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Notes of a Numerical Analyst

Multivariate polynomials

NICK TREFETHEN FRS

My past twenty years have been spent working with
polynomials. Polynomials are the starting point of
numerical algorithms for integration, di�erentiation,
root-�nding, optimisation, and approximation, and
in the software system Chebfun, every function is
converted to this universal currency before you do
anything with it. A typical f de�ned on [−1,1] might
be approximated to 16 digits by p (x) = �n

k=0 akTk (x)
with n = 500, say, where Tk is the degree k
Chebyshev polynomial.

But all this is univariate. What does one do in
three dimensions, the base case of science and
engineering? And how about dimensions n > 3,
with applications from the many-particle systems
of quantum physics to the high-dimensional search
spaces of data science?

We all have our lacunae, and for years, one of mine
was multivariate polynomials. You couldn’t ask for
a more respectable citizen of pure mathematics, as
attested by ten Fields medals related to algebraic
geometry, and I knew that one day, I would have to
get serious and learn something about this subject.
An excuse to put my house in order came recently
in teaching a course at NYU. I decided to show
the students case-by-case how, for each numerical
problem, the basic 1D method you already know
starts from univariate polynomials, and then in nD,
there’s a powerful analogue based on multivariate
polynomials.

But as I tried to prepare my lecture I discovered, it
wasn’t so! When it comes to numerical computation,
multivariate polynomials are not used much. Tensor
products of univariate polynomials are used all the
time (a special case), but not the multivariate version
as normally understood, where we start from Pk , the
set of polynomials of total degree ≤k .
In numerical integration in a square or a cube,
for example, there’s an elegant cubature idea
introduced by James Clerk Maxwell: interpolate
function samples by an element of Pk , then integrate
the interpolant. But implementation is di�cult

(challenges of unisolvency), and although there’s
plenty of theory, these formulae are rarely employed.
Or in numerical PDE, the dominant method is
�nite elements, which in principle can be based on
multivariate polynomials of arbitrary degree. But
in practice, most applications stick to degrees 1–4.
Or in approximation of functions, you could use
multivariate polynomials, but few do.

Figure 1. Maxwell proposed
integrating a function via
a multivariate polynomial
interpolant. Why is this
method so rarely used?

This got me thinking about
another lacuna. Complex
variables are my best-loved
tool—why had I never mastered the multivariate
case, several complex variables (SCV)? Given how
much we gain from convergent series of polynomials,
surely there’s all the more to be gained from
convergent series of multivariate polynomials? Well,
with apologies to the experts, I now believe it isn’t
so. SCV is a fascinating �eld, full of challenges, but
when it comes to developing numerical algorithms,
it is the one-variable case we leverage.

Maybe the bedrock example is the Laplacian operator,
the starting point of mathematical physics. In 3D we
write it like this:

Δu =
𝜕2u
𝜕x2

+ 𝜕2u
𝜕y2

+ 𝜕2u
𝜕z 2

.

The Laplacian is the very archetype of an isotropic
process—rotation-invariant—yet to work with it, we
break it into univariate pieces.
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