51. Complex Ginzburg-Landau equation

The cubic complex Ginzburg-Landau equation

up = (1 + i) uge +u — (14 ip)uluf?, u € C (1)

was derived by Newell and Whitehead in 1969 as an amplitude modulation equation for modelling
the onset of instability in fluid convection problems. In these problems, at some critical parameter
value, a spatially homogeneous steady state loses stability to oscillations whose wavelength and
frequency can be understood in terms of a linearised equation. Newell and Whitehead found that
when nonlinear effects are included, these oscillations are modulated over long time and space scales
by a quantity u satisfying (1). To use an AM radio analogy, u is the music superimposed on the
carrier frequency of the original PDE.

In fact, (1) arises almost generically in sta-
bility analyses, especially in fluid dynam-
ics. For example, Stewartson and Stu-
art in 1971 discovered it in the context
of plane Poiseuille flow. The derivation of
(1) can be understood rigorously in terms
of an infinite-dimensional centre manifold
theory.

With g, v = 0, (1) is the Allen-Cahn equa-
tion (— ref) except with a complex depen-
dent variable. In this case, with the addi-
tion of extra terms to model the effect of
the magnetic field, it is used as a model for
superconductivity (— ref). This complex
Allen—Cahn equation is a gradient system
which evolves according to an energy min-
imisation principle, so that in the absence
of external forcing, the dynamics as t — oo
are steady. However, with x4 or v nonzero,
(1) is not a gradient system and its long-
term behaviour can be more exotic—e.g.
periodic or chaotic.
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Fig. 1: Rotating waves for y =v =2, R = 50;
turbulence for —p = v =2, R = 500 (Rew shown)

For example, consider (1) on [—1,1] with periodic boundary conditions, with the linear term wu
replaced by Ru (R € IR) for full generality. Then there exist explicit rotating wave solutions

up = cel®™=wD) o) = /R —4k2n2,  w=pR+ 43 (v - p), (2)
where arg c is arbitrary. The linear stability of these solutions may be analysed by writing u(z,t) =
ug(,t)(1 + h(z,t)) for small h. This leads to a coupled pair of complex, autonomous linear ODEs

for h and h. Doering et al. showed that for 1 + pr < 0, all rotating waves are unstable, and when
R is sufficiently large, numerical simulations indicate chaotic behaviour (Fig. 1).
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Aside from specific applications, the complex Ginzburg-Landau equation has attracted attention
as a simple PDE with chaotic solutions. In particular, it has become a test bed for new ideas in
statistics of turbulence, control of chaos, and rigorous PDE bounds. We might say it is a kind of
laboratory for turbulence. True fluid turbulence, of course, requires three space dimensions.
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Fig. 2: Burst and collapse for a quintic complex Ginzburg Landau equation
For —p, v > 0, with u and |u|? replaced by Ru and |u|?¢, (1) may be rescaled and written
vy =+ v Doge + Rv ™o+ (i + p~Holv|2 (3)

As —p, v — 400, (3) becomes the focusing nonlinear Schrédinger equation (— ref ), whose solutions
blow up in finite time for gd > 2 (in d space dimensions). On the other hand, it can be proved that
(3) has regular solutions for all time for gd < 2. For gd = 2, (3) hae burst solutions which follow
the blow-up of the nonlinear Schrédinger equation for a time, until the small 1/v dissipation causes
their collapse. Figure 2 shows a case withd=1,¢ =2, —p=v = 25.
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