
29. Compacton equationsThe KdV equation ut = (u2)x + uxxx (! ref ) mixes nonlinear convection with linear dispersion.Its solutions include the famous solitary waves, which pass through one another as solitons withno lasting e�ect other than a phase shift. These solitary waves are localised in space in the sensethat they decay exponentially.In the early 1990s Rosenau and Hyman, motivated by the formation of patterns in liquid drops(! ref ), investigated generalisations of the KdV equation in which the dispersion too is nonlinear.For m > 0 and 1 < n � 3, they de�ned the compacton equation K(m;n) byut + (um)x + (un)xxx = 0: (1)The equation K(2; 2), for example, is ut + (u2)x + (u2)xxx = 0. Qualitatively, we can guess whatthe e�ect of the restriction n > 1 will be. We now have amplitude-dependent dispersion whichshuts o� as juj ! 0. This will tend to eliminate exponentially decaying tails, for in such a tail,the dispersion term that makes the signal spread would be negligible. Thus the possibility arises oftraveling wave solutions with compact support , i.e., exactly zero value outside a bounded interval.To calculate a traveling wave solution of (1), we make the substitution u(x; t) = U(s) with s = x�ctfor some wave velocity c. After some manipulations the PDE reduces to(Us)2 + Umm+ 2 � 13cU � CU�2 = Dfor arbitrary constants C and D. If we choose C = D = 0 we �nd that there are solutions withcompact support for any c 2 R, known as compactons. Here are three of the simplest cases:K(2; 2) : U(s) = (4c=3) cos2(s=4); jsj � 2�K(3; 2) : U(s) = (37:5c � s2)=30; jsj � p37:5cK(3; 3) : U(s) = �p3c=2 cos(s=3); jsj � 32�Note that as with a KdV soliton, the amplitude of a compacton varies with its velocity. In cases(2,2) and (3,3), however, the width is �xed.The use of the word \compacton" suggests that these traveling wave solutions to K(m;n) behavelike solitons, interacting as particles in the sense that the long-term e�ect of an interaction is aphase shift and nothing more. Approximately speaking, this is what Rosenau and Hyman discoverednumerically. For certain values of m and n, a fast compacton will overtake a slow one, pass throughit, and emerge approximately unchanged. More general initial data typically separates into a trainof two or more compactons that travel at the appropriate individual speeds. In Figure 1, forexample, note how the initial signal, with global support, separates into at least three waves ofdi�erent amplitudes but the same widths, each with compact support.4 March 2001: David Kay, Marc Maestracci, Nick Trefethen
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Fig. 1: Separation intocompactons of a solution of K(3; 3)The pictures are suggestive, but in fact, Rosenau and Hyman found that compacton interactionsare not mathematically perfect. Though it is not visible in our �gure, a small residue consistingof low amplitude and hence low-velocity \compacton-anticompacton pairs" is left behind after acompacton interaction; the behaviour of compactons as particles is only approximate. This isprobably related to the fact that unlike the KdV equation, compacton equations apparently do notpossess an in�nite set of conservation laws.Compacton equations are among the hardest one-dimensional PDEs to solve numerically, becausethey contain terms that are simultaneously nonlinear and of high order. Nevertheless, most of whatis known about them is based on numerical experiments; there is little mathematical theory.
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