7. Biharmonic equation

The biharmonic equation is the “square of the Laplace equation”,

A%y =0, (1)

where A = 0?/0z% + .-+ + 0%/0z2 is the Laplacian operator. Like the Laplace equation, the
biharmonic equation is elliptic, but, being of order four rather than two, it requires two boundary
conditions rather than one to define a unique solution. In 2D, it is the equation satisfied, to a good
approximation, by a small transverse deflection of a thin flat elastic plate.

The eigenvalues and eigenfunctions of the biharmonic
operator A2, with suitable homogeneous boundary
conditions, give the modes of transverse vibration of
such a plate. The physicist and astronomer Ernst
Chladni (1756-1827) carried out a famous series of ex-
periments using particles of sand to locate the nodal
curves of a plate clamped at its centre and excited in
various modes. The resulting patterns are known as
Chladni figures and some results from an experiment
of this kind are shown in Figure 1. One can try the
experiment oneself at some science museums.

The biharmonic equation has two independent funda-
mental solutions (spherically symmetric and singular
at the origin), one of which is the fundamental so-
lution of the Laplace equation. These are logr and
r2logr in 2D, r~! and 7 in 3D, 72 and logr in 4D,
and 727¢ and r*~¢ in dimensions d > 5. In the 2D
case, just as any harmonic function in the (z,y)-plane
is the real part of an analytic function f(z), where
z = x + iy, so any biharmonic function is the real
part of a function of the form f(z) +Zg(z), where f
and ¢ are analytic and Z = z — iy is the complex con-
jugate of z. For instance, r?logr = R(Zg(z)) where
g(2) = zlogz. The functions f and g (which are not
uniquely determined) are the Goursat functions of the
problem.
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Fig. 1: Chladni figures

for a square plate In two dimensions, the function u(z,y) minimising

the value of the integral

I(u) = ././n {(um)2 +2 (umy)2 + (uyy)z} dz dy
over a given domain £2, subject to suitable conditions on the boundary, can be shown to satisfy
the biharmonic equation on €. This is an analogue for the biharmonic equation of the Dirichlet

integral for the Laplace equation (— ref). In particular, if Q is the whole of IR, then this integral
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solid mechanics and creeping flow

is minimised, subject to u taking given values u(X;,Y;) = U; at a finite number of points (at least
3 of them), when u is a so-called thin-plate spline—an interpolating function of the simple form

u(z,y) =a+ bz + by + Zc]-rjz logr;,
J

where 7"12- = (z—X;)*+(y—Y;)?, whose later coefficients c; satisfy the conditions 3-; ¢; = 3, ¢; X; =
>, ¢;Y; = 0 to ensure that I(u) is finite. The thin-plate spline is a standard device for constructing
a smooth function through data given at points arbitrarily distributed in the plane. The technique
can be extended to 3D by adding in a term b3z and a condition }°; ¢;Z; = 0 and replacing the 2D
fundamental solution r?logr by the corresponding 3D solution r. Extension to more than three
dimensions is possible, but one then needs to replace the biharmonic equation by a polyharmonic
equation A"u = 0 with r > 2. Generalisations of these data fitting methods based on functions

other than solutions of the biharmonic equation are the business of the field of radial basis functions.

The biharmonic equation also arises in the
theory of steady Stokes (i.e., speed = 0)
flow of viscous fluids, where it is the equa-
tion satisfied by the stream function. For
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late infinitely often in sign, with each suc-
cessive region of oscillation being 16.56743
times smaller in size and 36267.55 times
smaller in amplitude than the last. This
result can be interpreted as the statement
that a plate distorted in a certain way will
in principle bend back and forth infinitely
often near a corner, or that a fluid mo-
tion at Reynolds number 0 will in princi-
ple exhibit an infinite sequence of counter-
rotating “Moffatt vortices”.

Fig. 2: A thin-plate spline, interpolating
function values given at 9 scattered points
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