
3. Constant coe�cient linear equationsThe most basic of all problems involving partial di�erential equations are linear PDEs with constantcoe�cients posed on unbounded domains. Such problems are translation-invariant, and as a result,their solutions can be found by the Fourier transform.For example, here are three linear constant-coe�cient equations in one space variable:ut = ux; ut = �uxx � uxxxx; ut = uxxxx: (1)Inserting the ansatz u(x; t) = exp(ikx+ f(k)t) gives a relation between k and f(k)|the dispersionrelation, f(k) = ik; f(k) = k2 � k4; f(k) = k4:The corresponding solutions for real k areu(x; t) = eikx+ikt; u(x; t) = eikx+(k2�k4)t; u(x; t) = eikx+k4t: (2)Fourier analysis tells us that in the space L2 de�ned by the norm kuk = (R1�1 ju(x)j2 dx)1=2, allsolutions to (1) can be obtained as superpositions of the solutions (2):u(x; t) = Z 1�1 ^u(k; t)eikx dk = Z 1�1 ^u(k; 0)eikx+f(k)t dk; (3)where ^u(k; t) denotes the Fourier transform of u(x; t) with respect to x. In other words, ^u(k; t)evolves for each k according to the trivial ordinary di�erential equation ^ut = f(k)^u with solution^u(k; t) = exp(f(k)t)^u(k; 0). Thus we see that for linear equations with constant coe�cients onunbounded domains, when we take the Fourier transform,� Di�erential operators become polynomials in k, and� The PDE becomes an uncoupled system of ODEs, one ODE for each k.
Fig. 1: ut = �uxxxx

In various entries of thisbook, we will considerthe signi�cance of disper-sion relations for wavepropagation (! refs ).Here, instead, we con-sider the even more ba-sic issue of boundedness.Given a linear constant-coe�cient PDE of theform (1), does there exista constant C such thatku(t)k � C ku(0)k (4)uniformly for all initial data u(0) = u(x; 0) and all t > 0?For the examples it is clear how to answer this question. Since j exp(ikt)j = 1 for all k 2 IR, theequation ut = ux has ku(t)k = ku(0)k for all t > 0. Its solutions u(x; t) = u0(t+x) satisfy (4) withC = 1. The solution exp(ikx+ (k2 � k4)t) of the second equation of (1), on the other hand, grows28 February 2001: G. Strang and L. N. Trefethen

Fourier analysis and boundednessunboundedly for 0 < jkj < 1. The maximum growth rate is exp(t=4), attained with jkj = 1=p2, andthus ku(t)k � exp(t=4)ku(0)k. The third equation is more explosively unstable. Now, the solutionsu(x; t) = exp(ikx+ k4t) not only grow unboundedly but do so unboundedly fast as jkj ! 1. Thusut = uxxxx is ill-posed , for it lacks the well-posedness property that unique solutions exist for anyinitial data and depend continuously on that data.All this carries over to equations in several space variables. For example, the PDEsut = ux + uy; ut = uxx + uyy; ut = uxx + uxyhave Fourier transforms^ut = (ikx + iky)^u; ^ut = (�k2x � k2y)^u; ^ut = (�k2x � kxky)^u:Are their solutions bounded in the sense of (4), where the L2 norm is now de�ned by an integralover x and y? By considering all values kx; ky 2 IR we see that the answer is yes for the �rst two,with C = 1, but no for the third, since �kxky > 0 when kx and ky have opposite signs.Now at last we can write down the general equation that is the subject of this page of The PDECo�ee Table Book. On the domain IRn, the equation isut = p(D)u; (5)where p(D) denotes a linear constant-coe�cient di�erential operator with respect to the variablesx1; : : : ; xn. The Fourier transform of (5) is the k-dependent system of ODEs^ut = f(k)^u = p(ik)^u: (6)

Fig. 2: ut = �uxx � uxxxx
The function p is a poly-nomial in n variables;for example we mighthave p(D) = D1D22 �2D53, corresponding top(D)u = uxuyy � 2uzzzzzand p(ik) = �ik1k22 �2ik53 . The criterion forbounded solutions be-comes Rep(ik) � 0. Inother words, solutions to(5) satisfy (4) if and onlyif p(ik) maps IRn intothe closed left half of thecomplex plane.ReferencesF. John, Partial Di�erential Equations, 4th ed., Springer-Verlag, 1982.J. Rauch, Partial Di�erential Equations, Springer-Verlag, 1991. c1999


