
Chebfun as a software project
Nick Trefethen, University of Oxford

1 /24

Andrew Wiles Building
opened September 2013

Chebfun as a software project
Nick Trefethen, University of Oxford

+ Toby Driscoll, Nick Hale, Asgeir Birkisson, Anthony Austin, Alex Townsend, …

[Floating point arithmetic has been a triumphant success for computing
with real numbers. The idea behind Chebfun is to do something
analogous for computing with functions.

If x and y are 64-bit numbers, then xy has more like 128 bits. Floating
point arithmetic rounds this to 64.

Analogously, Chebfun might represent two functions f and g by
Chebyshev expansions of degrees m and n. Then mathematically, fg has
degree m+n, but we truncate the expansion down to 16 digits.

Brief demonstration.]

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

C H E B F U N T I M E L I N E

 Nick Trefethen

 Zachary Battles
 Ricardo Pachón

 Rodrigo Platte

 Toby Driscoll

 Nick Hale

 Mark Richardson

 Ásgeir Birkisson

 Pedro Gonnet

 Mohsin Javed

 Alex Townsend

 Anthony Austin

 Kuan Xu

Hrothgar

V
1

 

V
2

 

V
3

 

V
4

 

EPSRC $ ERC $

MathWorks $

Also Joris van Deun, Stefan Güttel, Georges
Klein, Hadrien Montanelli, Sheehan Olver,
Marcus Webb, Grady Wright, and others

V
5

 

Twenty questions

Concern about the long term ruled out #1.

Lack of interest ruled out #2.
(Would it have been different in the USA or Korea?)

So we decided on #3, open source:

 • code freely available
 • open-source license
 • open to outside developers
 • no claim to long-term ownership

Q1. In-house project? Found a company? Open source?

We were tempted by GPL.

People told us “If it’s GPL, industry won’t touch it.”

We went with BSD.

It took a year to persuade Oxford’s bureaucrats to let us do this.

So far, no commercial or licensing issues have arisen.

Q2. Which software licence?

Chebfun’s starting idea was MATLAB-based:
overload MATLAB’s vectors/matrices to functions/operators.
MATLAB users are our obvious constituency.

A lot of people don’t like MATLAB. They talk about
 • speed • language features • commercial product

Parts of “Core Chebfun” have been implemented by
various people in C, Python, Octave, Maxima, and Julia.

The future?

Q3. Which programming language?

We don’t.

In principle we could found a software consultancy.
Maybe one day?

Q4. How do we make money from Chebfun?

Funding software is always a challenge.
(In Britain, funding anything is a challenge.)

EPSRC CS 2007-11: 1 student, 2 postdocs, 1 long-term visitor
MathWorks 2011-15: 2 postdocs, 1 remote collaborator
EU ERC 2012-17*: 4 students, 3 postdocs, 2 long-term visitors
Self-funded: 5 students, 3 postdocs

 * research, not software

Q5. How do we get funding to support our team?

A universal problem. Software “doesn’t count”.

But informally, it can count greatly if your
name is well associated with the software.
Easy for me; harder for students and postdocs.

Our imperfect solution: make sure everybody
publishes papers along the way.

The good news: the software project helps
guide people toward work of genuine value.

Q6. How do people get credit for software work?

The youngsters on the team have grown up with this stuff.

As for me, I was stuck in Seattle by Eyjafjallajökull in 2010.
William (“Sage”) Stein persuaded me Chebfun should go
open-source.

Q7. How do we learn about open source software?

Stein recommended a marvelous book
by Karl Fogel, freely available online.

2003-2008: just 2-4 people, no version control

2008-2014: svn at Oxford

2014- : GitHub

GitHub is 6 years old and hosts >10 million repositories.
It is also our bug and issue tracker.

Q8. Where do we host the code?

→ https://github.com

https://github.com/

Until 2013, we just wrote code and that was that.

Then we introduced style conventions and code review.
Standard GitHub mode: pull request → review → merge.

(We’ve had long discussions about spacing and CamelCase.)

User’s Guide and Examples collection are also on GitHub, but
don’t use pull requests and merges. Instead, I manage them.

Q9. What’s the coding and review process?

A fantastic change when we introduced “chebtest” in 2008!
It ran in under a minute.

This grew to several minutes, then 15. We introduced an
automated chebtest each night. If something fails, we get email.

We try to test all codes, but are not completely systematic.

Last week, we added the user’s guide, the Examples collection,
and Approx. Theory and Approx. Practice to the nightly run.

So far, we just test on one platform, since in principle MATLAB
is platform-independent. Anomalies arise, however.

Q10. How about testing?

Help requests go to help@chebfun.org.
Bugs are reported to help, or on the tracker.
Who responds?

We haven’t solved this satisfactorily.
We’ve been reluctant to set up a ticket system.

Q11. Who responds to help requests? Who fixes bugs?

Our solution has been to have one person do it: Hrothgar.
Hosted at GitHub. Python is used as a static site generator.

Q12. How do we make a good web site?

→ www.chebfun.org

https://github.com/

I’ve written most of the user’s guide.
Most of our developers don’t much enjoy writing.

Individual developers write the help text in each file.

Should one try to automate some of this, doxygen-style?
(doxygen itself isn’t adapted to MATLAB.)

Q13. How do we generate documentation?

→ www.chebfun.org

https://github.com/

Badly, so far!

You don’t have to register to download Chebfun. So we
have no database of users and we know little about them.

≈20000 downloads so far, but how many are regular users?
What do people do with Chebfun? Our knowledge is anecdotal.

Should we set up discussion mailing lists? A wiki?

Q14. How do we get feedback from users?

20of 24

Some software projects ask you to cite a key paper, others a
book, others the software itself (which journals don’t like).
But who is the author, in a team of dozens?

Q15. How should people cite Chebfun?

Our (recent) solution: package the user’s
guide as a freely-available .pdf book with
three editors (Driscoll, Hale, Trefethen).
Individual chapters may have any authors.

So we ask users to cite Driscoll, Hale, and
Trefethen, eds., The Chebfun Guide.

The “Chebfun Team”: 8-10 of us at Oxford, one at Delaware
(Toby Driscoll), one at Stellenbosch (Nick Hale). We have a
private email address for the team.

The people at Oxford share offices and talk a lot.
Everybody is constantly emailing and using the tracker.

Once a week we have a 75-minute meeting with a regular
agenda and informal minutes. Delaware and Stellenbosch
connect by Google Hangout. Far from ideal.

We try for the meetings to blend research and software
management. Not always easy.

Q16. How do we communicate among ourselves?

This side of the project is completely unformed (we just
went public on GitHub June 21). We hope to build it in the
upcoming months.

Developer docs? Wiki? List of open tasks?

We’ve had nibbles of interest from outsiders, and so far,
we haven’t known how to be very welcoming.

Q17. How do we attract outside developers?

We haven’t much, so far. No Chebfun requirements analysis!

• The project was initiated almost on a whim (2002)
• Linear ODEs came along unplanned (a key idea in 2008)
• Extension to nonlinear ODEs also unexpected (key idea 2009)
• 2D was a vague ambition until we made it happen (2012)
• Periodic function representations arrived casually (2014)

The prospect of widening out to a developer community
makes the question of planning more pressing.

Q18. Should one plan ahead?

Caricature of what the white-haired professor wants:
Beauty, elegance, simplicity! Clear and exciting concepts!
Short, memorable command names. Good writing and good
layout. Consistency with MATLAB. Backward compatibility with
earlier Chebfun versions.
The project must be led by a team with a vision.

Caricature of what the young developers want:
Speed, functionality, power! Up-to-date user and developer
environments! Functionality is more important than concepts.
Backward compatibility may be too restrictive. MATLAB is a
dinosaur. Everything must be online and democratic.
Leadership and vision aren’t scalable.

Q19. What do we fight about?

At present, our procedures are not spelled out.
The project is run by the Chebfun team, notionally a
democracy, but some are more equal than others.

What should my personal role be?
I am 30 years more experienced than the others, and pay
most of their salaries. How can/should this situation evolve?

What role should “the team” have as we attract outsiders?
This really troubles me. An open-source project needs open
communication. Yet it would be crazy to ignore the fact that
8-10 of us have special expertise and are sharing a
“Chebyshev hallway” at Oxford. And I believe in vision.

Q20. What’s our management structure?

Please, now and for the rest of the week,
 tell me your thoughts.

Jon Borwein, Newcastle. I should make sure I have considered the question:
what will happen if I am hit by a bus tomorrow?

Matthew Sherritt, Stanford. For our weekly meetings, we should try Google
Hangout for video plus Mumble for audio. They’ve had good luck with this.

Gert-Martin Greuel, Kaiserslautern and zbMATH. A group at zbMATH (=
Zentralblatt, creators of swMATH) organized a discussion on a unified way to
cite software. No convergence yet, but a proposal may be on its way.

Eric Berberich, Saarbrücken. The CGAL group has faced very similar
challenges. They have formally spelled out Rules, though it’s hard to love
them. The group is run by 12 insiders, but this is rather large; 7 would be
better. One can find discussions of optimal committee size on the web.

Jon Borwein, Newcastle. Commercial projects are very different from
academic ones, with plusses as well as minuses. For example, you can fire
people! — and ensure that things don’t hang around on the bug tracker.

Comments and suggestions by ICMS participants, p. 1

Martin von Gagern, Munich. His experience with Sage persuades him that one
thing is more important than all others: having clear information at the web
site about how to contribute. Big non-commercial projects inevitably have
many loose strands. Sage has 1500 open issues on the tracker, 500 open bugs.

John Abbott, Genoa. The lack of credit one gets for software is catastrophic
for many careers.

Jon Hauenstein, Notre Dame. It’s true, however, that a good software project
can focus one’s research and publications marvelously. So software can be
decidedly positive in a career.

Wolfgang Windsteiger, Linz. Like Chebfun, the Theorema project has just been
completely rewritten. Like Chebfun also, it is an open-source project written
in a commercial language (Mathematica). Various people told him this would
rule out a GPL license, but as far as he can determine, GPL is still ok.

Michael Kohlhase, Jacobs U. Clarity and accessibility aren’t so important. If
the software is exciting, people will do what it takes to get involved.

Comments and suggestions by ICMS participants, p. 2

Andrew Sommese, Notre Dame. Bertini, 150K lines of code, is about to be
completely rewritten and move from C to C++. They have a clearly defined
core team of 5 people (Sommese, Wampler, Bates, Hauenstein, Brake).

Martin von Gagern, Munich. Though anybody can issue a pull request, there
must be a core group that makes final decisions about what to include. For
documentation, the Sage group uses sphinx (like doxygen, but for Python).

Michael Kohlhase, Jacobs U. A software project can have multiple licenses,
and indeed, a mature project normally has this: e.g. GPL for ordinary users,
plus special software versions with commercial licenses for sales to
companies. What matters in enabling such things is who has the copyright.

Various people. Chebfun looks already well advanced as an open-source
project, and the web site is outstanding.

Comments and suggestions by ICMS participants, p. 3

