
51. Inviscid Burgers equationA PDE of the form ut + (f(u))x = 0 is called a conservation law, with u representing the densityof some quantity and f(u) the associated rightward 
ux. Conservation laws arise in 
uid dynamicsand many other �elds. By integrating in x, we see that for any a and b, the integral of u over [a; b]changes only because of 
uxes through the endpoints:ddt Z ba u(x) dx = f(u(a; t))� f(u(b; t)): (1)The simplest nonlinear example of a conservation law is the inviscid Burgers equation,ut + ( 12u2 )x = 0; (2)i.e., ut+uux = 0. This equation appears in studies of gas dynamics and tra�c 
ow, and it serves asa prototype for nonlinear hyperbolic equations and conservation laws in general. It is the inviscidlimit of the Burgers equation (! ref ) ut + ( 12u2 )x = �uxx; (3)where � > 0 is a constant. Equations (2) and (3) were perhaps �rst considered by Bateman in 1915and they were studied extensively by Burgers, Hopf, Cole, and others beginning in 1948.A crucial phenomenon that arises with the Burgers equation and other conservation laws is theformation of shocks, which are discontinuities that may appear after a certain �nite time and thenpropagate in a regular manner. Figure 1 shows an example.
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10 00�2 �1 2 3Fig. 1: Formation of a shockFigure 1 is not as straightforward as it looks. It suggests that a shock simply forms and propagates,and that is all there is to it. But (2) is a PDE, de�ned by derivatives that do not exist fordiscontinuous functions. In what sense do these discontinuous curves satisfy the PDE?One answer can be based on the idea of vanishing viscosity. For any � > 0, a unique solution of(3) exists for all time, and it is smooth. The curves of Figure 1 are what one obtains by taking thelimit �! 0. This simple idea is the right one physically in many applications.23 March 2001: Ercilia Costa e Sousa

shocks and rarefactionsAlternatively, we may de�ne weak or generalised solutions by working from the conservation prin-ciple (1) rather than the PDE. If u(x; t) is a smooth solution of (2), then for any rectangle R inthe x-t plane, we have RRR [ut + ( 12u2 )x ]' dxdt = 0 for any smooth function ' = '(x; t), and if inaddition ' vanishes on the boundary of R, then integrating by parts givesZ ZR hu't + ( 12u2 )'x i dxdt = 0: (4)This equation makes sense regardless of whether u is smooth, and a weak solution of (2) is de�nedas a function u(x; t), not necessarily continuous, that satis�es (4) for all R and corresponding '.From (4) or (1), one can readily derive the velocity s of a shock that separates states uL and uRon the left and right of a discontinuity. The result is the Rankine-Hugoniot formulas = f(uR)� f(uL)uR � uL ; (5)hence for (2), s = 12 (uL + uR). Thus in Figure 1, the shock has velocity exactly 1=2.It may seem that solutions to (4) should be unique. However, this is not so, and we can see whyby solving (2) via its characteristics, which are the lines x = x0 + u(x0; 0)t, with constant valueu(x; t) = u(x0; 0). Figure 2 shows a \backwards shock", a discontinuity at x = t=2 separatingstates uL = 0 and uR = 1. This function u(x; t) satis�es (4) and (5), but it is not the solutionobtained by the method of vanishing viscosity. To get that solution, a rarefaction wave, one mustimpose the additional condition that shocks are permitted only if they satisfy f 0(uL) > s > f 0(uR),or for (2), uL > s > uR. This is called an entropy condition, for it is related to the condition that
uid passing through a shock must increase in entropy.wrong solution: entropy-decreasing shock right solution: rarefaction wavePSfrag replacements�2
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