31. Blow-up equation with e* nonlinearity

thermal runaway

The equation u; = V2u + \e arises in mathematical models of heat transfer in reacting media: in
combustion theory and chemical reactor theory, for example. It also arises in the study of fluid flows
with strongly temperature-dependent viscosity. The variable u is the temperature, and the diffusion
term V2u is counteracted by the exponential source term e, which represents an approximation,
named after Frank-Kamenetskii, to the Aarhenius function exp(—E/RT'). The number A > 0 is a
fixed parameter.

The positive feedback introduced by the e* term al-
lows for an explosive increase of u. We can estimate
the rate of the explosion by noting that on an in-
finite interval, the equation has the z-independent
solution © = — In[A(t* — ¢)] for any number t*. As
t — t*, u increases to infinity. When diffusion is
included, the same phenomenon occurs, except that
in general the blow-up occurs at a single point. To
be specific let us consider the 1D equation

t = 3.54466

t=3.5446

t=3.544

Uy = Ugz + ™ (1)
t=3.54

for z € [-1, 1] with boundary conditions u(+1) =0
and initial data zero. Figure 1 shows the blowup
process for A = 1 as t — t* ~ 3.54466. The loga-
rithmic nature of the blow-up can be seen in the fact
that each time we move forward one more digit to-
wards ¢*, the height of the curve increases by about a
fixed amount. Note also that the curves lie below an
envelope whose only infinite point is at = 0. Thus
the solution remains bounded at each fixed point
z # 0, in contrast to the form of some blowups in
the blow-up equation with u? nonlinearity (— ref).
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Fig. 1: blowup at ¢ = 3.54466
with A = 1 and zero initial data.

The phenomenon of blow-up in finite time, also 3
called thermal runaway, is associated with the
non-existence of solutions of the steady problem
Ugy + A = 0 for values of A greater than a criti-
cal value .. For the 1D problem (1), A. ~ 0.878, 2
and Figure 2 shows results for various A above
and below this critical value. Similar behaviour
occurs in the symmetrically equivalent problems

in two and three dimensions, with A, = 2 and 1 S

Ae = 3.322, respectively. Below these critical val- A=

ues, multiple solutions of the steady problem ex- A=

ist, two in 1D and 2D and infinitely many in 3D. .
0 ‘

In the simple 1D case, the upper (warm) branch 0 5 10
is unstable, and a sufficiently large initial condi-
tion will cause runaway here too.

Fig. 2: max, u(z,t) as a function of ¢ for
A=01,02,...,1.4,1.5
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Dold has shown that the approach to the singularity has a universal but delicate character. For a
problem with blow-up at z = 0 and ¢ = t*, define new time and space variables by

52117/\/47'(#‘ —t).

Then it can be shown that u(z,t) has an asymptotic expansion as ¢t — ¢t* that begins

T=—In(t" —1t),

w(z,t) ~ 7—InX—In(l +¢£2) —
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for some constant .. Figure 3 compares exact results with asymptotic approximations for the curves
t = 3.54 and 3.5446 of Figure 1. The dashed green line represents the approximation through the
term — In(1 4 ¢2), and the solid green line includes the next term involving In7/7 too.
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Fig. 3: comparison with
asymptotic approximations

t = 3.5446

t=3.54%

The time-independent version of (1), in which the left-hand side is replaced by 0, is known as the
Liouville equation (— ref).
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