Computing f(A) and in particular e^{A}

1. Why do we want f(A)?

For all sorts of reasons. That said, it's rare to need exotic functions like $\Gamma(A)$ or $\zeta(A)$ or Ai(A). More often we want e^A , log(A), $A^{1/2}$. Also sign(A) and other projectors.

One reason f tends to be simple is that it often comes from differential equations or operators.

- Most fundamental example: $\frac{du}{dt} = Au$ has solution $u(t) = e^{tA}u(0)$. Exponential integrators: high-order solns via "phi functions," e.g. $\varphi_2(A) = A^{-2}(e^A I A)$.
- Anomalous diffusion example: $\partial_t u = \Delta^{1/2} u$ can be approximated via $A^{1/2}$ with $A \approx \Delta$.
- More anomalous diffusion: $(\partial_t)^{1/2} u = \Delta u$ leads to the Mittag-Leffler function of a matrix A.

2. How do we define f(A)?

I. Diagonalization / Jordan decomposition

If A is diagonal, f(A) has the obvious elementwise definition.

If A is diagonalizable with $A = SDS^{-1}$, we define $f(A) = Sf(D)S^{-1}$.

If A is nondiagonalizable with $k \times k$ Jordan block at eigenvalue λ , this definition generalizes using $f(\lambda), f'(\lambda), \dots, f^{(k-1)}(\lambda)$.

II. Polynomial interpolation

If A is diagonalizable, f(A) = p(A), where p interpolates f at the eigenvalues.

If A is nondiagonalizable, p becomes Hermite interpolant involving $f(\lambda), f'(\lambda), \dots, f^{(k-1)}(\lambda)$.

III. Contour integral

The Cauchy integral for scalar analytic functions is $f(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z-a} dz$. For matrices, $f(A) = \frac{1}{2\pi i} \int_{\Gamma} (zI - A)^{-1} f(z) dz$.

 Γ must lie in the region of analyticity of f and enclose the spectrum of A. For projectors such as (sign(A) + I)/2, Γ may enclose just certain parts of the spectrum.

3. How do we compute f(A)?

I. Schur-Parlett algorithm

Compute Schur form, $A = UT U^*$ with U unitary and T triangular.

With considerable clever engineering, one can then compute

 $f(A) = Uf(T)U^*$. Worst case $O(n^4)$ work. \rightarrow MATLAB funm(A).

II. Polynomial and rational approximation

Approximate f(z) by p(z) or r(z) = p(z)/q(z) for z in nbhd of spectrum of A.

Often r is a composite of simpler rational functions. Then use $f(A) \approx p(A)$ or r(A). \rightarrow MATLAB expm(A), based on type (13,13) Padé approx $e^z \approx r(z)$.

III. Discretized contour integrals

Discretize $f(A) = \frac{1}{2\pi i} \int_{\Gamma} (zI - A)^{-1} f(z) dz$ by e.g. *m*-point trapezoidal rule over a circle.

Geometric convergence as $m \to \infty$, independent of dimension of A.

This reduces f(A)b to m linear systems $(z_iI - A)w_i = b$.

Transformation by a conformal map may speed this up dramatically.

4. What's special for e^A ?

One can use ODE methods to compute e^{tA} . But more often it's the other way around. Moler & Van Loan, SIREV 2003 expm(A) uses "scaling-and-squaring": $e^{A} = (e^{A/2^{s}})^{2^{s}}$. So it's a composite of Padé approximations. Contour integrals: $e^A = \frac{1}{2\pi i} \int_{\Gamma} (zI - A)^{-1} e^z dz$ is the inverse Laplace transform. Expert: J. A. C. Weideman

Quadrature formulas all implicitly involve rational approximations.

So contour integral and rational approximation methods for f(A) are very close.

For $f(A) = e^A$ this is particularly well studied.

Davies & Higham, SIMAX 2003

Hale-Higham-T., SINUM 2008

Higham, SIREV 2009