
37. Fisher-KPP equationA reaction{di�usion equation looks like the heat equation (! ref ) with a function f(u) added on,ut = �u+ f(u):Such equations appear in the sciences as models of diverse physical, chemical and biological phe-nomena. Since f may be non-linear, explicit solutions cannot usually be found. Whereas the linearwave equation (! ref ) propagates arbitrary solutions at a �xed speed, reaction-di�usion equationsmay single out certain wave forms and allow only these to propagate without distortion. A typicalproblem for an equation of this kind investigates the existence, form, and stability of these travelingwaves. Such a solution can be written as u(x; t) = U(z), with z = x� ct, where c is the wave speed.The existence of traveling waves in chemical reactions was �rst observed and studied by Luther atthe beginning of the twentieth century.The Fisher{KPP equation is one of the simplest examples of a nonlinear reaction-di�usion equation.The equation dates to two independent publications in 1937. Kolmogorov, Petrovsky and Piscounovbegan with an equation in 2D with a general reaction term, and their work laid the foundation forrigorous analytical study of reaction-di�usion models. Fisher's equation was one-dimensional andhad a speci�c \logistic" reaction term:ut = Duxx + ru�1� uK� :Fisher proposed this equation as a model of di�usion of a species in a 1D habitat; D is the di�usionconstant, r is the growth rate of the species, and K is the carrying capacity. A dimensionlessversion of the equation takes the form ut = uxx + u(1� u): (1)Since 1937, (1) has also been used to study 
ame propagation and nuclear reactors.PSfrag replacements
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The solution to (1) depends on theinitial data, u0(x). Kolmogorov etal. proved that if u0(x) is mono-tonic and continuous with u0(x) =1 for x < a and u0(x) = 0 forx > b, where �1 < a < b < 1,then the solution evolves into atraveling wave with speed c = 2.Figure 1 shows the evolution ofthe initial function u0(x) = 1 forx < �10, 1=4 for 10 < x < 20 and0 otherwise. The initial well soonvanishes and a monotonic travel-ing wave with c = 2 remains.30 August 2001: Kristine Embree

nonlinear traveling wavesWe can begin to understand the behaviour of the Fisher-KPP equation by noting that since theright-hand side of (1) is zero for u = 0 or 1, two solutions are obvious: u(x; t) = 0 or u(x; t) = 1 forall x; t. More generally, it is clear that for constant initial data u0(x) = C, the wave will remain
at for all t, with u(x; t) = C(t) for some function C(t). Moreover, the signs of the term u�u2 aresuch that positive solutions will be repelled from 0 and attracted to 1. Now the real interest in (1)lies in the behaviour when both u � 0 and u � 1 are present: how does the wave get from one ofthese values to the other, and how does the wave front connecting the two move with time? Thegeneral answer is that regions with u � 1 tend to grow, eating up adjacent regions with u � 0|andthe waves may travel in either direction.These ideas can be made more precise with the aid of phase plane analysis. If we look for a solutionu(x; t) = U(z) = U(x� ct) and set V = U 0, (1) reduces to the system of ODEsU 0 = V; V 0 = �cV � U(1� U):Without loss of generality let us consider just c > 0, i.e., right-going waves. The critical points inthe U; V plane are (1; 0), a saddle point, and (0; 0), a stable node for c � 2 and a spiral for c < 2.PSfrag replacements UV 10 Fig. 2: Phase portrait with c = 1
PSfrag replacements UV 10Fig. 3: Phase portrait with c = 3From phase portraits such as those of Figures 2 and 3, we can derive various properties of solutionsof the Fisher-KPP equation, which can be proved rigorously by a more detailed analysis. For anyc > 0, there exists a unique right-going traveling wave with speed c connecting the state u = 1,ux = 0 for x ! �1 to the state u = 0, ux = 0 for x ! 1. Thicker fronts correspond to fasterwaves. For c � 2, the wave is a monotonically decreasing function of x, while for c < 2 it isoscillatory; in some applications the latter may be non-physical. McKean showed by probabilisticmethods that under appropriate assumptions, these traveling waves are stable with respect to smallperturbations.ReferencesR. A. Fisher, The wave of advance of advantageous genes, Ann. Eug., 7 (1937), pp. 355{369.A. Kolmogorov, I. Petrovsky and N. Piscounov, Study of the di�usion equation with growth of the quantity ofmatter and its application to a biological problem, Bull. State Univ. Mos., (1937), pp. 1{25 (trans. by F. Oliveira{Pinto and B. W. Conolly, Applicable mathematics of non-physical phenomena, Ellis Horwood, 1982, 169{184).J. D. Logan, An introduction to nonlinear partial di�erential equations, Wiley, 1994.H. P. McKean, Jr., Applications of Brownian motion in the equation of Kolmogorov{Petrovskii{Piscounov, Comm.Pure Appl. Math., 28 (1975), 323{331.J. D. Murray, Mathematical biology, Springer-Verlag, 1989.P. L. Sachdev, Nonlinear di�usive waves, Cambridge, 1987. c
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