35. Porous medium equation

nonlinear diffusion with sharp interfaces

The porous medium equation is like the heat equation (— ref), except that the linear diffusion term
Auw is replaced by A(u™) for some m > 1:

U = A(u™). 1

Equivalently we may rewrite (1) as a heat equation with a nonlinear diffusion constant,
ug =V - (mu™"1Vu). (2)

From either (1) or (2) it is clear that the diffusion ‘turns off” as |u| — 0. This is analogous to the
situation with compacton equations (— ref) which are like the KdV equation (— ref) except that
the linear dispersion term gz, is replaced by a nonlinear term (u™)zz, with m > 1. Just as with
compactons, the effect of the nonlinearity in (1) is that there are solutions with compact support.

Where might such an equation arise, in which the diffusion constant varies in proportion to some
power of the diffused quantity? Some applications are in biology, notably in models of animal and
insect dispersal, and some are in plasma physics. Another, as indicated by the name, is in the
study of the flow of a gas in a porous medium. We can derive (1) in a simplified manner as follows.
Ignoring certain constants, the flow is governed by the three equations

pt ==V -(pv) (conservation of mass),
v=—Vp (Darcy’s Law (— ref)),
p=p" (equation of state)

where p is the density, p is the pressure, v is the velocity, and « is the (constant) ratio of specific
heats. Eliminating v and p gives .
pe=V-(pV(p" ),

and since pV(p? ") =y~ p7 ' Vp, whereas V(p'*77") = (1 + 4~ 1)p7" Vp, we can rewrite this as
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Pt = T+, 1

Setting u = p and rescaling ¢ by 1/(1 + ) gives (1).

Fig. 1: 1D Barenblatt—Pattle solution
(I'=0.2,m=2)
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Barenblatt and Pattle independently found an explicit formula for the solution of (1) beginning
from a delta function of integral T" at the origin:

1/(m—1)
_ —a a(m—1) |x/*
u(]x|,t) = max{0,¢t " | — ~odm pajd , (3)
where d is the number of space dimensions and @ = (m — 1 +2/d)™!. This solution is radially
symmetric and has compact support. Figures 1 and 2 give an idea of a typical ‘spreading drop’ in
one and two dimensions, respectively.

It is evident from (3) and from the figures that the solution to (1) may contain an interface where
the gradient is discontinuous. A precise mathematical treatment thus involves the notion of weak
solutions. We find that at the inner edge of the interface, the gradient is infinite if m > 2, finite
if m = 2, and zero (but with a nonzero derivative) if m < 2. The question also arises whether
these solutions are necessarily unique. The answer is yes, and this can be shown with the aid of a
comparison principle of the kind used for many parabolic PDEs, which establishes that if for two
solutions, the boundary and initial data of one are greater than for the other, then this solution is
dominant for all ¢.

Like any diffusion equation, the porous medium equation conserves mass: [ u(z)dz = constant
in the absence of flows across boundaries.

More complicated initial conditions than
in our figures may give rise to more com-
plicated behaviour. For example, an
interface may remain exactly station-

ary for an initial ‘waiting time’.
Eventually, however, it must move
outward so as to enlarge a region

where u is positive.

Fig. 2: 2D Barenblatt—Pattle solution
att=2('=02,m=2)

References

G. I. BARENBLATT, On some unsteady motions of a liquid or a gas in a porous medium, Prikladnaja Matematika i
Mekhanika, 16 (1952), 67-78.

E. DIBENEDETTO, Degenerate parabolic equations, Springer-Verlag, 1993.

P. GRINDROD, Patterns and waves: the theory and applications of reaction-diffusion equations, Clarendon Press,
1991.

J. D. MURRAY, Mathematical biology, Springer-Verlag, 1993.

R. E. PATTLE, Diffusion from an instantaneous point source with a concentration-dependent coefficient, Quart. J.
Mech. Appl. Math., 12 (1959), 407-409.

©1999



