
3. Backward heat equationSome physical processes are reversible in the sense that changing the direction of time makes noessential di�erence. According to the Second Law of Thermodynamics, on the other hand, processesinvolving randomness generally gain entropy with time and are therefore irreversible. The canonicalPDE that arises from random processes is the heat equation (! ref ). Thus we can expect that thebehaviour will be very di�erent for the backward heat equation,ut = ��u: (1)The usual way in which (1) may arise in applications is if one is faced with a terminal value problemfor the ordinary heat equation, in which data are speci�ed at some time tf and the solution is desiredfor t < tf . Such problems appear commonly in image enhancement, and t may correspond to adistance as well as a time. What sharp original gave rise to an image degraded by, say, erosion oratmospheric noise or blurred optics? The change of variables t ! �t converts such a question toan initial-value problem of the form (1)|a heat equation with negative di�usion.
t > 2t = 2t = 1t = 0
?

Fig. 1: Loss of smoothnessSince the heat equation makes afunction smoother as t increases, thebackward heat equation must makeit less smooth. Fig. 1 shows an ex-ample. In the �gure, we see thatthe broad hump to the left steepensslowly, then sharpens abruptly to asquare pulse at t = 2. The narrowerhump to its right becomes a triangu-lar pulse at the same moment. Fur-ther to the right, an initial small os-cillation, barely visible to the eye att = 0, grows by t = 2 to a con-siderable amplitude, with the fastestgrowth in the higher wave numbers.What happens for t > 2 ? Certainly no solution in the ordinary sense is possible, for this wouldimply that the solution had to have been smooth at the earlier time t = 2.We can quantify these observations by Fourier analysis. For de�niteness, consider the 1D problemut = �uxx with initial data u0(x) 2 L2(IR) (i.e., u0(x) is square-integrable). As described in(! ref ), the Fourier transform decomposes u0 into its components at various wave numbers k,u0(x) = 12� Z 1�1 eikx ^u0(k) dk:Each component eikx then grows independently under (1) at the rate ek2t, so by superposition, itwould seem that we must have u(x; t) = 12� Z 1�1 eikx+k2t ^u0(k) dk: (2)Now so long as the integrand of (2) remains in L2(IR), this procedure makes sense and we haveindeed constructed a solution to (1). For certain very smooth functions u0(x), with ^u0(k) =23 March 2001: Paul Houston

ill-posed problems and regularisationO(ejkj��) for some � > 2, for example, we get a solution in this way for all t > 0. More typically,however, the exponentially growing factor ek2t renders the integrand of (2) unintegrable after some�nite time tc, and for t > tc, no classical solution exists.According to a formulation dating to Hadamard, a PDE is well-posed if for all initial data in aprescribed space, a unique solution exists and depends continuously on that data. Otherwise it isill-posed. It is clear that the backward heat equation must be ill-posed in L2(IR), since solutionsdo not exist for all data. Moreover, even if u0(x) is smooth enough that a solution exists for allt > 0, there is no continuous dependence on the initial data. An arbitrarily small perturbationof u0(x)|the addition of any term whose Fourier transform decays more slowly than e�Ck2|willpreclude the existence of a solution for any time t > 0. In a word, the backward heat equation isill-posed because all solutions are instantly swamped by high-frequency noise.

Fig. 2: What did she look like before di�usion?

Is the backward heat equationthen just a mathematical curios-ity? Certainly not. This ill-posed equation arises so natu-rally in problems of image en-hancement, or more generally ofundoing the e�ects of di�usion|deconvolution, in the language ofsignal processing|that it musthave scienti�c meaning if only wetread carefully enough. In fact,there is a thriving �eld of the studyof ill-posed di�erential and integralequations, and a key technique inthis �eld, going back to Tikhonov,is regularisation. If a problem isill-posed, the idea is to attach cer-tain extra conditions that excludepathological solutions and renderit well-posed. Typically a regular-isation parameter is involved|anadjustable notion of \pathological"|and throughout medicine and engineering, in applications asimportant as ultrasound, MRI, CAT, and PET imaging, these ideas are well developed.Alternatively, one may go back and design a di�erent PDE that has the main properties neededfor applications but is well-posed from the start, like the Perona-Malik equation (! ref ).ReferencesD. L. Colton, Analytic theory of partial di�erential equations, Pitman, 1980.J. Hadamard, Lectures on Cauchy's problem in linear partial di�erential equations, Dover, 1952.P. C. Hansen, Rank-de�cient and discrete ill-posed problems: numerical aspects of linear inversion, SIAM, 1997.M. Renardy and R. C. Rogers, An introduction to partial di�erential equations, Springer, 1993.A. N. Tikhonov, The regularization of incorrectly posed problems, Soviet Math. Doklady 4 (1963), 1624{1627.


