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Abstract. The amplitude of the gradient of a potential inside a wire cage is investigated, with par-
ticular attention to the 2D configuration of a ring of n disks of radius r held at equal
potential. The Faraday shielding effect depends upon the wires having finite radius and is
weaker than one might expect, scaling as | log r|/n in an appropriate regime of small r and
large n. Both numerical results and a mathematical theorem are provided. By the method
of multiple scales, a continuum approximation is then derived in the form of a homogenized
boundary condition for the Laplace equation along a curve. The homogenized equation
reveals that in a Faraday cage, charge moves so as to somewhat cancel an external field,
but not enough for the cancellation to be fully effective. Physically, the effect is one of
electrostatic induction in a surface of limited capacitance. An alternative discrete model
of the effect is also derived based on a principle of energy minimization. Extensions to
electromagnetic waves and 3D geometries are mentioned.
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1. Introduction. Everybody has heard of the Faraday cage effect, whereby a
wire mesh or metal screen serves to block electric fields and electromagnetic waves.
Faraday reported his experiments with a twelve-foot mesh cube in 1836 [10],1 and
engineers and physicists have used metal shielding to isolate circuits and systems ever
since. A familiar example is the door of a microwave oven with its metal screen with
holes. The screen keeps the microwaves from getting out while allowing light, with
its much shorter wavelength, to pass through. Science museums sometimes dramatize
the effect with electric sparks, as illustrated in Figure 1.1.

One would imagine that there must a standard mathematical analysis of electro-
static or electromagnetic screening to be found in physics and engineering textbooks,
or at least in more specialized monographs or in the journal literature. It seems that
this is not so. There may be an analysis known to a specialized community somewhere,
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1The absence of field inside a continuous metal shell was noted by Benjamin Franklin as early as
1755 [13, section 2-18].
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Fig. 1.1 Dramatization of the Faraday cage effect. This image shows the giant Van de Graaff
generator at the Museum of Science in Boston. (Photo c© Steve Marsel, courtesy of the
Museum of Science, Boston.)

but we have consulted with enough people on this subject to be confident that no such
treatment is widely known. The effect is mentioned in passing in some books, but
usually with no equations. An impression is sometimes given that the strength of the
effect is exponential or nearly exponential as a function of distance from the screen,
a claim we have been unable to justify. One of the few mathematical treatments we
have found is in section 7-5 of Vol. 2 of The Feynman Lectures on Physics [11], where
so far as we can tell, the analysis is incorrect. Feynman considers equal charges rather
than equal potentials, his wires are of infinitesimal radius, there is no wavelength or
indeed external field in his discussion, and the strength of the effect is predicted to
be exponential.

We shall see that there is rapid convergence in the Faraday cage effect, but it is
not what one might expect. As the wire spacing decreases, the field inside the cage
converges rapidly not to zero, but to the solution of a homogenized problem involving
a continuum boundary condition. Physically, the boundary condition expresses the
property that the boundary has limited capacitance since it takes work to push charge
onto small wires.

This paper analyzes the Faraday cage phenomenon from several points of view,
and we do not want the reader to lose sight of the main results. Accordingly, the results
are presented in the relatively short sections 3–6, with some of the mathematical
details deferred to Appendices A–C. The discrete model of section 6 is simple enough
to be used in teaching, and indeed it was assigned to 70 Oxford graduate students in
the course “Scientific Computing for DPhil Students” in November 2014.

We note that another paper about Faraday shielding has been published by Paul
Martin after discussion with us about some of our results [16].
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Fig. 2.1 Model of the Faraday cage in 2D. The curve Γ on which the wires are located, in this case
a circle, is shown as a dashed line.

2. 2D Electrostatic Model. Our study focuses on a simple 2D electrostatic
model, which we now describe.2 Given a bounded simply connected open subset
of the plane with smooth boundary Γ, suppose that n disks of radius r (representing
the wires) are positioned along Γ at constant separation between neighboring disk
centers (measured with respect to arc length along Γ). For convenience we will iden-
tify the x-y plane with the complex z-plane. Our primary example will be the case
where Γ is the unit circle and the wires are situated at the nth roots of unity. An
illustration of the geometry in this case is given in Figure 2.1.

We seek a real function φ(z) that satisfies the Laplace equation

∇2φ = 0(2.1)

in the region of the plane exterior to the disks, and the boundary condition

φ = φ0 on the disks.(2.2)

Equation (2.2) asserts that the disks are conducting surfaces at equal potential; here
φ0 is an unknown constant to be determined as part of the solution. We emphasize
that (2.2) fixes φ(z) to a constant value on disks of finite radius r > 0. This is in
contrast to some discussions of screening effects (e.g., [11, section 7-5], [24, section
7.5.1]) where the wires are supposed to have infinitesimal radius and are modeled
as equal point charges. It is well known in harmonic function theory that Dirichlet
boundary conditions can be imposed on finite-sized boundary components (the precise
condition is that each boundary component must be a set of positive capacity [2]), but
not at isolated points. Mathematically, the attempt to specify a potential at an
isolated point will generally lead to a problem with no solution. Physically, one may
imagine a potential fixed at an isolated point, but its effect will be confined to an
infinitesimal region.

We also need to specify some external forcing and appropriate boundary condi-
tions at infinity. Our numerical examples will focus on the case where the external
forcing is due to a point charge of strength 2π located at the fixed point z = zs outside

2We work throughout in dimensionless variables, scaling lengths with some typical cage dimen-
sion.
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Γ, stipulating that

φ(z) = log(|z − zs|) +O(1) as z → zs,(2.3)

φ(z) = log(|z|) + o(1) as z → ∞.(2.4)

Equation (2.4) implies that the total charge on all the disks is zero, though the charge
on each individual disk will in general be nonzero. Since the charge on a disk is equal
to the integral of the normal derivative ∂φ/∂n around its boundary, (2.4) thus implies
that the sum of these n integrals is zero. (Here n denotes the unit outward normal
vector on a curve of integration.)

Our aim is to investigate quantitatively the behavior of the solution φ inside the
cage, specifically the magnitude of the associated electric field, ∇φ, as a function of
the number n and radius r of the wires. We present four methodologies for doing
this: direct numerical calculation (section 3), an analytical bound based on conformal
mapping (section 4), a homogenized approximation derived from the method of mul-
tiple scales (section 5), and an approximation by point charges determined by solving
a quadratic energy minimization problem (section 6).

3. Numerical Calculations. For our numerical calculations we compute solu-
tions to the problem (2.1)–(2.4) accurate to many digits by the method of expansion
in fundamental solutions of the Laplace equation with least-squares matching on the
boundary. Details are given in Appendix A.

Figure 3.1 shows numerical results for the case where Γ is the unit circle and the
forcing is by a point charge at zs = 2, for fixed n = 12 and varying wire radii r. One
sees that the screening effect weakens as r → 0, and in the limit r = 0, there will be
no screening at all. The dependence on r is logarithmic.

Figure 3.2 fixes r = 0.01 and varies n, showing results for n = 10, 20, 40. With
each doubling of n, the field in the cage weakens, but only by approximately a factor
of 2. This figure highlights the fact that in this model at least, the Faraday cage effect
is not very strong.

r = 0.1 r = 0.01 r = 0.001

Fig. 3.1 Dependence on the radius r for fixed number of disks n = 12. The equipotential curves
visible correspond to values φ(z) = −2,−1.9, . . . , 1.1, 1.2. As r → 0 the screening effect
weakens slowly, with the field strength inside the cage growing in proportion to | log r|. For
these three configurations the gradients at the center are |∇φ(0)| ≈ 0.012, 0.131, and 0.212;
in the limit r = 0 it would be |∇φ(0)| = 1/2. The constant potentials φ0 on the wires are
equal to log 2 minus 3.32× 10−5, 2.05 × 10−5, and 2.03× 10−5.
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n = 10 n = 20 n = 40

Fig. 3.2 Dependence on the number of disks n for fixed radius r = 0.01. The screening improves
only inverse-linearly as n increases, with the field strength inside the cage scaling like
O(n−1) for fixed r with nr � 1. The gradients at the center are |∇φ(0)| ≈ 0.158, 0.070,
and 0.023, and the potentials are log 2 minus 9.8 × 10−5, 4.9 × 10−8, and approximately
2× 10−14.

Table 3.1 Computed values of |∇φ(0)| for various r and n. Entries marked “ 0” correspond to cases
where the wires overlap, so the cage is a continuous shell and the shielding is perfect.

r = 10−1 10−2 10−3 10−4 10−5 10−6

n = 5 0.1118 0.2663 0.3348 0.3723 0.3959 0.4122

10 0.0236 0.1582 0.2399 0.2902 0.3241 0.3486

20 0.0003 0.0699 0.1406 0.1916 0.2300 0.2598

40 0 0.0229 0.0693 0.1082 0.1406 0.1681

80 0 0.0047 0.0297 0.0539 0.0757 0.0954

160 0 0.0000 0.0112 0.0246 0.0372 0.0492

320 0 0 0.0036 0.0105 0.0173 0.0239

Table 3.1 records numerically computed gradients |∇φ(0)| at the center of the
disk for six values of r and seven values of n. In the absence of the cage, this quantity
would take the value 1/2. It is interesting to see that even when the radius is as small
as 10−6, the field is quite a bit weaker than this. Faraday cages have some effect even
when the wires are extraordinarily thin. They don’t bring the field strength strikingly
close to zero, on the other hand, even when the wires are rather thick.

Figure 3.3 represents such data graphically. In the upper-right region of the plot,
one sees that for large n and small r, the gradient decreases inverse-linearly with n.
More precisely, one can observe empirically that for n � 1, r � 10−3, nr < 1, and
|zs| > 1 one has

|∇φ(0)| ≈ −2 log r

n|zs| .(3.1)

Thus the strength of the screening effect is linear in n, logarithmic in r, and linear in
|zs|. This observation is confirmed in section 4 by a theorem and in section 5 by a
homogenized analysis, where a more precise formula is given as (5.14).

Our cage has wires of equal radius and spacing, but this is not essential. Numerical
experiments confirm that if the radii and positions are perturbed by small amounts,
the fields do not change very much.
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Fig. 3.3 Graphical representation of data as in Figures 3.1 and 3.2: |∇φ(0)| as a function of n for
various values of r. The top edge of the plot corresponds to the value |∇φ(0)| = 1/2 one
would get in the absence of shielding.

4. Theorem. By combining known bounds for harmonic functions with certain
conformal transplantations, it is possible to derive a theorem that confirms the numer-
ical observation (3.1). Rather than restrict attention to the specific forcing function
log(|z−zs|), we now imagine a Faraday cage on the unit circle subject to an arbitrary
forcing field outside the disk of radius R > 1. Specifically, given R > 1, let φ be a
harmonic function satisfying |φ(z)| < 1 in the region |z| < R minus the n disks of
radius r, where it takes the constant value φ(z) = 0. Appendix B establishes the
following bound.

Theorem 1. Given R > 1, n ≥ 4, and r ≤ 1/n, let φ be a harmonic function
satisfying |φ(z)| ≤ 1 in the region Ω consisting of the disk |z| < R punctured by the n
disks of radius r centered at the nth roots of unity, where φ takes a constant value φ0

between −1 and 1. Then

|∇φ(0)| ≤ 4 | log r |
n logR

.(4.1)

Although this theorem as stated gives a bound on the gradient just for z = 0,
the argument can be extended to a similar bound for any z with |z| < 1 − r, with
constants weakening by a factor proportional to (1 − r − |z|)−1. We note also that
although the theorem gives a bound of order 1/ logR for large R, the actual scaling
is smaller than this, of order 1/R, as in (3.1).

5. Continuum Approximation. In Figures 3.1–3.2 it is evident that inside the
Faraday cage, though the potential is not very close to a constant, it is close to some
smooth function, except just next to the wires. Under appropriate assumptions, one
can make this observation precise, approximating the cage by a continuum model
with an effective boundary condition on the curve Γ. Details of our derivation by
the method of multiple scales are given in Appendix C. Related effective boundary
conditions have been obtained for problems with discontinuities along layers by the
method of “generalized impedance boundary conditions” as discussed, for example,
in [3, 9, 21]. The closest treatment we know of to our own is that of Delourme et
al. [6, 7, 8].

The homogenized approximation can be described as follows. Suppose the con-
stant separation between neighboring wire centers (measured with respect to arc
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length along Γ) is ε = |Γ|/n � 1, where |Γ| is the total arc length, and the radius of
each wire is r � ε. The crucial scaling parameter that determines the effectiveness of
the screening is

α =
2π

ε log(ε/2πr)
.(5.1)

If ε � 1/ log(ε/r), then α � 1 and the wires are too thin for effective screening.
If ε � 1/ log(ε/r), then α � 1 and the screening is strong. Specifically, here is
the continuum problem that results from our asymptotic analysis. Away from Γ,
φ satisfies the Laplace equation. On Γ, φ is continuous, but its normal derivative
satisfies a jump condition: [

∂φ

∂n

]
= α(φ− φ0) on Γ,(5.2)

where φ0, to be determined, is the mean value of φ on Γ. Here [f ] denotes the jump
in f across Γ, from exterior to interior, and n is the unit outward normal vector on Γ.
Note that for α � 1, (5.2) implies that ∂φ/∂n barely jumps across Γ: the screening
is weak. For α � 1, (5.2) implies that φ is almost constant along Γ: the screening is
strong.

Equation (5.2) can be given a physical interpretation, if we recall that across a
curve supporting a charge distribution of density ρ, the gradient of a potential jumps
by ρ. Thus another way to write (5.2) is

ρ = α(φ− φ0) on Γ,(5.3)

where ρ, a function of z, is the charge density along Γ. The parameter α, a ratio of
charge to voltage, can be interpreted as a capacitance per unit length. For a perfect
shell with α = ∞, ρ is such that φ = φ0 along Γ, so the external field is exactly
canceled, but for finite α, ρ does not adjust so far.

Solving for r in (5.1) gives

r =
ε

2π
e−2π/αε.(5.4)

In other words, the distinguished limit in which α is strictly of order one occurs when
r ∼ εA exp(−c/ε) as ε → 0 for some constants A, c > 0 (in which case α ∼ 2π/c).
Essentially the same critical scaling is derived in [19, 20] for problems of electrostatic
screening and by rigorous homogenization theory in [5] in the context of a much more
general discussion of limiting behavior of solutions of partial differential equations in
domains with microstructure.

For the cage subject to a point charge as in section 2, the homogenized model
takes the following form:

∇2φ = 0 in R
2 \ {Γ ∪ zs},(5.5)

[φ] = 0 on Γ,(5.6) [
∂φ

∂n

]
= α(φ − φ0) on Γ,(5.7)

φ(z) = log(|z − zs|) +O(1) as z → zs,(5.8)

φ(z) = log(|z|) + o(1) as z → ∞.(5.9)
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Fig. 5.1 Analogue of Figure 3.1 for the continuum approximation determined by (5.1) and (5.5)–
(5.9). Again the number of disks is fixed at n = 12 and the radius r varies. Note the
striking agreement of the two images shown with those of Figure 3.1, corresponding to
values α = 5.660 and 2.713. The first image is absent because in this case rn > 1, making
α negative and the homogenized approximation inapplicable. The mean potential φ0 of
(5.7) is log 2 ≈ 0.693.

Fig. 5.2 Analogue of Figure 3.2 for the continuum approximation determined by (5.1) and (5.5)–
(5.9). Now the radius is fixed at r = 0.01 and the number of disks n varies. Again note the
agreement with the discrete case. The values of α for these three figures are 4.343, 12.43,
and 43.65, and the mean potential φ0 is again log 2.

For the particular case of the unit circle, (5.5)–(5.9) can be solved explicitly to give

φ0 = log(|zs|),(5.10)

independently of α, and

φ(z) = log(|z − zs|) +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
m=1

α|z|m cosm(arg z − arg zs)

m(α+ 2m)|zs|m , |z| ≤ 1,

∞∑
m=1

α|z|−m cosm(arg z − arg zs)

m(α+ 2m)|zs|m , |z| ≥ 1.

(5.11)

Figures 5.1 and 5.2 show the resulting approximations, closely matching Figures 3.1
and 3.2. To make the comparison quantitative, we calculate that the gradient at the
center of the cage has amplitude

|∇φ(0)| = 2

(α+ 2)|zs| .(5.12)
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Table 5.1 Approximations to the data of Table 3.1 by the continuum model (5.14). For n > 5 and
r < 10−2 there is close agreement. Entries marked “ - ” correspond to values α < 0 in
(5.1), where the continuum model is inapplicable.

r = 10−1 10−2 10−3 10−4 10−5 10−6

n = 5 0.1085 0.2726 0.3397 0.3762 0.3992 0.4150

10 - 0.1577 0.2397 0.2901 0.3241 0.3486

20 - 0.0693 0.1406 0.1916 0.2300 0.2598

40 - 0.0219 0.0693 0.1082 0.1406 0.1681

80 - 0.0028 0.0297 0.0539 0.0756 0.0954

160 - - 0.0112 0.0246 0.0372 0.0492

320 - - 0.0035 0.0105 0.0173 0.0239
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Fig. 5.3 Analogue of Figure 3.3, with data now corresponding to the continuum model (5.14).

Since ε = 2π/n and r/ε = rn/2π, (5.1) becomes

α =
n

log(1/rn)
,(5.13)

from which it follows that (5.12) can be written

|∇φ(0)| = 1

|zs|
1

1 + n/(2 log(1/rn))
.(5.14)

Comparison of Tables 5.1 and 3.1 and of Figures 5.3 and 3.3 shows that (5.14) is a
very accurate approximation indeed. This formula also confirms (3.1), with the two
expressions being asymptotic to each other in the limit n → ∞, rn → 0.

Our homogenized analysis does not depend on the geometry of the cage being
uniform. If the radius and/or the spacing of the wires varies around the cage, then
the homogenized model should still give a good approximation, now with α as a
function of position.

6. A Cage of Point Charges. Unlike point potentials, point charges make good
sense mathematically and physically. An exponentially effective cage can be made
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n = 10 n = 20 n = 40

Fig. 6.1 Point charges approximation to a Faraday cage. The images show the potentials associated
with 10, 20, or 40 point charges with strengths obtained by discretizing the continuous
charge distributions of Figure 5.2. The gradients at the center are |∇φ(0)| ≈ 0.157, 0.069,
and 0.022. Nearly the same images and numbers are obtained by solving the quadratic
optimization problem (6.4).

n = 10 n = 20 n = 40

Fig. 6.2 Much better shielding achieved by different point charges, derived by discretizing the charge
distribution of a perfect circular conductor. The gradients at the center are |∇φ(0)| ≈
2.444 × 10−3, 2.384 × 10−6, and 2.274 × 10−12, with exponential convergence to zero as
n → ∞. Unfortunately, this is not the charge distribution induced in an actual Faraday
cage.

from point charges; the only difficulty is that the required charge distribution is not
the one induced in a Faraday cage.

To explain this observation, we first present two further variants of Figures 3.2
and 5.2. First, consider Figure 6.1. Here we take the smooth charge distribution of
Figure 5.2 and discretize it in point charges. To be precise, at each of n points on
the unit circle, we sample the smooth charge density resulting from the homogenized
model and multiply the result by 2π/n; we take this number as the amplitude of a
charge at this point. The picture looks virtually the same as in Figure 3.2. This reflects
the phenomenon that the trapezoidal rule in equispaced points on a circular contour
is exponentially accurate when applied to an analytic function [23]. The potential
functions φ of Figure 5.2 can be written as integrals over the circle; in Figure 6.1 the
integrals have been replaced by discrete trapezoidal approximations.

Figure 6.2 shows the same configuration, except based on the discretization of a
different charge distribution: that induced on a perfectly conducting circular shell, i.e.,
the limit α = ∞ in the last section (readily determined by the method of images). Now
the field inside is exponentially close to zero, as many—including initially ourselves—
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would imagine a Faraday cage must work. Again one can interpret the effect as
exponential convergence of the periodic equispaced trapezoidal rule.3

The consideration of point charges suggests a new model of the Faraday cage
that reduces it to a problem of linear algebra; the flavor is related to that of [1]. We
have seen that what limits the effectiveness of a cage is the limited-capacitance effect
stemming from the work required to put charge on a small wire. Specifically, the
energy associated with charge of amplitude q on a disk of radius r is −(q2/2) log r.
Suppose now that we have n disks of radius r centered at the points zk loaded with
charges qk and in the presence of an external field log |z − zs|. For r � min |zk − zj |,
the energy of this configuration is

E(q) = −1

2

n∑
k=1

q2k log r −
n∑

k=1

∑
j>k

qkqj log |zk − zj| −
n∑

k=1

qk log |zk − zs|,(6.1)

where q = (q1, . . . qn)
T : the three terms correspond to self-energy of the disks, inter-

actions between disks, and interactions with the external field. We further know that
the total charge on all the wires is zero,

n∑
k=1

qk = 0.(6.2)

This formulation suggests that we can find the charges qk by minimizing the quadratic
form E(q) over all n-vectors q satisfying (6.2). This is a constrained quadratic pro-
gramming problem of the form

E(q) =
1

2
qTAq− fTq , cTq = 0,(6.3)

for a suitable matrix A and vectors f and c, with solution vector q satisfying the block
2× 2 linear system (

A c

cT 0

)(
q

λ

)
=

(
f

0

)
;(6.4)

here λ is a Lagrange multiplier. Solving (6.4) for q leads to a cage of point charges
whose potentials look essentially the same as in Figures 3.2 and 6.1 (not shown).

7. Discussion. This article has investigated an electrostatic problem. Our anal-
ysis shows that the shielding improves only linearly as the spacing between wires of a
cage shrinks, and this is probably why your cell phone often works inside an elevator.
The shielding also depends on having wires of finite thickness, and this is probably
why it is hard to see into your microwave oven. (If thin wires provided good enough
shielding, the designers of microwave oven doors would use them.) Bjorn Engquist
has pointed out to us an amusing illustration of the challenges of Faraday shielding
that combines both of these devices. Put your cell phone inside your microwave oven,
close the door, and give it a call. The phone will ring merrily!

In particular, we have found that the Faraday shielding effect can be accurately
modeled by a homogenized problem with a continuous boundary condition, which
expresses the fact that the boundary has limited capacitance since it takes work to

3If the wires are not equally spaced, such an interpretation is still valid provided one generalizes
the trapezoidal formula appropriately via trigonometric interpolation [23, section 9].
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Fig. 7.1 Schematic summary of the arguments of this paper. The optimization model, based on
energy minimization for a surface of limited capacitance, can also be formulated in a con-
tinuous setting.

force charge onto narrow wires. This capacitance observation in turn suggests even
simpler models based on energy minimization. We presented such a model in a discrete
context in section 6, and a continuous argument of limited capacitance and energy
minimization can also be developed.

The overall structure of our arguments is summarized in Figure 7.1. Let us
quickly mention yet another argument, suggested by Toby Driscoll, that explains in
still another way that Faraday shielding must be weak. Consider the configuration
of a circular shell that is complete except for a single gap of size ε. By a conformal
map, one can calculate the potential inside this shell exactly, and the gradient in the
interior comes out of magnitude O(ε2). Clearly the cage of n gaps will have weaker
screening than this screen of one gap: weaker, as we have seen, by a factor O(ε−1)
corresponding to the number of gaps.

It has surprised us deeply in the course of this work to find no mathematical
analysis of the Faraday cage effect in the literature, despite its age, fame, and practical
importance. Feynman’s discussion alone must have been read by tens of thousands of
students and physicists, which may have contributed to the widespread misconception
that the shielding is exponential. Curiously, Maxwell in his 1873 treatise considered
the same special case of an infinite planar array of wires and got it right, including the
dependence on radius r [17]. However, we are unaware of any follow-up to Maxwell’s
work.

For electromagnetic waves, the shielding as a rule will be weaker. It is intuitively
clear that one must expect this when the wavelengths are much less than the mesh
spacing, but even for longer wavelengths, which one might at first think could not
penetrate the cage, the shielding may be weak because of resonance. For example,
suppose (2.1)–(2.4) are replaced by a Helmholtz equation system

∇2φ+ ω2φ = 0,(7.1)

φ(z) = φ0 on the disks,(7.2)
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ω = 0.5 ω = 2.2 ω = 2.8

Fig. 7.2 Repetition of the first panel of Figure 3.1 for the Helmholtz problem (7.1)–(7.4) for three
values of ω. Level curves of Re(φ(z)) are shown with levels at −2,−1.9, . . . , 1.2 as in
Figure 3.1. For ω = 2.8, there is an approximate resonance inside the cage and a significant
field there.

φ(z) = log(|z − zs|) +O(1) as z → zs,(7.3)

outgoing radiation condition as z → ∞.(7.4)

(This is a rather nonstandard Helmholtz problem in that φ0 is not fixed but unknown,
to allow for direct comparison with the electrostatic problem. The formulation can
be completed with a condition analogous to the zero-total-charge property implied
by (2.4). For our calculations we require the coefficients dj of Hankel function con-
tributions djH0(ω|z − cj|) to sum to zero in analogy to the condition imposed for
the electrostatic case in Appendix A.) Equations (7.1)–(7.4) could be obtained af-
ter separation of variables u(z, t) = exp(−iωt)φ(z) by considering the wave equation
∂2u/∂t2 = ∇2u subject to oscillatory forcing u(z, t) = exp(−iωt) log(|z − zs|) +O(1)
as z → zs with u(z, t) = e−iωtφ0 on the disks. If ω is small enough, then (2.1)–(2.4)
and (7.1)–(7.4) will lead to much the same solutions, with similar shielding properties.
If ω is close to a zero of a Bessel function Jν for integer ν, however, corresponding to
an eigenmode of the Laplacian in the unit disk, then a large response may be stim-
ulated within the cage, even if the wavelength is bigger than the mesh spacing. For
example, Figure 7.2 shows results in the same format as the first image of Figure 3.1
for ω = 0.5, 2.2, and 2.8. For the small value of ω, the image looks approximately
as before. As ω increases, waves of wavelength ω/2π appear. The image for ω = 2.8
shows a hint of the resonance that would appear in the case of a perfect unit circle at
ω ≈ 2.405; with larger n and smaller r these numbers would match more closely.

This Helmholtz equation model is highly simplified. A proper discussion of the
electromagnetic case, which is beyond the scope of this paper, must consider different
polarizations of electromagnetic waves. For example, a wave with electric field parallel
to an array of parallel wires will behave differently from a wave with electric field
perpendicular to such an array. Early studies of diffraction of electromagnetic waves
by wire arrays include [4, 15, 18], and indeed such questions go back to Hertz, J. J.
Thomson, Lord Rayleigh, and Lamb (who charmingly refers to “electric waves”) [14].
For time-dependent problems, moreover, other effects become relevant, including finite
resistivity, skin depth, and electromagnetic induction. In the study of electromagnetic
screening it is well recognized that a finite amplitude wave may propagate through a
screen, not just an evanescent one.

For a wire cage in three dimensions, electrostatic shielding will be much as we
have described here for a 2D problem. Again the strength of the shielding will be
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linear in the mesh spacing, logarithmic in the radius. A mesh with wires aligned
orthogonally in both directions will shield better than a mesh with wires aligned in
just one direction, but the improvement will be by slightly less than a factor of 2.
(We continue to assume that all wires are electrically connected so that they lie at the
same potential.) A continuum model can be derived as before; the jump condition
(5.2) will be applied across the bounding surface with α changed to 2α.

Finally, we return to the dramatization of Figure 1.1. Effects of sparking and
lightning involve more than just Faraday screening: the ionization of the air is non-
linear and nucleates at points of strong field, typically near sharp corners or other
small-scale features, as has been well known since Franklin invented the lightning
rod. Indeed, whereas for our electrostatic model problem thinner wires provide weaker
shielding, perhaps one might in principle devise a cage whose properties as a lightning
rod would be the reverse: thin wires might make for better lightning protection than
thicker ones, because of sparking ionization more readily.

This investigation originated in the third author’s study with J. A. C. Weide-
man of the exponential convergence of the periodic trapezoidal rule for analytic func-
tions [23]. Surely, we imagined, a Faraday cage must provide exponential shielding
for the same mathematical reasons as the trapezoidal rule provides exponential con-
vergence? Eventually we realized that the analogy is not so straightforward.

Appendix A. Numerical Method. Figures 3.1–3.3 and Table 3.1 report numer-
ical results for the Laplace problem (2.1)–(2.4). These results were calculated by a
method of expansion in appropriate basis functions with least-squares matching on
the boundary. In principle, this method converges exponentially as a function of the
number of parameters employed, and in practice it is not hard to get several digits of
accuracy provided one is careful to avoid parameter regimes where the matrices are
highly ill-conditioned. The method is sometimes associated with the name of Mikhlin,
and our own calculations were based on adaptations of codes given in [22].

Let {cj} denote the centers of the n wires, each with radius r. The expansion we
utilize takes the form

φ(z) = log |z − zs|+
n∑

j=1

{
dj log |z − cj |+Re

[
N∑

k=1

(ajk − ibjk)(z − cj)
−k

]}
,(A.1)

where {dj}, {ajk}, and {bjk} are real constants to be determined along with e = φ0,
the constant voltage on the wires in (2.2). We fix d1 by the condition

∑
dj = 0, which

is equivalent to (2.4), and the rest of the parameters are unknowns. The number N
is taken large enough for good accuracy but not so large as to make the matrices
too ill-conditioned (especially an issue when r is small): our experimentally derived
rule of thumb is to take N as the nonnegative integer closest to 4 + 0.5 log10(r).
For any coefficients, the function (A.1) satisfies (2.1), (2.3), and (2.4), and our aim
is to find coefficients so that it also satisfies (2.2). To this end, the boundary of
each disk is discretized in a number of points, typically 3N + 2, which makes (2.2)
into an overdetermined linear system of equations involving a matrix of dimension
(3nN+2n+1)× (2nN+n+1). This problem is then solved by the standard methods
invoked by the MATLAB backslash command. A sample MATLAB code is listed in
Figure A.1.

For the Helmholtz equation of section 7, the computations are similar but based

on Hankel functions of the first kind H
(1)
j rather than logarithms and inverse powers.
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% Solve the problem:

n = 12; r = 0.1; % number and radius of disks

c = exp(2i*pi*(1:n)/n); % centers of the disks

rr = r*ones(size(c)); % vector of radii

N = max(0,round(4+.5*log10(r))); % number of terms in expansions

npts = 3*N+2; % number of sample points on circles

circ = exp((1:npts)’*2i*pi/npts); % roots of unity for collocation

z = []; for j = 1:n

z = [z; c(j)+rr(j)*circ]; end % collocation points

A = [0; -ones(size(z))]; % the constant term

zs = 2; % location of the singularity

rhs = [0; -log(abs(z-zs))]; % right-hand side

for j = 1:n

A = [A [1; log(abs(z-c(j)))]]; % the logarithmic terms

for k = 1:N

zck = (z-c(j)).^(-k);

A = [A [0;real(zck)] [0;imag(zck)]]; % the algebraic terms

end

end

X = A\rhs; % solve least-squares problem

e = X(1); X(1) =[]; % constant potential on wires

d = X(1:2*N+1:end); X(1:2*N+1:end) = []; % coeffs of log terms

a = X(1:2:end); b = X(2:2:end); % coeffs of algebraic terms

% Plot the solution:

x = linspace(-1.4,2.2,120); y = linspace(-1.8,1.8,120);

[xx,yy] = meshgrid(x,y); zz = xx+1i*yy; uu = log(abs(zz-zs));

for j = 1:n

uu = uu+d(j)*log(abs(zz-c(j)));

for k = 1:N, zck = (zz-c(j)).^(-k); kk = k+(j-1)*N;

uu = uu+a(kk)*real(zck)+b(kk)*imag(zck); end

end

for j = 1:n, uu(abs(zz-c(j))<rr(j)) = NaN; end

z = exp(pi*1i*(-50:50)’/50);

for j = 1:n, disk = c(j)+rr(j)*z; fill(real(disk),imag(disk),[1 .7 .7])

hold on, plot(disk,’-r’), end

contour(xx,yy,uu,-2:.1:1.2), colormap([0 0 0]), axis([-1.4 2.2 -1.8 1.8])

axis square, plot(real(zs),imag(zs),’.r’)

Fig. A.1 Example program for computing the field inside the Faraday cage, with the variable u used
for φ in the text and e for φ0. This code produces the first image of Figure 3.1 in a fraction
of a second on a desktop computer.

Appendix B. Proof of Theorem 1. To begin the proof, assume φ0 = 0. Under
this assumption we claim that φ satisfies

|φ(ζ)| ≤ | log r |
n logR

, |ζ| ≤ 1, ζ ∈ Ω.(B.1)

To prove this, we note that for each ζ ∈ Ω, φ(ζ) is a weighted average of the values of
φ(z) on the boundary ∂Ω; the weighting function is known as the harmonic measure
associated with the point ζ. It follows that for any ζ ∈ Ω, the largest value that |φ(ζ)|
may take under the given assumptions on the boundary data is equal to the value
taken by φ(ζ) in the case where φ(z) = 1 identically for |z| = R. (Equivalently, it
is the harmonic measure of the boundary circle |z| = R for the given ζ and Ω.) We
can estimate this number by making use of the transformation v = zn followed by
w = (v − 1)/(1−R−2nv), as indicated in Figure B.1:

w =
zn − 1

1−R−2nzn
.(B.2)
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z

φ = 1

v = zn

φ = 1

w = (v − 1)/(1 − R−2nv)

φ = 1

Fig. B.1 Conformal transplantations of the harmonic function φ for the proof of Theorem 1. The
left image shows one of n equal segments of the disk |z| ≤ R in the z-plane, a slice of
cheese that omits the disk of radius r � 1 around z = 1; the dotted curve marks a portion
of the unit circle. The middle image shows the result after the transformation v = zn,
giving an outer circle now of radius |v| = Rn; the omitted region is now approximately the
disk about v = 1 of radius nr. The slit along [−Rn, 0] can be removed since φ satisfies a
homogeneous Neumann condition on both sides. The right image shows the result after a
further adjustment by the Möbius transformation w = (v − 1)/(1 − R−2nv), which leaves
the outer circle fixed at |w| = Rn and moves the omitted near-disk to approximately the
disk of radius nr about w = 0.

Under this transformation, the solution φ(w) to the Dirichlet problem in the region
on the right of the figure corresponds pointwise to the solution in the left region,
φ(z). (We abuse notation slightly by using the same symbol φ in the z, v, and w
domains.) The region on the right is bounded on the outside by the circle |w| = Rn,
with φ(w) = 1, and on the inside by a curve S that is approximately the circle
{w : |w| = rn}, with φ(w) = 0. The minimal absolute value of points w ∈ S is the
value corresponding to z = 1− r,

|w|min =
1− (1− r)n

1−R−2n(1− r)n
,(B.3)

and an easy estimate using the assumption r < 1/n gives

|w|min ≥ rn

2
.

It follows that |φ(w)| is bounded above by the value it would take if S were the circle
about w = 0 of radius rn/2,

|φ(w)| ≤ log(2|w|/rn)
log(2Rn/rn)

=
| log r |+ log(2|w|/n)
n logR+ log(2/rn)

.(B.4)

Equation (B.2) can be rewritten with z replaced by ζ as

w = −1 +
1−R−2n

ζ−n − R−2n
,

which implies that for |ζ| ≤ 1, |w| ≤ 2. Therefore (B.4) implies

|φ(ζ)| ≤ | log r |+ log(4/n)

n logR+ log(2/rn)
, |ζ| ≤ 1.(B.5)

Now since n ≥ 4, log(4/n) ≤ 0, and since r ≤ 1/n, log(2/rn) ≥ 0. Therefore this
equation implies (B.1), as claimed.
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Still with the assumption φ0 = 0, we now have a bound on |φ(ζ)| for points ζ ∈ Ω
with |ζ| ≤ 1, and in particular on the disk |ζ| ≤ 1− r. According to a standard result
in harmonic function theory, it follows that |∇φ(0)| satisfies the same bound, except
weakened by the factor 4/π(1− r) [2, p. 125]:

|∇φ(0)| ≤ 4

π(1− r)

| log r |
n logR

.(B.6)

The proof is complete except that we must remove the assumption φ0 = 0 and allow
φ0 to take any value in [−1, 1]. We can do this by subtracting the constant φ0 from
the solution of the problem as stated in the theorem. This gives us a problem of the
same form as before, but with boundary data potentially as large as 2 rather than 1;
the gradient ∇φ is not affected by the subtraction of a constant. Thus for arbitrary
φ0 ∈ [−1, 1], (B.6) holds except with 4 doubled to 8. Since 8/π(1−r) < 4 for r ≤ 1/4,
this establishes (4.1).

The reader may note that if R < 1 + r, the picture of Figure B.1 is invalid: the
omitted disk around z = 1 extends outside the circle |z| = R. The argument given
remains valid, nevertheless, with Ω now defined as that portion of the disk |z| < R
that is disjoint from the n disks of radius r centered at the nth roots of unity.

Appendix C. Derivation of Homogenized Equation. Our method is multiple
scales analysis, as described, for example, in [12]. We present the analysis for a vertical
line of circular disks of radius r = δε, δ � 1, centered on the straight line x = 0 at the
points (0, kε) for k ∈ Z. The generalization to an arbitrary curve is straightforward.
Addition of a constant to the potential does not change the problem significantly, so
for simplicity we look for a solution φ that is zero on the disks.

There are three asymptotic regions that make up the solution. First, there is an
outer region away from the cage, in which x = O(1). This region will see the cage
as an effective boundary condition, leading to the problem (5.5)–(5.9). Second, there
is a boundary layer region, in which x = O(ε). In this region the discrete nature
of the wires becomes apparent, but they are of vanishing thickness and act as point
charges. The solution here is of multiple-scales form in y, with fast scale O(ε) and
slow scale O(1). Third, there is an inner region near a single wire, in which x = O(δε),
y = O(δε). This region determines the induced charge on the wire resulting from the
equipotential condition.

The multiple scales form of the solution in y means that it is written in terms of
a slow variable y and a fast variable Y = y/ε, which are treated as independent. The
extra freedom this gives is then removed by imposing the condition that the solution is
exactly periodic (with unit period) in the fast variable Y . In fact, the slow variable y
is carried simply as a parameter in the boundary layer and inner regions (it is relevant
only in the outer region). To simplify the presentation we hide this dependence of the
solution in these regions on y.

We consider the inner and boundary layer solutions in turn, before matching the
expansions to determine the effective boundary condition on the outer solution.

Inner Region. Rescaling near the wire at the origin by setting (x, y) = (δεξ, δεη)
gives

φξξ + φηη = 0 for ξ2 + η2 > 1,

with
φ = 0 on ξ2 + η2 = 1.
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The relevant solution is

φ = A log(ξ2 + η2)1/2,(C.1)

for some constant A.

Boundary Layer Region. In the boundary layer region we rescale (x, y) = (εX, εY )
to give

φXX + φY Y = 2πCδ0(X,Y ) for − 1/2 < Y < 1/2,(C.2)

with

φY = 0 on Y = ±1/2,(C.3)

where δ0 is the Dirac delta function. Here the constant C represents the induced
charge on the wire, which will be determined by matching with the inner solution.
The boundary condition (C.3) is equivalent to imposing periodicity in the fast variable
Y with unit period. The relevant solution to (C.2)–(C.3) is

φ = B + C Re (log sinh(πZ)), where Z = X + iY.(C.4)

The constant B will also be determined by matching.

Matching between the Inner and Boundary Layer Regions. Written in terms
of (X,Y ) the inner solution (C.1) is

φ = A log(1/δ) +A log(X2 + Y 2)1/2.

As X2 + Y 2 → 0, the boundary layer solution (C.4) tends to

φ ∼ B + C log(π(X2 + Y 2)1/2).

For these to match requires4

A log(1/δ) = B + C log π, A = C.(C.5)

Matching between the Outer and Boundary Layer Regions. Expanding the
outer solution as x → 0 gives

φ ∼ φ(0) + x
∂φ

∂x
(0) + · · · .

Expanding the boundary layer solution (C.4) for large X gives

φ ∼ ±CπX − C log 2 +B as X → ±∞.

Matching these two expansions, recalling that x = εX , requires[
∂φ

∂x

]x=0+

x=0−
=

2πC

ε
, φ(0) = B − C log 2.(C.6)

Eliminating A, B, and C between (C.5) and (C.6) gives the required effective

4Note that for δ small, B is much larger than C. We are simplifying the presentation by matching
two orders of the expansion at the same time.
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boundary condition as [
∂φ

∂x

]x=0+

x=0−
=

2π

ε log(1/(2πδ))
φ(0).(C.7)
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[9] B. Engquist and J. C. Nédélec, Effective boundary conditions for acoustic and electromag-
netic scattering in thin layers, Ecole Polytechnique–CMAP, 278 (1993).

[10] M. Faraday, Experimental Researches in Electricity, Vol. 1, reprinted from Philosophical
Transactions of 1831–1838, Richard and John Edward Taylor, London, 1839 (paragraph
1174, p. 366); available online from www.gutenberg.org/ebooks/14986.

[11] R. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2:
Mainly Electromagnetism and Matter, Addison-Wesley, 1964.

[12] J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Springer,
1996.

[13] J. D. Kraus, Electromagnetics, 4th ed., McGraw-Hill, New York, 1992.
[14] H. Lamb, On the reflection and transmission of electric waves by a metallic grating, Proc.

Lond. Math. Soc., 29 (1898), pp. 523–544.
[15] T. Larsen, A survey of the theory of wire grids, IRE Trans. Microwave Theory and Techniques,

10 (1962), pp. 191–201.
[16] P. Martin, On acoustic and electric Faraday cages, Proc. R. Soc. Lond. Ser. A Math. Phys.

Eng. Sci., 470 (2014), 20140344.
[17] J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Clarendon Press, 1881

(secs. 203–205).
[18] R. Petit, Electromagnetic grating theories: Limitations and successes, Nouv. Rev. Optique, 6

(1975), pp. 129–135.
[19] J. Rauch and M. Taylor, Electrostatic screening, J. Math. Phys., 16 (1975), pp. 284–288.



MATHEMATICS OF THE FARADAY CAGE 417

[20] J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, J.
Funct. Anal., 18 (1975), pp. 27–59.

[21] T. B. A. Senior and J. L. Volakis, Approximate boundary conditions in electromagnetics,
IEE Electromagnetic Waves Series, 1995.

[22] L. N. Trefethen, Ten Digit Algorithms, Oxford technical report; available online from
http://people.maths.ox.ac.uk/trefethen/publication/PDF/2005 114.pdf.

[23] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule,
SIAM Rev., 56 (2014), pp. 385–458.

[24] A. Zangwill, Modern Electrodynamics, Cambridge University Press, Cambridge, UK, 2013.




