3. Heat equation

diffusion and smoothing

The heat equation is the prototypical parabolic PDE:

u, = Au. (1)

This equation describes the isotropic diffusion of a quantity that might, for example, be heat in a
solid or concentration of salt in a motionless body of water.

The history begins with the work of Joseph Fourier around 1807. In a remarkable memoir, Fourier
invented both the equation (1) and the method of Fourier analysis for its solution. For definiteness,
let us consider the one-dimensional problem u; = ug, for 2 € IR with initial data uy(z). The
Fourier transform decomposes u, into its components at various wave numbers k:
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where (k) is defined by the integral
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The evolution of each component ¢** under (1) is a trivial matter—it decays at the rate e KL,

Superposition gives us the evolution of the general initial function w:
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u(z,t) = ol tig (k)dk.

Replacing g (k) by its integral (3) and applying an identity for the Fourier transform of a Gaussian

yields the formula
1

o0
u(z,t) = / e @) /4ty (5)ds. 4
@t=—= [ (o) @
In a bounded domain in IR or IR", an analogous treatment of the heat equation would go by

separation of variables, leading to solutions of the form e®'¢;(z), where the functions ¢;(z) are
eigenfunctions of the Laplacian operator for  (— ref).

Fig. 1: Gaussian kernel of Equation (4) asserts that the solution to (1) at time
height (47t)~'/2, width O(¢'/?) t is the convolution of tl_zle initial data ug with the
Gaussian kernel e~ (&) /(”/\/lm, whose integral

is 1. Heat is conserved (|u(t)|y = ||luolly for all

t > 0), but it diffuses over a range of order /%, the
width of the Gaussian. At time ¢, any structures
of wavelengths shorter than O(v/) will have been
smoothed away. Since the tail of the Gaussian is
never zero, on the other hand, a small amount of in-
formation propagates unboundedly fast, in contrast
to the situation for a hyperbolic PDE.
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Fig. 2: Heat equation
on a square of width 1

t = 0.0004
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V/t behaviour is that of random walks 0K RN

or, in the continuous limit, Brownian mo-

tion. For example, suppose you toss a coin tN
times and win or lose 1/+/N dollars with each toss. Your

profit follows a binomial distribution that converges to the Gaus-

sian e’zz/“/\/m in the limit N — oo. Arbitrarily large profits are possible, but anything much
bigger than v/ is very unlikely. This v/t effect is at the root of much of the field of statistics, and
it was the basis of Einstein’s epochal paper on Brownian motion in his annus mirabilis 1905.

It seems obvious that the solution to (1) should be unique, but in fact it is not. There are other
solutions besides (4) in which an infinite amount of heat floods in from infinity just after ¢ = 0. For
example, if g(t) = exp(—t~2), then the power series 372 (d*g(t)/dt¥) 22* /(2k)! converges for each
t > 0 to an analytic function of z that satisfies (1) with initial data ug = 0. However, uniqueness
for (1) is achieved if we require that |u(z,t)| is bounded as |z| — co. In fact, it is enough to require
that u(z,t) or —u(z,t) is bounded, and thus, for example, if ug(z) > 0, then (1) has a unique
solution with u(z,t) > 0.

The heat equation is the canonical smoothing process, and as a application of this property we can
prove the Weierstrass approzimation theorem: a continuous function f on [—1,1] can be approx-
imated to within any error ¢ by a polynomial p. Take f, extended continuously to a function of
compact support on IR, as initial data ug for (1). Let a sufficiently small time ¢ elapse so that
|u(z,t) —uo(z)| < €/2 everywhere. The function u(z,t) is an entire function of z, i.e., analytic for
all z. Now take p(z) to be a truncation of the power series for u(z,t) to enough terms so that
|p(x) —u(z,t)| < e/2 for all z € [-1,1].
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