
21. Beam equationWhen you ping a ruler projecting a length L over the edge of a table, the frequency is inverselyproportional to the square of L, so you only have to shorten the ruler to L=p2 for the note to rise byan octave. The prongs of a tuning fork vibrate more musically but in a similar way. The simplestPDE modelling these transverse vibrations of a bending beam was derived by Daniel Bernoulli ina letter to Euler in 1735: utt = �uxxxx: (1)This equation involves the fourth x-derivative of u, instead of the second derivative that occurs inthe wave equation (! ref ), and in order for u = exp(i(kx + !t)) to be a solution, the frequency! and wavenumber k must obey the dispersion relation !2 = k4, i.e., ! = �k2. Consequently,bending waves have the property that the shorter is the wavelength, the faster are both the phasevelocity c = �!=k = �k and the group velocity cg = �d!=dk = �2k.

Fig. 1: Wave propagation with c = �4, cg = �8Figure 1 shows the behaviour of an in�nite beam with initial datau(x; 0) = cos(4x) exp(�x2=4); ut(x; 0) = 0:Two groups of waves are formed, one travelling left and one right. Since each group has an averagewavenumber k � �4, the average phase velocity is c � �4 and the average group velocity iscg � �8. Each group travels as a whole at velocity �8. Within that overall motion, two otherfeatures can be seen. First, the wavecrests travel at the slower phase velocity c � �4 and so arecontinually falling behind: new wavecrests appear at the leading edge of the group, move moreslowly than the group, and disappear when they are left behind by the trailing edge. Second, thegroup of waves gradually disperses, with shorter wavelengths appearing near the leading edge andlonger wavelengths near the rear.2 March 2001: David Allwright

waves in an elastic rodThe beam equation can be factored into leftgoing and rightgoing free-space Schr�odinger equations,@2t + @4x = (@t � i@2x)(@t + i@2x): (2)It follows that if u obeys a Schr�odinger equation, then it also obeys (1), and so do Re(u) and Im(u).Conversely, if u satis�es (1), then v = ut � iuxx satis�es the Schr�odinger equation.The response of a �nite beam, 0 < x < 1, depends on the boundary conditions. For the casecorresponding to pinging a ruler we haveu(0; t) = ux(0; t) = 0; uxx(1; t) = uxxx(1; t) = 0;and the response when we displace the free end to u(1; 0) = �1 and then release it from equilibrium(u(x; 0) = (x3� 3x2)=2, ut(x; 0) = 0) is shown in Figs. 2 and 3. The motion is a linear combinationof the normal modes of the beam, and is predominantly at the lowest frequency, which accounts forthe nearly-periodic behaviour. However, the higher modes have frequencies that are not rationalmultiples of the fundamental (or of each other), in contrast to the modes of a string. The actualbehaviour is therefore not exactly periodic, as is evident in Fig. 3.PSfrag replacements210�1�25430:250:50:75utx Fig. 2: u(x; t) for a pinged ruler
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xFig. 3: Same data shown by contoursIncluding more detailed models of the physics of a bending beam results in extra terms on theright-hand side of (1). The �nite thickness of the beam results in certain thick-bending terms, the�rst two of which are +auxxtt � butttt, due to rotatory inertia and shear deformation. Frictionale�ects introduce terms such as �cut. An applied tension or compression introduces a term +duxxor �duxx, and the second of these leads to the Euler buckling instability if d exceeds a criticalvalue. Nonlinear e�ects can also arise, and for a nonuniform beam, the basic equation becomes�(x)utt = �(B(x)uxx)xx, which can again be the subject of further modi�cations.ReferencesLord Rayleigh, The theory of sound, Dover, 1945.W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration problems in engineering, Wiley, 1990. c
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