
15. Wave equationOne of the \holy Trinity" of partial di�erential equations is the second{order wave equation, thecanonical example of a hyperbolic PDE. In n dimensions the equation takes the formutt = �u; (1)where � is the Laplacian operator, @2=@x21 + � � � + @2=@x2n. A wave speed c can be included by afactor c2 on the right-hand side. Since (1) is of second order in t, a well-posed initial-value problemfor this equation would normally involve two initial conditions such as u(x; 0) and ut(x; 0).
t = 2Fig. 1: Propagationof a circular pulset = 0

The wave equation describes linear, nondispersive wave propa-gation. For example, Figure 1 presents a pair of imagesthat show the outward spread of a circular pulsein 2D. At t = 0 we begin with a coneof radius 0:1 with ut(0) = 0.At t = 2, the cone has spreadto a concentric ring ofouter radius ex-actly 2:1.
The wave equation arises in numerous applications. The classical 1D example is the vibration of anideal string (! ref ), and in 2D this becomes the vibration of an ideal membrane or drum (! ref ).In 3D, the most famous example is the propagation of sound waves in a gas or liquid. Indeed,equation (1) is often called the acoustic wave equation to distinguish it from the more complicatedelastic wave equation (! ref ), where the presence of sti�ness as well as compressibility leads tothe appearance of two distinct kinds of waves.Being hyperbolic, the wave equation has �nite speed of propagation for all information|namely 1,for the equation as written in (1). A curious property known as Huygens' principle is as follows.In dimensions n = 3; 5; 7; 9; : : : ; all information propagates under (1) at speed exactly 1, neverslower. Thus, the light from a bulb 
ashed at t = 0 passes the observer at a later time as a puredelta function. In dimensions n = 1; 2; 4; 6; 8; : : : ; on the other hand, a �nite fraction of the energymay travel more slowly than at speed 1, so the observer sees a delta function 
ash followed by adecaying tail. To illustrate this phenomenon, Figure 2 shows the result at time t = 1 of the initialcondition ut(x; 0) = maxf0; 1 � 10jxjg in dimensions 1; 2; 3; 4; 5; 6, where jxj = (x21 + � � �+ x2n)1=2.In an unbounded domain, the wave equation is readily investigated by Fourier analysis. Separationof variables leads to the observation that for any n-vector k, known as the wave number, there are28 February 2001: Kathryn Harriman and Nick Trefethen

propagation of light and soundPSfrag replacements n = 1 n = 2n = 3 n = 4n = 5 n = 6

jxj = 0 !
Fig. 2: Huygens' principle: zero tails in odd dimensions n � 3plane wave solutions of (1) of the form u(x; t) = ei(!t+k�x); (2)where k � x = k1x1 + � � �+ knxn, so long as ! = �jkj. This condition relating the frequency to thewave number is the dispersion relation for (1). By a Fourier integral, general solutions to (1) canbe obtained by the superposition of plane waves (2), and under suitable technical assumptions, allsolutions can be written this way.In a bounded domain 
, separation of variables in (1) leads to oscillatory solutions of the formei!jt�j(x), where the functions �j(x) are eigenfunctions of the Laplacian operator for 
 (! ref ).The allowed frequencies !j now belong to a discrete set, and general solutions can be obtained viasuperpositions as series rather than integrals. If 
 is a rectangle, a disk, or a ball, the eigenfunctionsare trigonometric functions, Bessel functions, or spherical harmonics, respectively.Another technique in the study of the wave equation is Hadamard's method of descent. The ideahere is that any solution in dimension n can be thought of as a solution in dimension n + 1 thathappens to be invariant with respect to one coordinate. In particular, solutions in even dimensionscan be obtained from solutions in the odd dimension one higher, which are relatively elementarysuperpositions of expanding spheres thanks to Huygens' principle.In applications of the wave equation, boundaries and variable coe�cients are important, includingdiscontinuities in the sound speed. Among the phenomena that arise are re
ection, refraction, anddi�raction. Just as the �eld of 
uid mechanics can be described without too much exaggerationas the study of the Navier{Stokes equations (! ref ), so the �eld of acoustics is more or less thestudy of the wave equation. There are enough subtleties here to �ll books, and careers|even if wecon�ne our attention to the fascinating sub�eld of the physics of musical instruments.ReferencesN. H. Fletcher and T. D. Rossing, The physics of musical instruments, Springer-Verlag, 1991.G. B. Folland, Introduction to partial di�erential equations, Princeton, 1976.F. John, Partial di�erential equations, Springer-Verlag, 1982.P. M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill, 1953.Lord Rayleigh, The theory of sound , 2 vols., Dover, 1945. c
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