
35. Porous medium equationThe porous medium equation is like the heat equation (! ref ), except that the linear di�usion term�u is replaced by �(um) for some m > 1: ut = �(um): (1)Equivalently we may rewrite (1) as a heat equation with a nonlinear di�usion constant,ut = r � (mum�1ru): (2)From either (1) or (2) it is clear that the di�usion `turns o�' as juj ! 0. This is analogous to thesituation with compacton equations (! ref ) which are like the KdV equation (! ref ) except thatthe linear dispersion term uxxx is replaced by a nonlinear term (um)xxx with m > 1. Just as withcompactons, the e�ect of the nonlinearity in (1) is that there are solutions with compact support.Where might such an equation arise, in which the di�usion constant varies in proportion to somepower of the di�used quantity? Some applications are in biology, notably in models of animal andinsect dispersal, and some are in plasma physics. Another, as indicated by the name, is in thestudy of the 
ow of a gas in a porous medium. We can derive (1) in a simpli�ed manner as follows.Ignoring certain constants, the 
ow is governed by the three equations�t = �r � (�v) (conservation of mass),v = �rp (Darcy's Law (! ref )),� = p
 (equation of state)where � is the density, p is the pressure, v is the velocity, and 
 is the (constant) ratio of speci�cheats. Eliminating v and p gives �t = r � ( �r(�
�1));and since �r(�
�1) = 
�1�
�1r�, whereas r(�1+
�1) = (1 + 
�1)�
�1r�, we can rewrite this as�t = 
�11 + 
�1�(�1+
�1) = 11 + 
�(�1+
�1):Setting u = � and rescaling t by 1=(1 + 
) gives (1).
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tFig. 1: 1D Barenblatt{Pattle solution(� = 0:2, m = 2)
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nonlinear di�usion with sharp interfacesBarenblatt and Pattle independently found an explicit formula for the solution of (1) beginningfrom a delta function of integral � at the origin:u(jxj; t) = max8<:0; t�� "�� �(m� 1)2dm jxj2t2�=d #1=(m�1)9=; ; (3)where d is the number of space dimensions and � = (m � 1 + 2=d)�1. This solution is radiallysymmetric and has compact support. Figures 1 and 2 give an idea of a typical `spreading drop' inone and two dimensions, respectively.It is evident from (3) and from the �gures that the solution to (1) may contain an interface wherethe gradient is discontinuous. A precise mathematical treatment thus involves the notion of weaksolutions. We �nd that at the inner edge of the interface, the gradient is in�nite if m > 2, �niteif m = 2, and zero (but with a nonzero derivative) if m < 2. The question also arises whetherthese solutions are necessarily unique. The answer is yes, and this can be shown with the aid of acomparison principle of the kind used for many parabolic PDEs, which establishes that if for twosolutions, the boundary and initial data of one are greater than for the other, then this solution isdominant for all t.Like any di�usion equation, the porous medium equation conserves mass: RIRd u(x) dx = constantin the absence of 
ows across boundaries.
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More complicated initial conditions thanin our �gures may give rise to more com-plicated behaviour. For example, aninterface may remain exactly station-ary for an initial `waiting time'.Eventually, however, it must moveoutward so as to enlarge a regionwhere u is positive.

Fig. 2: 2D Barenblatt{Pattle solutionat t = 2 (� = 0:2, m = 2)
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