
Chebfun: A new kind
of numerical computing

Nick Trefethen, Oxford University

Thanks to Zachary Battles, Asgeir Birkisson, Folkmar
Bornemann, Toby Driscoll, Nick Hale, RicardoBornemann, Toby Driscoll, Nick Hale, Ricardo
Pachón, Rodrigo Platte, Mark Richardson

Manipulate formulas exactly.
When you want numbers, evaluate the formulas.

PROBLEM: most problems cannot be solved symbolically. Even
when they can, symbolic expressions tend to grow exponentially.

SYMBOLIC COMPUTING (e.g. Maple, Mathematica)

E.G., what's the integral of exp(-x) cos(6x)5 sin(5x)6 from -1 to 1?

Maple or Mathematica can figure out the answer symbolically:

Work with numerical approximations instead of exact expressions.
Perform each operation to relative accuracy of about 10–16.

By evaluating at each step in this way rather than just
at the end, we avoid the combinatorial explosion.

PROBLEM: what if we want not just numbers but functions like f(x)?

NUMERICAL COMPUTING (e.g. Matlab, C, Fortran)

PROBLEM: what if we want not just numbers but functions like f(x)?

OUR VISION
to compute with functions numerically

“Computing with symbolic feel and numerical speed”

HOW FLOATING-POINT ARITHMETIC
COUNTERS THE COMBINATORIAL EXPLOSION

Symbolic computing
find the solution exactly, then round to 16 digits

Numerical computing
round to 16 digits at every step along the wayround to 16 digits at every step along the way

Our plan
to compute with functions in this round-at-every-step way

CHEBYSHEV POINTS IN [−1,1]

xj = cos(j/n), 0  j  n . Clustered near the boundaries.

Outstanding properties for polynomial interpolation.

Chebyshev… Bernstein… Lanczos… Clenshaw… Fox… Elliott… Mason… Rivlin… Good… Salzer… Orszag… Geddes…

f = continuous function on [–1,1]

p* = best max-norm degree n polynomial approximation of f

p = degree n interpolant of f in the Chebyshev pts.

NOTATION FOR FIVE THEOREMS
ABOUT POLYNOMIAL INTERPOLATION

IN CHEBYSHEV POINTS

p = degree n interpolant of f in the Chebyshev pts.

|| f – p || : error in Chebyshev interpolation

|| f – p* || : smallest possible error among all polynomials

Theorem 1. || f − p ||  [2 + (2/) log n] || f − p* || .

Theorem 2. If f , f ’ ,…, f (k−1) are absolutely continuous and
f (k) has bounded variation, then ||f − p || = O(n−k) .

Theorem 3. If f is analytic in the closed ellipse with foci 1
and semiaxis lengths summing to ρ , then

|| f − p || = O(ρ−n) .

Ehlich & Zeller 1966

Mastroianni & Szabados 1995

"N
E
A
R
-

B
E
S
T
"

"S
P
E
C
T
R
A
L

A
C
C
U
R
A
C
Y
"

|| f − p || = O(ρ−n) .

Theorem 4. Barycentric interpolation formula:

p(x) = .

Theorem 5. The barycentric formula is numerically stable.

" (−1) j f (x j) / (x − x j)

" (−1) j / (x − x j)

follows from Bernstein 1912

N. J. Higham 2004

M. Riesz 1916
Salzer 1972

"S
P
E
C
T
R
A
L

A
C
C
U
R
A
C
Y
"

B
A
R
Y
C
E
N
T
R
I
C

I
N
T
E
R
P
.

FINDING ROOTS OF A POLYNOMIAL IN AN INTERVAL

First, convert from values at Chebyshev pts to coefficients of
expansion in basis of Chebyshev polynomials (FFT: work O(n log n)).

Now compute the zeros as eigenvalues of a colleague matrix

E.G. the roots of a0T0 + a1T1 + a2T2 + a3T3 − ½T4 are the eigs of

1

If n is large, use recursive subdivision of intervals to bring
dimensions down to O(100) (J. P. Boyd 2002). This improves
the overall operation count to O(n2).

½ ½

½ ½ (Specht 1960, Good 1961)

½ ½ a0 a1 a2 a3

+

THE CHEBFUN PROJECT

Chebfuns are Matlab vectors overloaded for smooth or piecewise
smooth functions defined on an interval [a,b]. Each piece is
represented by a Chebyshev interpolant, with the number of
points determined automatically to get about 15-digit precision.

Some of the overloaded functions:

abs atan coth erf horzcat min power set tanabs atan coth erf horzcat min power set tan
acos atanh csc erfc imag minus prod shift tanh
acosh ceil csch erfcx isempty mrdivide prolong sign times
acot chebfun cumprod erfinv isreal mtimes rdivide sin uminus
acoth chebpoly cumsum exp ldivide ne real sinh uplus
acsc comet define feval length norm restrict size var
acsch conj diag fix log plot roots sqrt vertcat
asec conv diff flipud log10 plot3 round std svd
asech cos display floor log2 plus sec subsasgn qr
asin cosh domain get max poly sech subsref cond
asinh cot eq gmres mean polyval semilogy sum rank

E.G. if f is a chebfun, then
sum(f) evaluates an integral, roots(f) finds zeros,
diff(f) computes the derivative, max(f) finds the maximum.

Version 1 was
released in 2005

Version 2 was
released in 2008

Version 3 was
released in 2009

Latest update:
last week!

(Version 3.1111)(Version 3.1111)

Freely available
— just google

"chebfun"

interactive
computingEISPACK

LINPACK

1978

Fortran

matrix
algorithms The Matlab idea: everything's a vector.

Apply state-of-the art matrix algorithms.
(LU, QR, SVD, eigenvalues,…)

object-oriented
programmingMATLAB

2005

fast
hardware

Chebyshev
technology

The Chebfun idea: overload Matlab's vectors to functions.
Apply state-of-the art approximation algorithms.

("Chebyshev technology" for interpolation, rootfinding, quadrature, diff eqs,…)

Chebfun has expanded in a dozen directions.
But one line of development seems particularly interesting.

CHEBOP: nonlinear \ via AD

CHEBGUI

Driscoll, Birkisson '09

Birkisson, Hale '10

ASGEIR BIRKISSON

LINOP: eigs, expm, \

CHEBOP: nonlinear \ via AD

Battles, Pachón, Platte, Hale '03-'08

Bornemann, Driscoll '08

Driscoll, Birkisson '09
ASGEIR BIRKISSON

Demonstration

