
21. Time-dependent Schr�odinger equationThe Schr�odinger equation, the basis of quantum mechanics, was discovered by Erwin Schr�odingerduring his skiing holiday at the end of 1925 and analyzed by him in a series of papers published inAnnalen der Physik in 1926. By the end of that year, the face of physics had changed. Schr�odingerwon the Nobel Prize in Physics in 1933.For a system of N particles in three dimensions, the Schr�odinger equation applies in a state spaceof dimension 3N . However, let us consider the familiar case of a single point particle, so that thestate space is IR3. Suppose the particle has mass m and is subject to a force F (r) = �rV (r),where V (r) is a �xed potential function. For example, the particle might be an electron attracted toa proton at r = 0 by an inverse square force with V (r) = �C=jrj (the hydrogen atom). A physicistwould write the equation as i�h @@t	(r; t) = �� �h2m�+ V (r)�	(r; t) (1)where i = p�1, 	 is called the wave function and �h is Planck's constant divided by 2�. Since ourconvention in this book is to take u as the dependent variable and strip away constants, we shalltake the time-dependent Schr�odinger equation instead to beiut = [��+ V (r)]u: (2)Imaginary numbers! It was a new departure for i to appear in one of the fundamental laws of physics.What is observed in the laboratory must of course be real, and here is the interpretation of thevariable u: u(r; t) is not observable, but the square of its absolute value, ju(r; t)j2, is observable asthe probability density per unit volume for the particle to appear at position r at time t. Thus ateach time t, the integral of juj2 over all space must be equal to 1, and by integrating (2) by partsone can con�rm that if this condition condition holds for t = 0, then it holds for t > 0.Solutions to Schr�odinger's equation are wavelike. For simplicity let us consider the 1D special case of

Fig. 1: 1D wave packet

(2) with V (x) = V = const,iut = �uxx + V u: (3)For any frequency ! 2 IR, this equation admits thesolution u(x; t) = ei(kx�!t) (4)provided the wave number k is one of the two so-lutions of the dispersion relation! = k2 + V: (5)For ! < V , the two allowed values of k are imaginary and we have evanescent solutions that decreaseexponentially as x increases or decreases. For ! > V , they are real, and we have oscillatory wavesolutions. A typical solution of this kind would be a wave packet formed by superposition ofvarious Fourier modes (4) with central wave number k, phase velocity c = !=k and group velocityC = d!=dk. In Fig. 1 the dashed line is �ju(x)j and the solid line is Reu(x).22 October 2001: Nick Trefethen

probability waves and tunnelingFor particles of macroscopic mass, because �h is so small, k and ! are normally huge and the wavepacket behaves like a particle. For example, a tennis ball being served corresponds to a wave packetwith wavelength on the order of 10�31 cm and frequency on the order of 1033 Hz.

Fig. 2: 2D wave packet passing through a pair of slits
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For microscopic particles, the wave nature of solutions to (2) becomes crucial. A famous exampleis the phenomenon of quantum interference. For example, Fig. 2 shows a wave packet in 2Dpropagating toward a barrier with two slits; the colors depict real and imaginary parts. This mightbe an electron emitted from a cathode ray tube. Mathematically, we have a potential in (2) withV (r) = 0 in most of IR2 but V (r) = 1 in the barrier regions. After impact, the wave packet hasamplitude on both sides of the barrier. The particle has simultaneously passed through the slits andbeen re
ected! Moreover, dark bands in the transmitted and re
ected waves show regions wherethe portions of the wave passing through the slits have approximately canceled and the probabilitydensity is close to zero. These e�ects have no counterparts in classical mechanics.Another e�ect explained by Schr�odinger's equation is tunneling, which makes radioactive elementsradioactive. This phenomenon depends on the evanescent portions of solutions to (2) or (3), whichimply that inside a potential barrier of �nite height, the wave function decays exponentially but isnot zero. If the barrier has �nite width, some amount of probability leaks through.ReferencesP. A. M. Dirac, The principles of quantum mechanics, 4th ed., 1987.A. Messiah, Quantum mechanics, 2 vols., North-Holland, Amsterdam, 1970.W. Moore, A life of Erwin Schr�odinger, Cambridge U. Press, 1994.B. Thaller, Visual quantum mechanics, Cambridge U. Press, 2000. c
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