

hold on, plot(pi/2,pi/2,'.')
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49. Four fixed points (Davis, p. 345) [Chap. 10]

N = chebop(0,5); N.maxnorm = [1.7 3];

N.op = @(t,u,v) [diff(u)+v-u^2-v^2

diff(v)-u+2*u*v];

plot([0 0 .5 -.5],[0 1 .5 .5],'.'), hold on

for v0 = .5+.147*(-10:10)

N.lbc = [0;v0]; [u,v] = N\0; plot([u -u],v), end -1 0 1
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0

1

2

50. Synchronizing three fireflies (Danby) [Chap. 10]

N = chebop(0,40); N.lbc = [0;2;4]; c = .2;

N.op = @(t,u,v,w) [

diff(u)-0.97-c*sin(v-u)-c*sin(w-u)

diff(v)-1.00-c*sin(u-v)-c*sin(w-v)

diff(w)-1.03-c*sin(u-w)-c*sin(v-w)];

[u,v,w] = N\0; plot(sin([u v w])) 0 20 40
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0

1

51. Hamiltonian system (J&S, p. 79) [Chap. 10]

N = chebop(0,2); plot([-4 1 3],[0 0 0],'.'), hold on

N.op = @(t,u,v) [diff(u)-v*(13-u^2-v^2)

diff(v)-12+u*(13-u^2-v^2)];

for a = -4.5:5.5

N.lbc = [a;.2]; [u,v] = N\0; plot(u,v)

end
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52. A center and a saddle point [Chap. 10]

N = chebop(0,10); N.maxnorm = [3;3];

plot([-1 0],[-1 0],'.'), hold on

N.op = @(t,u,v) [diff(u)+u+v^2,diff(v)-v-u^2];

for a = -2:.15:0

N.lbc = [2;a]; [u,v] = N\0; plot(u,v)

arrowplot(u{0,.5},v{0,.5}), end

for a = -.81:.15:-.3

N.lbc = [-1;a]; [u,v] = N\0; plot(u,v)

arrowplot(u{0,.5},v{0,.5}), end
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53. Leaky bucket [Chap. 11]

N = chebop(0,4); N.lbc = 1;

N.op = @(y) diff(y)+y/sqrt(abs(y));

y = N\0; plot(y)
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54. Nonuniqueness and extinction [Chap. 11]

S = chebfun('cos(pi*x/2)^2',[0 1]);

for h = 0:.125:1

plot([h*S 1-h*(1-S)]), hold on

end
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55. Smooth random walk on the sphere [Chap. 12]

d = [0 2]; rng(6), u0 = randn(3,1); u0 = u0/norm(u0);

L = chebop(d); L.lbc = u0;

R = randnfun(0.05,3,d,'big');

f = R(:,1); g = R(:,2); h = R(:,3);

L.op = @(t,x,y,z) [diff(x)-f*y-g*z;

diff(y)+f*x-h*z; diff(z)+g*x+h*y];

[x,y,z] = L\0; plot3(x,y,z), hold on

plot3(x([0 2]),y([0 2]),z([0 2]),'.')

56. Less smooth random walk on the sphere [Chap. 12]

d = [0 2]; rng(6), u0 = randn(3,1); u0 = u0/norm(u0);

L = chebop(d); L.lbc = u0;

R = randnfun(0.005,3,d,'big');

f = R(:,1); g = R(:,2); h = R(:,3);

L.op = @(t,x,y,z) [diff(x)-f*y-g*z;

diff(y)+f*x-h*z; diff(z)+g*x+h*y];

[x,y,z] = L\0; plot3(x,y,z), hold on

plot3(x([0 2]),y([0 2]),z([0 2]),'.')

57. Smooth Brownian motion to the circle [Chap. 12]

d = [0 2]; lam = 1e-3;

rng(0), f = randnfun(lam,d,'complex','big');

L = chebop(@(y) diff(y),d); L.lbc = 0; L.maxnorm = 1;

plot(chebfun('exp(1i*pi*x)')), hold on

y = L\f; plot(y)

58. BVP with smooth random coefficient [Chap. 12]

rng(0), d = [0 10]; f = randnfun(1,d);

L = chebop(@(y) .005*diff(y,2)+f*y,d,0,0);

y = L\1; plot(y)
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59. Decay with sideways randomness [Chap. 12]

d = [0 40]; rng(1), f = randnfun(0.1,d,'big');

L = chebop(@(y) diff(y)+(.3+1i*f)*y,d,1,[]);

plot(chebfun('exp(1i*pi*x)')), hold on

y = L\0; plot(y)

60. Conveyor belt [Chap. 12]

d = [0 1]; l = 0.005; rng(0)

f = randnfun(l,d,'big'); g = randnfun(l,d,'big');

N = chebop(@(t,u,v) ...

[diff(u)-60*exp(-40*v^2); diff(v)],d);

N.lbc = [0;0]; [u,v] = N\[f;g]; plot(u,v)
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61. Equation with random ±1 forcing [Chap. 12]

rng(0), f = sign(randnfun(.5,[0,8]));

L = chebop(0,8); L.lbc = 1;

L.op = @(t,y) diff(y)-f*y;

y = L\0; plot(y)
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62. Equation with intermittent kicks [Chap. 12]

d = [0 10]; t = chebfun('t',d); rng(2)

f = randnfun(.1,d,'big')/(1.1-cos(2*pi*t));

L = chebop(@(t,y) diff(y)-f,d,0,[]);

y = L\0; plot(y)
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63. Smooth geometric Brownian motion [Chap. 12]

d = [0 10]; lam = 0.05;

rng(2), f = randnfun(lam,d,'big');

L = chebop(@(y) diff(y)-f*y,d,1,[]);

y = L\0; plot(y)
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64. Scalar chaotic equation (ESK) [Chap. 13]

N = chebop(0,200); N.lbc = [2;0;0];

N.op = @(t,y) 1.5*diff(y,3) + ...

diff(y,2)+diff(y)+y-tanh(8*y);

y = N\0; plot(y)
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65. Forced nonlinear pendulum (Danby) [Chap. 13]

N = chebop(0,200); N.lbc = [0;.74];

N.op = @(t,y) diff(y,2)+.1*diff(y)+sin(y)-sin(t);

y = N\0; plot(y)
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66. Rössler equations period doubling [Chap. 13]

N = chebop(0,250); N.lbc = [2;0;0];

N.op = @(t,u,v,w) [diff(u)+v+w;

diff(v)-u-.2*v; diff(w)-.2-w*(u-3.5)];

[u,v,w] = N\0; plot(u{200,250})
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67. 3-body problem [Chap. 13]

N = chebop(0,4);

N.op = @(t,u,v,w) [

diff(u,2)+(u-v)/abs(u-v)^3+(u-w)/abs(u-w)^3

diff(v,2)+(v-u)/abs(v-u)^3+(v-w)/abs(v-w)^3

diff(w,2)+(w-u)/abs(w-u)^3+(w-v)/abs(w-v)^3];

N.lbc = @(u,v,w) [u-1; v+1; w-(0.1+1.5i);

diff(u); diff(v); diff(w)];

[u,v,w] = N\0; plot([u;v;w])
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68. 3-body problem, slightly different data [Chap. 13]

N = chebop(0,6);

N.op = @(t,u,v,w) [

diff(u,2)+(u-v)/abs(u-v)^3+(u-w)/abs(u-w)^3

diff(v,2)+(v-u)/abs(v-u)^3+(v-w)/abs(v-w)^3

diff(w,2)+(w-u)/abs(w-u)^3+(w-v)/abs(w-v)^3];

N.lbc = @(u,v,w) [u-1; v+1; w-(0.1+1i);

diff(u); diff(v); diff(w)];

[u,v,w] = N\0; plot([u;v;w])
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69. Double pendulum (Danby) [Chap. 13]

N = chebop(0,150);

c = @(u) cos(u); s = @(u) sin(u);

cs = @(u) cos(u).*sin(u); d = @(u) diff(u);

N.op = @(t,u,v) [

diff(u,2)+(d(u)^2*cs(u-v)+d(v)^2*s(u-v)+ ...

2*s(u)-c(u-v)*s(v))/(2-c(u-v)^2)

diff(v,2)+(-2*d(u)^2*s(u-v)-d(v)^2*cs(u-v)- ...

2*c(u-v)*s(u)+2*s(v))/(2-c(u-v)^2)];

N.lbc = @(u,v) [u-3.14159; v; diff(u); diff(v)];

[u,v] = N\0; plot([u v])
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70. Hénon–Heiles equations [Chap. 13]

N = chebop(0,100);

N.op = @(t,u,v) [diff(u,2)+u+2*u*v

diff(v,2)+v+u^2-v^2];

N.lbc = @(u,v) [u-.32; v-.35; diff(u); diff(v)];

[u,v] = N\0; plot(u,v)
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71. Spiral sink [Chap. 15]

L = chebop(0,30); L.lbc = [0;1];

L.op = @(t,u,v) [diff(u)+u/2-v; diff(v)+u-v/3];

[u,v] = L\0; arrowplot(u,v)

hold on, plot(0,0,'.')
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72. Spiral source [Chap. 15]

L = chebop(0,30); L.lbc = [0;1];

L.op = @(t,u,v) [diff(u)-.4*u+v; diff(v)-u+.2*v];

[u,v] = L\0; arrowplot(u,v)

hold on, plot(0,0,'.')
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73. Linear transient growth [Chap. 15]

L = chebop(0,3); L.lbc = [0;1];

L.op = @(t,u,v) [diff(u)+u-20*v; diff(v)+2*v];

[u,v] = L\0; arrowplot(u,v)

hold on, plot(0,0,'.')
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74. From slightly unstable to slightly stable [Chap. 15]

N = chebop(0,70); N.lbc = [-pi;1];

N.op = @(t,y) diff(y,2)+.05*tanh(y)*diff(y)-sin(y);

y = N\0; arrowplot(y,diff(y))

hold on, plot(pi*(-1:1),0*(-1:1),'.')
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75. Euler buckling [Chap. 16]

N = chebop(@(x,y) diff(y,2)+3*sin(y),[-1 1],0,0);

for k = 1:-1:-1

N.init = chebfun(@(x) k*cos(pi*x/2));

plot(N\0), hold on

end
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76. Carrier equation [Chap. 16]

N = chebop(-1,1);

N.op = @(x,y) 0.001*diff(y,2)+2*(1-x^2)*y+y^2;

N.lbc = 0; N.rbc = 0;

y = N\1; plot(y)
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77. Orbit around two fixed suns [Chap. 16]

N = chebop(0,12); c = 1.5;

N.op = @(t,x,y) [

diff(x,2)+x/(x^2+y^2)^c+x/(x^2+(y-1)^2)^c;

diff(y,2)+y/(x^2+y^2)^c+(y-1)/(x^2+(y-1)^2)^c];

N.lbc = @(x,y) [x+2; y-1; diff(x)-.8; diff(y)-.454];

[x,y] = N\0; plot([0 0],[0 1],'.')

hold on, arrowplot(x,y) -3 -2 -1 0

0
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78. Linear Hopf bifurcation [Chap. 17]

T = 100; d = [-T,T];

L = chebop(@(t,y) diff(y,2)-.15*(t/T)*diff(y)+y,d);

L.lbc = [0;0]; rng(0), f = 0.1*randnfun(d,'big');

y = L\f; plot(y)
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79. Nonlinear Hopf bifurcation (Seydel, p. 76) [Chap. 17]

T = 100; d = [-T/5,T]; N = chebop(d);

N.op = @(t,u,v) [diff(u)+v-u*(t/T-u^2-v^2)

diff(v)-u-v*(t/T-u^2-v^2)];

N.lbc = [0;0];

rng(0), f = 0.01*randnfun(1,d,'big');

[u,v] = N\[f;0]; t = chebfun('t',d);

plot3(t,u,v)
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80. Van der Pol Hopf bifurcation [Chap. 17]

T = 60; d = [-T,T]; N = chebop(d);

N.op = @(t,y) diff(y,2)-2*(t/T)*(1-y^2)*diff(y)+y;

N.lbc = [0;0];

rng(0), f = 0.05*randnfun(d,'big');

y = N\f; plot(y)
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81. Stirred tank reactor (Seydel, p. 157) [Chap. 17]

T = 50; N = chebop(0,T); N.lbc = [.2;.6];

N.op = @(t,u,v) [diff(u)+u-(0.1+.2*t/T)*(1-u)*exp(v)

diff(v)+v-16.2*(0.1+.2*t/T)*(1-u)*exp(v)+3*v];

[u,v] = N\0; plot(u)
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82. Periodic variant of Figure 7.5 [Chap. 19]

L = chebop(-2*pi,2*pi);

L.op = @(x,y) 0.005*diff(y,2)-sin(x)*y;

L.bc = 'periodic';

y = L\1; plot(y)
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83. Periodic ODE in polar coordinates [Chap. 19]

L = chebop(0,2*pi);

L.op = @(t,r) diff(r,2)+(r+.35)/(1.1+sin(6*t));

t = chebfun('t',[0 2*pi]);

L.bc = 'periodic'; r = L\1; plot(exp(1i*t)*r)
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84. Stable Hill equation [Chap. 19]

L = chebop(0,100); L.lbc = [1;0];

L.op = @(t,y) diff(y,2)+exp(2.40*sin(t))*y;

y = L\0; plot(y)
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85. Unstable Hill equation [Chap. 19]

L = chebop(0,100); L.lbc = [1;0];

L.op = @(t,y) diff(y,2)+exp(2.45*sin(t))*y;

y = L\0; plot(y)

0 20 40 60 80 100
-150

-100

-50

0

50

100

150

86. Periodic discontinuous coefficient [Chap. 19]

L = chebop(@(x,y) diff(y)+(abs(x-3)<1)*y,[0 2*pi]);

L.bc = 'periodic';

y = L\1; plot(y)
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87. Periodic Carrier equation [Chap. 19]

N = chebop(-pi,pi); N.bc = 'periodic';

N.op = @(x,y) diff(y,2)+2*(2-cos(x))*y+y^2;

N.init = chebfun('-cos(2*x)',[-pi pi],'trig');

y = N\1; plot(y)
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88. Periodic Carrier equation, 2nd soln. [Chap. 19]

N = chebop(-pi,pi); N.bc = 'periodic';

N.op = @(x,y) diff(y,2)+2*(2-cos(x))*y+y^2;

N.init = chebfun('1.5*cos(2*x)',[-pi pi],'trig');

y = N\1; plot(y)
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89. Periodic Carrier equation, 3rd soln. [Chap. 19]

N = chebop(-pi,pi); N.bc = 'periodic';

N.op = @(x,y) diff(y,2)+2*(2-cos(x))*y+y^2;

N.init = chebfun('cos(x)^2',[-pi pi],'trig');

y = N\1; plot(y)
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90. Boundary layer at left (Hemker) [Chap. 20]

ep = 0.05;

L = chebop(@(x,y) ep*diff(y,2)+diff(y)-(1+ep)*y);

L.lbc = 1+exp(-2); L.rbc = 1+exp(-2*(1+ep)/ep);

y = L\0; plot(y)
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91. Linear shock (L&G) [Chap. 20]

ep = 1e-4;

L = chebop([-1 0 1]);

L.op = @(x,y) ep*diff(y,2)+2*x*diff(y);

L.lbc = -1; L.rbc = 1;

y = L\0; plot(y)
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92. Linear corner layer (Hemker) [Chap. 20]

ep = 0.001;

L = chebop(@(x,y) ep*diff(y,2)+x*diff(y)-y);

L.lbc = .8; L.rbc = 1.2;

y = L\0; plot(y)
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93. Nonlinear corner layer (Hemker) [Chap. 20]

N = chebop(@(y) 0.05*diff(y,2)+diff(y)^2-1);

N.lbc = .8; N.rbc = 1.2;

y = N\1; plot(y)
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94. Cusp (Hemker, L&G) [Chap. 20]

L = chebop([-1 0 1]);

L.op = @(x,y) 1e-6*diff(y,2)+x*diff(y)-.5*y;

L.lbc = 1; L.rbc = 2;

y = L\0; plot(y)

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

2

2.5

95. Ill-conditioned equation (L&G) [Chap. 20]

L = chebop(-1,1);

L.op = @(x,y) 0.02*diff(y,2)-x*diff(y)+y;

L.lbc = 1; L.rbc = 2;

y = L\0; plot(y)
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96. Shock layer (Hemker) [Chap. 20]

ep = 1e-6;

L = chebop([-1 0 1]);

L.op = @(x,y) ep*diff(y,2)+x*diff(y);

L.lbc = -2; L.rbc = 0;

f = chebfun(@(x) -ep*pi^2*cos(pi*x)-pi*x*sin(pi*x));

y = L\f; plot(y) -1 -0.5 0 0.5 1
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97. Blowup eq., complex perturbation (H&M) [Chap. 21]

d = [0 1.03]; N = chebop(@(y) diff(y)-y^2,d);

N.lbc = 1; rng(0)

f = 0.01*randnfun(d,'big','complex');

y = N\f; arrowplot(y)
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98. KdV train of solitons [Chap. 22]

d = [-5,5]; x = chebfun('x',d); S = spinop(d,[0 2]);

S.lin = @(u) -0.01*diff(u,3);

S.nonlin = @(u) -0.03*diff(u.^2);

c = 1; soliton = 50*c*sech(sqrt(100*c)*x/2)^2;

S.init = .25*soliton;

u = spin(S,160,.005,'plot','off'); plot([S.init u]) -5 -2.5 0 2.5 5
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99. Kuramoto–Sivashinsky chaotic state [Chap. 22]

d = [-50,50]; x = chebfun('x',d);

S = spinop(d,[0 100]);

S.lin = @(u) -diff(u,2)-diff(u,4);

S.nonlin = @(u) -0.5*diff(u.^2);

S.init = exp(-(x/5)^2);

u = spin(S,200,.1,'plot','off'); plot(u) -50 -25 0 25 50
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0
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100. Ginzburg–Landau PDE [Chap. 22]

u = spin2('gl','plot','off');

plot(real(u)), view(0,90)
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B&O = C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists
and Engineers, Springer Science and Business Media, 2013.

Danby = J. M. A. Danby, Computer Modeling: From Sports to Spaceflight . . . from
Order to Chaos, Willmann-Bell, Richmond, VA, 1997.

Davis = H. T. Davis, Introduction to Nonlinear Differential and Integral Equations,
Courier Corp., 1962.

Duan = J. Duan, An Introduction to Stochastic Dynamics, Cambridge U. Press, 2015.

ESK = A. S. Elwakil, K. N. Salama, and M. P. Kennedy, An equation for generating
chaos and its monolithic implementation, Int. J. Bifurc. Chaos 12 (2002), pp. 2885–
2895.

HNW = E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equa-
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Bernstein ellipse, 272
Bessel equation, 6, 8, 289, 294, 306, 313
bifurcation, 209–224 see also Hopf bi-

furcation, symmetry breaking
diagram, 211, 232, 234
fold, 235
period doubling, 163
pitchfork, 202
point, 209
saddle-node, 229
theory, 1

bistable, 148
black hole, 182
Black–Scholes equation, 22
Blasius equation, 8, 62
Bloch, Felix, 73, 247, 249
blowup, 28–31, 37, 97, 175, 176, 279
bounce pass, 208, 306
boundary condition, see BC
boundary layer, 52, 53, 78, 226, 227,

235, 253–265, 326
analysis 255, 263
double, 264

boundary-value problem, see BVP
Bragg, William and Lawrence, 246

reflection, 249
branch cut, 270, 273, 278
branch point, 269, 270, 278
Bratu equation, 6, 201, 228–230, 233,

283–285
Brouwer fixed point theorem, 250
Brownian motion, 143–145, 153, 154,

319, 320
geometric, 150, 320

Brusselator, 6, 316
butterfly

attractor, 156
effect, 156

BVP, 2, 3, 8, 51–62

caffeine, 19, 20, 251
calculus, 171, 268

Itô and Stratonovich, 150
multivariate, 173

Cauchy, Augustin Louis, 7, 61
estimate, 279

Cauchy–Lipschitz theorem, 138
Cauchy–Schwarz inequality, 88
Carrier equation, 6, 202, 234, 251, 323,

325

cellular automata, 168
center, 189, 192, 210, 318
chaos, 1, 118, 121–123, 155–169, 179–

182, 328
characteristic roots, 43, 53
Chebfun, 1, 299–308
chebfun vs. Chebfun, 5
chebop, 2
Chebyshev, Pafnuty, 193

coefficients, 297
grids, see points
points, 9, 264, 299
polynomial, 297
series, 297, 298

chemistry, 1, 70, 71, 128, 151, 233, 316
Chladni patterns, 101
cholera outbreak of 1854, 125
clarinet, 74, see also music
classification of ODEs, 3, 8
clock, 48
cold start, 227
compact support, 35
complex conjugate, 82
complex eigenvalues/functions, 82
complex exponential, 40
complex harmonic oscillator, 36, 75
complex numbers, 12, 34
complex perturbation, 327
complex plane, 181, 267–279
computers, 6, 19, 34, 42, 127, 159, 167,

293
conduction and convection, 1, 261–263,

294
conjunct or concomitant, 83
continuation, 225, see also path-

following
parameter, 225

contraction map, 132, 133
control theory, 51, 89
corner layer, 260, 264, 326
criticality, 242, 250
crystallography, 240

X-ray, 249

Damper Baby, 42
damping, 93–98, 106, 314, 317
defective eigenvalue problem, 75
deflation, 208
differential geometry, 1
differential operator, 2
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Dirac delta function, 16, 74
direction field, 104, 117
Dirichlet condition, 52, 66, 68
discontinuities, 13, 77, 134, 173, 222,

299, 303, 305, 306, see also
piecewise continuous

dissipative, 181
double pendulum, 322
double-well potential, 72
drag, 46, 47
drum, 294
Duffing equation, 6, 108, 314, 315
dynamical systems, 12, 32, 123, 139,

158, 182, 211, 216, 293, 328
Dzhanibekov effect, 124

Earth, 46, 49, 88, 91, 98–102
earthquakes, 42
Eiffel Tower, 57
eigenfunction, 64, 196
eigenvalues

of BVP, 63–75
of Jacobian, 128, 186, 188, 220

Einstein, Albert, 73, 153, 182
elasticity, 48, 61
electrons, 34, 168, 247–250
elliptic functions, 278
embedding, see continuation
energy, 50

conservation, 128
gap, see band gap

epidemiology, 124–127, 190, 193
equilibrium, 51, 209, 211
escape

time, 151
velocity, 50

Euler, Leonhard, 7, 21, 32, 61, 89, 207
buckling, 207, 323
–Maruyama method, 153

Eulerian wobble, 124, 128, 194
even and odd

Chebyshev coefficients, 298
functions, 74, 232

exact equation, 49
existence, 129–139
extinction, 136, 319

Feigenbaum’s constant, 164, 167
Fibonacci sequence, random, 169
Field–Noyes equation, see Oregonator

final condition, 22, 275
finance, 1, 22, 23, 151
firefly synchronization, 318
first-order equation, 3
first-order system, 9, 129
Fisher equation, 208
FitzHugh–Nagumo equations, 219–223
fixed point, 35, 104, 117, 123, 133, 185–

194
ghost of a, 36

FLASHI, 3, 8
Floquet theory, 246, 249
flute, 74, see also music
food web, 165–167
forbidden frequency, see band gap
forcing frequency, 92–101
formal, 84
four bugs on a rectangle, 127
Fourier, Joseph, 61, 73, 283

series, 9, 149, 244, 305
Fourier–Wiener series, 150, 153
Frank-Kamenetskii, David, 233
frequency, 40
friction, 50, 215, 263
fundamental matrix, 173, 243

Galileo, 112
Gaussian process, 150
general solution, 15–21
generalized eigenfunction, 74
Gopal, Abinand, 8
Gram matrix, 67
gravitational waves, 182
gravity, 35, 48, 49, 98, 101
Green’s formula, 83
Gronwall’s inequality, 175
Gunzburger, Max, 89

Hale, Nick, 8, 299–307
half-life, 19, 20, 151, 153
harmonic oscillator, 8, 71, 75, 103, 301,

312
heat

conduction, 1, 261
equation, 281
transfer, see conduction and con-

vection
Heaviside function, 22
Hénon–Heiles equation, 6, 322
Hermite polynomials, 71
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Hilbert, David, 73
Hill equation, 8, 244, 245 325
homoclinic orbit, 317
Hodgkin and Huxley, 219, 246
homotopy, see continuation
Hopf bifurcation, 220–223, 323, 324
Holy Island of Lindisfarne, 102
homogeneous, 3
Hooke, Robert, 44, 48

ellipse, 49
law, 39, 49, 71, 110

Hrothgar, 8
Huygens, Christiaan, 48
hydrodynamic stability, 190–193
hysteresis, 218, 235

ill-conditioning, 264, 265, 313, 326
ill-posed, 183, 313
impulse response, 16
initial condition, 1–3, 16
initial guess, 198
initial-value problem, see IVP
infectious disease, 1, 124–127, 190
insulator, 73, 247, 248
integral equation, 130, 139
integrating factor, 3, 15, 16, 18, 21, 30
interior layer, 81, 82, 225, 253–265, 279,

326
interpolant, 9, 230, 297, 299, 312
isospectral flow, 128
IVP, 2, 3, 8

Jacobian matrix, 128, 174, 176, 179,
185

Jacobi sine functions, 276–279
judicious guessing, method of, 18
Jurassic Park, 168

KdV equation, 289–293, 305, 327
Kepler’s equal-area law, 49
Kronig–Penney model, 247

Lambert W function, 21, 36
laminar flow, 46, 190–193
Lagrange, Joseph-Louis 127
Laplace equation, 281, 283, 289
leaky bucket, 32, 36, 136, 306, 318
Legendre equation and polynomials, 90
length of a chebfun, 9
Lennard–Jones potential, 311, 313
life insurance, see Thiele’s equation

LIGO, 182
limit cycle, 109, 224, 315, 317
linear algebra, 171
linearity, 3, 6
linearization, 27, 123, 171–183
line splitting, 72
Lipschitz continuity, 31, 35, 129, 133,

139, 172
local behavior, 27
localization of eigenfunctions, 73
logistic equation, 6, 36, 37, 223, 250,

310
Lorenz, Edward, 159

equations, 6, 121–123, 155–159,
168, 179–182, 189

Lotka–Volterra equations, 6, 8, 118–
121, 178, 189, 219, 245, 251

Lyapunov, Alexandre, 7, 193
constant, 169
exponent, 155, 158, 162, 168, 182
stable and unstable, 188, 209

marble, 209–219
Mathieu equation, 6, 244, 251
matrix, 64, 67, 75, 128

exponential, 171
metastability, 151–153, 294
Meyers, Matt, 8
microgravity, 35
middle-value problem, 80
Moler, Cleve, 35, 139
Møller, Niels, 8
moon, 98
multiphysics, 79
Murray, Jim, 127, 219
music, 40, 74, 101

natural boundary condition, 58
natural frequency, see resonant fre-

quency
Navier–Stokes equations, 190
n-body problem, 6, 159–162, 321
nerve signals, see neural signals
networks, 1
Neumann condition, 52, 66, 68
neural signals, 219–223
neutrally stable, 189, 209
Newton, Isaac, 7, 22, 48, 101, 159

ellipse, 48, 49, 159, 205
iteration, 62, 198
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law of cooling, 22
second law of motion, 39

New York, 261
Nobel Prize, 72, 182, 219, 246, 247
node, 66, 186
nonexistence, 31
nonlinear forced oscillator, 164
nonlinearity, 2–6, 19, 21, 25–37, 40, 42,

56, 62, 123, 159, 171, 182
nonlinear pendulum, 6, 8, 110–112, 224,

250, 315, 321
nonnormality, 73, 183
nonself-adjoint, 69, 90
nonuniqueness, 31, 195–208, 319

pseudo-, 264
norm, 88, 132–134, 154, 157, 172, 174,

298
normalization, 66, 74
numerical abscissa, 14, 181–183
numerical analysis, 2, 60–62, 132, 198,

297
numerical artifact, 75
numerical computation and methods,

5, 8, 61, 62, 71, 153, 198, 271
numerical optimization, 198
numerical software, 9, 128
numerical solution, 5, 8

ocean, 98, 100, 261–263, 294
optics, 1, 79, 293
optimization, 49, 86–90, 198
Oregonator, 6, 128, 316
Orr–Sommerfeld eigenvalues, 313
orthogonal, 67, 85
orthonormal, 68
outer equation, 255

Painlevé, Paul, 7, 273
equations, 6, 273–275

partial differential equation, see PDE
particular solution, 15–21
path-following, 202, 225–235
PDE, 74, 190, 261, 281–295
penalty, 26
pendulum, 91, 112
period, 40, 41, 113

-doubling, 163, 164
periodic

doubly, 277
function, 9, 304

ODE, 237–251, 305, 325
PDE, 305

perturbation, 1, 82, 86, 156–158, 161,
162, 168, 175, 179–182, 191,
211–220, 223, 275, 287, 324, 325

pharmacokinetics, 19
phase lag, 95, 96, 100
phase plane, 103–113
Picard iteration, 130, 139
piecewise continuous, 13, 34, 77, 134,

173, 173, 325
pitchfork bifurcation, 213, 232

subcritical, 216, 224
supercritical, 213

Planck’s constant, 70, 71
planetary dynamics, 1, 203–207, 323,

see also n-body problem
Poincaré–Bendixson theorem, 123
polar coordinates, 324
pole, 267–279
population dynamics, 1, 37, 118, 165
positivity, 7
predator–prey, see Lotka–Volterra
principal function, 75
pseudo-arclength continuation, 230
pseudo-nonuniqueness, 264
pseudo-singularity, 278, 306
pseudo-solution, 265, 295
pursuit problem, 33, 34, 311

quantum mechanics, 1, 70–73, 79, 153,
211, 247, 288, 301

quiver plot, 103

race cars, 49
radioactivity, 1, 151–153
radius of convergence, 267
randomness, 102, 155
random walk, 142–146, 154, 319, see

also Brownian motion
Rayleigh equation, 315
reduced equation, 70, 288
resonance, 64, 91–102, 93
resonant frequency, 91–101, 313, 314
Reynolds number, 191
Ricatti equation, 310
Riesz representation theorem, 86
RLC circuit, 101
Robin boundary condition, 52, 66, 75
Rössler equations, 6, 162–164, 321
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saddle point, 187, 315
saddle-node bifurcation, 229
San Francisco, 261
scalar, 3
scaling, 7
Schrödinger equation, 70–73, 247–249,

288, 301, 312
nonlinear, 305

secular solution, 96
self-adjoint, 66, 67, 70, 82, 85, 90

formally, 83
self-ionization, 161
sensitive dependence, see chaos
separable, 12
separation of variables, 12, 289
shallow-water waves, 100
shock, 326, 327
shooting, 61, 201, 250
side condition, 55, 306
similarity solution, 289
simple harmonic motion, 40, 48
singularity, 7, 271
singular perturbation, 79, 254
singular value decomposition, 158
sink, 186, 322
SIR model for epidemics, 124–127, 190
sixth-order equation, 61
smoothness, 35
software for ODEs, 306
solid mechanics, 61
solid state physics, 248
solitons, 289–293, 327
sound, 42, 57, 73, 74, 101, 240
source, 187, 322
spacecraft, 203–207
spaghetti, 57
special functions, 1
spectral abscissa, 180, 181, 183, 221,

222
spectral methods, 300
spectral theory, 73
spiral point, 128, 187, 315, 316, 322
spline, 61, 312
spring, 39, 41, 44, 50, 71, 110, 197
S-shaped curve, 233–235
stability

theory, 1, 12
of fixed point, 35, 106, 110, 126,

147, 148, 185–194, 209–224
of fluid flow, 190–193, 279

of solar system, 159
for PDEs, 191, 283–289

stable/unstable manifold, 113, 211
Stark effect, 72
steady state, see fixed point
stiffness

of ODE, 7, 128, 303, 314, 316
of PDE, 291, 305, 306
physical, 50, 57, 58

Stinchcombe, Adam, 8
stirred tank reactor, 324
strange attractor, 155, 156, 164, 165,

180
sun, 98–101, 159, 203–207, 261, 323
superposition, 40, 49, 74, 92
swing, 91
Sydney Opera House, 17, 299
symbolic computing, 271
symmetry breaking, 214, 232, 286
systems of equations, 115–128
syzygy, 99, 102

tangled trajectories, 123
Taylor series, 22, 89, 153, 154, 171, 184,

267, 268
tennis racket theorem, 124
thermal runaway, 28, 233
Thiele’s equation, 22
tides, 98–102
time-harmonic solution, 288
tipping point, 190, 193
Tokieda, Tadashi, 8

teacup, 251
Torricelli’s law, 32, 36
transient, 8, 191, 311, 322
traveling wave, 288, 289, 292–294
Troesch equation, 312
tsunami, 100
tunneling, 151–153
turbulence and transition, 46, 190–193
turning point, 79

undetermined coefficients, method of,
18, 21, 23, 30, 113

uniqueness, 35, 107, 129–139

van der Pol equation, 4–6, 8, 9, 36,
41, 109, 177, 223, 240, 245, 246,
303, 304, 309, 314, 324

variable coefficients, 12, 58, 77–90, 173,
213, 256, 262
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variation
of Brownian path, 154
of constants or parameters, 16

vector space, 14, 15, 44, 45, 49, 53, 54,
79

vibration, 1, 42, 44, 49, 73, 110, 112,
191, 220

warm start, 227

washing hanging on the line, 311

watch, 44

water droplet, 62

waves, 1, 293

WolframAlpha, 19, 21

Wolfram, Stephen, 169

Zeeman effect, 72
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