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NUMERICAL COMPUTATION OF THE SCHWARZ-CHRISTOFFEL
TRANSFORMATION*

LLOYD N. TREFETHENf

Abstract. A program is described which computes Schwarz-Christoffel transformations that map the unit
disk conformally onto the interior of a bounded or unbounded polygon in the complex plane. The inverse map
is also computed. The computational problem is approached by setting up a nonlinear system of equations
whose unknowns are essentially the "accessory parameters" zk. This system is then solved with a packaged
subroutine.

New features of this work include the evaluation of integrals within the disk rather than along the
boundary, making possible the treatment of unbounded polygons; the use of a compound form of
Gauss-Jacobi quadrature to evaluate the Schwarz-Christoffel integral, making possible high accuracy at
reasonable cost; and the elimination of constraints in the nonlinear system by a simple change of variables.

Schwarz-Christoffel transformations may be applied to solve the Laplace and Poisson equations and
related problems in two-dimensional domains with irregular or unbounded (but not curved or multiply
connected) geometries. Computational examples are presented. The time required to solve the mapping
problem is roughly proportional to N3, where N is the number of vertices of the polygon. A typical set of
computations to 8-place accuracy with N =< 10 takes to 10 seconds on an IBM 370/168.

Key words, conformal mapping, Schwarz-Christottel transformation, Laplace equation, Gauss-Jacobi
quadrature

1. Introduction. One of the classical applications of complex analysis is conformal
mapping: the mapping of one open region in the complex plane C onto another by a
function which is analytic and one-to-one and has a nonzero derivative everywhere.
Such a map preserves angles between intersecting arcs in the domain and image regions;
hence the name conformal. The Riemann mapping theorem asserts that any simply
connected region in the plane which is not all of C can be mapped in this way onto any
other such region. The problem of constructing such a mapping, however, is in general
difficult. We consider here the special case in which the range is the interior of a
polygon, where the problem can be considerably simplified.

Suppose that we seek a conformal map from the unit disk in the z-plane to the
interior of a polygon P in the w-plane whose vertices are wl," , w, numbered in
counterclockwise order. For each k, denote by Bkcr the exterior angle of P at Wk,

as indicated in Fig. 1. For any polygon we have a simple relationship among the
numbers

N

(1.1) Y. 8 2.
k=l

P

Wk-
Wk

FIG. 1
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If Wk is a finite vertex, we have -1 <_-k < 1. We shall not require, however, that P be
bounded. It may have a number of vertices at complex infinity, and the exterior angles
corresponding to these may fall anywhere in the range 1 <_-/k----< 3. Such angles are
defined to be equal to 27r minus the external angle formed in the plane by the
intersection of the two sides involved, if they are extended back away from infinity. The
example in Fig. 2 should illustrate what is meant by various values of/k" it is a polygon
with five vertices Wk (in this case WI W4), with corresponding values (1," 5) (1/2,
34-, , , 1). As always, (1.1) holds for this example.

W5

W4: WI

FIG. 2

Let us now pick at random N points Zk ("prevertices") in counterclockwise order
around the unit circle and two complex constants C and we, and consider the
Schwarz-Christoffel formula"

(1.2) w =/(z) wc + C 1- dz’.
k=l

The quantities (1 z’/zk) always lie in the disk w 1[< 1 for[z I< 1. Therefore, if
we choose a branch of log (z) with a branch cut on the negative real axis by means of
which to define the powers in (1.2), w(z) defines an analytic function of z in the disk
[z[ < 1, continuous on [z[ _-< 1 except possibly at the vertices zk.

The Schwarz-Christoffel formula is chosen so as to force the image of the unit disk
to have corners in it with the desired exterior angles/r. It is not hard to see from (1.2)
that at each point z, the image w(z) must turn a corner of precisely this angle. This is in
keeping with out purpose of mapping the disk onto the interior of P. What the map will
in general fail to do is to reproduce the lengths of sides of P correctly, and to be a
one-to-one correspondence. Only the angles are guaranteed to come out right.

The variables Zl, zn, C, and wc are the accessory parameters of the Schwarz-
Christoffe mapping problem. Our first problemmthe parameter problemmis to deter-
mine values of the accessory parameters so that the lengths of sides of the image
polygon do come out right. The central theorem of Schwarz-Christoffel trans-
formations asserts that there always exists such a set of accessory parameters.

THEOREM 1 (Schwarz-Christoffel transformation). Let D be a simply connected
region in the complex plane bounded by a polygon P with vertices z 1, , Zl and exterior
angles 7rB, where -1 <- < 1 ifzk is finite and 1 <- <- 3 ifz c. Then there exists an
analytic function mapping the unit disk in the complex plane conformally onto D, and
every such function may be written in the form (1.2).

Proof. The proof is given in [-8, Thm. 5.12e].
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In fact, for any given polygon there are not just one but infinitely many such
conformal mappings. To determine the map uniquely, we may fix exactly three points zk
at will, or fix one point zk and also fix the complex value Wc, or (as in a standard proof of
the Riemann mapping theorem) fix wc and the argument of the derivative/’(0).

The simplicity of the explicit formula (1.2) is attractive. But because the problem of
determining the accessory parameters is intractable analytically, applications of it have
almost always been restricted to problems simplified by having very few vertices or one
or more axes of symmetry. General Schwarz-Christoffel maps do not appear to have
been used as a computational tool, although experiments have been made in computing
them.

Problems of numerical conformal mapping have attracted a modest amount of
attention for at least thirty years. Gaier [4] produced a comprehensive work describing
methods for various problems in this field. For the Schwarz-Christoffel problem, he
proposed determining the accessory parameters z by setting up a constrained
nonlinear system of N- 3 equations relating (1.2) to the known distances Iw wjl, and
solving it iteratively by Newton’s method [4, p. 171]. Such a procedure has been tried by
at least three sets of people; see [7], [10], and [13]. The present work also takes this
approach. We believe that this is the first fully practical program for computing
Schwarz-Christoffel transformations, however, and the first which is capable of high
accuracy without exorbitant cost.

2. Determination of the accessory parameters.
2.1. Formulation as a constrained nonlinear system. The first matter to be settled

in formulating the parameter problem numerically is" what parameters in the map (1.2)
shall we fix at the outset to determine the Schwarz-Christoffel transformation
uniquely? One choice would be to fix three of the boundary points Zk" say, z 1, z2 i,
zN =--i. This normalization has the advantage that the resulting nonlinear system has
size only (N 3) (N 3), which for a typical problem withN 8 may lead to a solution
in less than half the time that a method involving an (N- 1) (N- 1) system requires.
Nevertheless, we have chosen here to normalize by the conditions

(2.1) zN 1, wc arbitrary point within P

which lead to an (N- 1) x (N- 1) system. This choice is motivated in part by considera-
tions of numerical scaling" it allows the vertices to distribute themselves more evenly
around the unit circle than "they might otherwise.(An earlier version of the program
mapped from the upper half-plane instead of the unit disk, but was rejected" once points
z began appearing far from the origin at x 104, scaling became a problem.) After a
map has been computed according to any normalization, it is of course an easy matter to
transform it analytically to a different domain or a different normalization by a M6bius
transformation.

Now the nonlinear system must be formulated. The final map must satisfy N
complex conditions,

Z -B
(2.2) -=C 1- dz’, l<-k<-N.

These amount to 2N real conditions to be satisfied, but they are heavily overdeter-
mined, for the form of the Schwarz-Christoffel formula (1.2) guarantees that the angles
will be correct no matter what accessory parameters are chosen. We must reduce the
number of operative equations to N-1. This is a tricky matter when unbounded
polygons are allowed, for one must be careful that enough information about the
polygon P is retained that no degrees of freedom remain in the computed solution.
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We proceed as follows. First, we require that every connected component of P
contain at least one vertex Wk. Thus even an infinite straight boundary must be
considered to contain a (degenerate) vertex. This restriction eliminates any trans-
lational degrees of freedom. Second, at least one component of P must in fact contain
two finite vertices, and wv and W will be taken to be two such. This restriction
eliminates rotational degrees of freedom.

Now define

Z -t3i
(2.3) C (wN- we) 11 1- dz’,

i=1

where zv 1 is fixed permanently by (2.1). Next, impose the complex condition (real
equations 1, 2)

I0z ( Z(2.4a) w,- w C 1-

This amounts to two a] equations to bc satiscd.
Denote by F,,..., F the distinct connected components of P, numbered in

countcc]ockwis od. Fo each 2, impos
last vertex of F, in th counterclockwise direction, then (ca] equations , 4,. , 2)
(2.4b) w,- w C 1 z’.

0 i=1

Finally, N-2 i conditions of side
beginning at k 1 and movin counterclockwise,
qui (a] equations 2 + l, , N- l)

(2.4c) Iw+,- wl c 1- z’
z i=1

until a total of N- 1 conditions have been imposed. If P contains at least one vertex at
infinity, then every bounded side will have been represented in a condition of the form
(2.4c) except for the side (w, Wl), which is already taken care of by (2.1) and (2.4a). If P
is bounded, then the last two sides in counterclockwise order--(w_, w_1) and (w_1,

ws)will not be so represented.
We have not stated over what contours the integrals of (2.4) are defined. This does

not matter mathematically, as the integrand is analytic, but it may matter numerically.
In this work we have evaluated them always over the straight line segment between the
two endpoints, a procedure which poses no domain problems since the unit disk is
strictly convex. Figure 3 illustrates what contours are involved in computing the
integrals in (2.3) and (2.4) for a sample case with N 10, m 3.

The nonlinear system is now determined, and its unique solution will give the
unknown parameters C and z,,. , z_, for the Schwarz-Christoffel mapping. We
must, however, take note of two special cases in which the solution is not completely
determined by (2.4). It was remarked that if P is bounded, then nowhere in (2.4) does
the point w_, appear. If B-i -1 or 0, then this omission is of no consequence for the
geometry of the problem forces w_, to be correct. If B-, 0 or -1, however, then
w_, is not determined a priori. The former case is of little consequence, for since
B-i 0, the value taken for z_, has no effect on the computed mapping, as may be
seen in (1.2), nor is there any purpose in including w_, among the vertices of P in the
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FIG. 3. Contours of integration within the disk. A sample Schwarz-Christoffel problem is shown with
N 10 vertices of which m 3 vertices are at infinity, illustrating what integrals are computed to evaluate the
system (2.4): (i) radial integral along (0- Zxo) defines C (2.3); (ii) radial integral along (0- zl) determines
two real equations to fix wl (2.4a); (iii) 2 radial integrals along (0-Zs) and (0-z7) determine four real
equations to fix w5 and w7 (2.4b); (iv) 3 chordal integrals along (z3-z4), (z4-zs), and (z9-zlo) determine
three real equations to fix [W4- W31 [W W41 and IW10-- W91 (2.4c). TOTAL: N- 9 real equations.

first place. (Still, there may be problems in solving the system (2.4) numerically, for it is
now undetermined.) The latter case,/N-1 1, is more serious, and must be avoided in
the numbering of the vertices Wk.

2.2. Transformation to an unconstrained system. The nonlinear system (2.4)
ostensibly involves N- 1 complex unknown points zl,. , zN-z on the unit circle. In
dealing with such a system, we naturally begin by considering not the points z
themselves, but their arguments 0 given by

(2.5) Zk e i, 0 < Ok 2zr.

Now the system depends on N- 1 real unknowns, and the solution in terms of the Ok is
fully determined.

However, the system (2.4) as it stands must be subject to a set of strict inequality
constraints,

(2.6) O<Ok < 0k+l, 1--<k<--N-i,

which embody the fact that the vertices Zk must lie in ascending order counterclockwise
around the unit circle. To solve the system numerically, it is desirable to eliminate these
constraints somehow. We do this by transforming (2.4) to a system in N- 1 variables
yl," , yN-1, defined by the formula

Ok Ok-1(2.7) Yk =log Ok+l--Ok’ l<--k<--N-l’

where 00 and 0N, two different names for the argument of zN 1, are taken for
convenience as 0 and 2zr, respectively.
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We make no attempt to tailor the numerical solution procedure to the particular
Schwarz-Christoffel problem under consideration. In particular, all iterations begin
with the trivial initial estimate Yk 0 (1 =< k =< N 1). This corresponds to trial vertices
spaced evenly around the unit circle. The following input parameters to NS01A have
generally remained fixed: DSTEP 10-8 (step size used to estimate derivatives by finite
differences), DMAX= 10 (maximum step size), MAXFUN= 15(N-l) (maximum
number of iterations).

A fourth parameter, EPS, defines the convergence criterion--how large a function
vector (square root of sum of squares of functions values) will be considered to be
satisfactorily close to zero. We have most often taken 10-8 or 10-14 here. The choice of
EPS is not very critical, however, as convergence in NS01A is generally quite fast in the
later stages.

In the course of this work about two hundred Schwarz-Christoffel transforma-
tions have been computed, ranging in complexity from N 3 to N 20. NS01A has
converged successfully to an accurate solution in nearly all of these trials. Section 5.1
gives a series of plots showing this convergence graphically for a simple example.

3. Computation of the S-C map and its inverse. Determining the accessory
parameters is the most formidable task in computing numerical Schwarz-Christoffel
transformations. Once this is done, evaluation of the map and of its inverse follow
relatively easily. The foundation of these computations continues to be compound
Gauss-Jacobi quadrature.

3.1. From disk to polygon: w = w(z). To evaluate the forward map w(z) for a
given point z in the disk or on the circle, we must compute the integral

iz(3.1) W=wo+C 1- dz’
oY=l

with o (Zo), where the endpoint Zo may be any point in the closed disk at which the
image (Zo) is known and not infinite. Three possible choices for Zo suggest themselves:

(1) Zo 0; hence o ;
(2) Zo z for some k; hence o , a vertex of P;
(3) Zo some other point in the disk at which has previously been computed.
In cases (1) and (3), neither endpoint has a singularity, and an evaluation of (3.1) by

compound Gauss-Jacobi quadrature reduces to the use of compound Gauss quadra-
ture. In case (2) a singularity of the form (1 z/z.)-" is present at one of the endpoints
and the other endpoint has no singularity.

The best rule for computing w(z) is: if z is close to a singular point z (but not one
with w =oo), use choice (2); otherwise, use choice (1). In either case we employ
compound Gauss-Jacobi quadrature, taking normally the same number of nodes as was
used in solving the parameter problem. By this procedure we evaluate w(z) readily to
"full" accuracy--that is, the accuracy to which the accessory parameters have been
computed, which is directly related to the number of points chosen for Gauss-Jacobi
quadrature (see 4.1). Quadrature nodes and weights need only be computed once, of
course.

We should emphasize that even in the vicinity of a singularity zk, the evaluation of
the map w w(z) is inherently very accurate. This very satisfactory treatment of
singular vertices is a considerable attraction of the Schwarz-Christoffel approach for
solving problems of Laplace type. In particular, in a potential problem the Schwarz-
Christoffe transformation "automatically" handles the singularities correctly at any
number of reentrant corners.
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3.2. From polygon to disk: z = z(w). For computing the inverse mapping z
z(w), at least two possibilities exist, both of them quite powerful. The most straight-
forward approach is to view the formula w(z) w as a nonlinear equation to be solved
for z, given some fixed value w. The solution may then be found iteratively by Newton’s
method or a related device, w(z) should be evaluated at each step of such a process by
compound Gauss-Jacobi quadrature along a straight line segment whose initial point
remains fixed throughout the iteration.

An alternative approach is to invert the Schwarz-Christoffel formula

N ( .k)
-/kdW=CkI-I 1-

dz =1

to yield the formula

(3.2) dw-k=l
This inversion is possible because w w(z) is a conformal mapping, which means
Idw/dz]>O everywhere. Equation (3.2) may now be thought of as an ordinary
differential equation (o.d.e.),

dz
(3.3) d---- g(w, z),

in one complex variable w. If a pair of values (Zo, Wo) is known and the new value
z z(w) is sought, then z may be computed by applying a numerical o.d.e, solver to the
problem (3.3), taking as a path of integration any curve from Wo to w which lies within
the polygon P.

In our program we have chosen to combine these two methods, using the second
method to generate an initial estimate for use in the first. We begin with the o.d.e.
formulation, using the code ODE by Shampine and Gordon, and for convenience we
integrate whenever possible along the straight line segment from wc to w. (ODE, like
most o.d.e, codes, is written for problems in real arithmetic, so that we must first express
(3.2) as a system of first-order o.d.e.’s in two real variables.) Since P may not be convex,
more than one line segment step may be required to get from Wo to w in this way. It will
not do to take w0 wk for some vertex w without special care, because (3.2) is singular
at w.

From ODE we get a rough estimate z7 of z(w), accurate to roughly 10-2. This
estimate is now used as an initial guess in a Newton iteration to solve the equation
w(z) w. This method is faster than the o.d.e, formulation for getting a high-accuracy
answer. More important, it is based on the central Gauss-Jacobi quadrature routine
unlike the o.d.e, computation.

In summary, we compute the inverse map z z (w) rapidly to full accuracy by the
following steps:

(1) Solve (3.2) to low accuracy with a packaged o.d.e, solver, integrating whenever
possible along the line segment from wc to w; call the result zT;

(2) Solve the equation w(z)= w for z by Newton’s method, using as an initial
guess.

4. Accuracy and speed.
4.1. Accuracy. The central computational step is the evaluation of the Schwarz-

Christoffe integral, and the accuracy of this evaluation normally determines the
accuracy of the overall computation. As a consequence of the quadrature principle
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At each iterative step in the solution of the nonlinear system (2.4), we begin by
computing a set of angles {Ok} and then vertices {Zk} from the current trial set {Yk}. This is
easy to do, though not immediate since (2.7) are coupled. In this way the problem is
reduced to one of solving an unconstrained nonlinear system of equations in N- 1 real
variables.

2.3. Integration by compound Gauss-Jacobi quadrature. The central computation
in solving the parameter problem, and indeed in all Sehwarz-Christoffel computations,
is the numerical evaluation of the Schwarz-Christoffel integral (1.2) along some path of
integration. Typically one or both endpoints of this path are prevertices Zk on the unit
circle, and in this case a singularity of the form (1 zZk)- is present in the integrand at
one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-Jacobi
quadrature (see [2, p. 75]). A Gauss-Jacobi quadrature formula is a sum /=,ad Wif(Xi),
where the weights wi and nodes xi have been chosen in such a way that the formula
computes the integral +_ f(x)(1 x) (1 + x) dx exactly for [(x) a polynomial of as
high a degree as possible. Thus Gauss-Jacobi quadrature is a generalization of pure
Gaussian quadrature to the case where singularities of the general form (1- x) (1 +
x) (a,/ > 1) are present. The required nodes and weights can be computed numeric-
ally; we have used the program GAUSSQ by Golub and Welsch [5] for this purpose.

Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Christoffel
problem, and at least three previous experimenters have used it or a closely related
technique [7], [10], [13]. We began by doing the same, and got good results for many
polygons with a small number of vertices. In general, however, we found this method of
integration very inaccurate. For a typical sample problem with N 12 and Nquad 8,
it produced integrals accurate to only about 10-2, and it does much worse if one chooses
polygons designed to be troublesome.

What goes wrong is a matter of resolution. Consider a problem like the one shown
in Fig. 4. We wish to compute the integral (1.2) along the segment from Zk to some point
p. (In the parameter problem p might be 0 or Zk-1; in later computations it might be any
point in the disk.) Now direct application of a Gauss-Jacobi formula will involve
sampling the integrand at only Nquad nodes between Zk and p. If the singularity Zk/l is SO
close to the path of integration that the distance e [Zk/--Zkl is comparable to the
distance between nodes, then obviously the Gauss-Jacobi formula will yield a very poor
result. It turns out that in Schwarz-Christoffel problems the correct spacing of prever-
tices Zk around the unit circle is typically very irregular, so the appearance of this
problem of resolution is the rule, not the exception. (See examples in 5.)

To maintain high accuracy without giving up much speed, we have switched to a
kind of compound Gauss-Jacobi quadrature (see [2, p. 56]). We adopt, somewhat
arbitrarily, the following quadrature principle"

No singularity Zk shall lie closer to an interval of
integration than half the length of that interval.

To achieve this goal, our quadrature subroutine must be able to divide an interval of
integration into shorter subintervals as necessary, working from the endpoints in. On
the short subinterval adjacent to the endpoint, Gauss-Jacobi quadrature will be
applied; on the longer interval (or intervals) away from the endpoint, pure Gaussian
quadrature will be applied. The effect of this procedure is that number of integrand
evaluations required to achieve a given accuracy is reduced from O(1/e) to
0(log2 1 / e).
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Zk+l

FIG. 4. Compound Gauss-Jacobi quadrature. Division o]" an interval of integration into subintervals to
maintain desired resolution.

Figure 4 shows the intervals of integration that come into play in compound
Gauss-Jacobi quadrature. For a plot comparing the accuracy of simple and compound
Gauss-Jacobi quadrature in another typical problem see 4.1.

With the use of compound Gauss-Jacobi quadrature, we now achieve high
accuracy in little more than the time that direct Gauss-Jacobi quadrature takes. This is
possible because only a minority of integrals have a singularity close enough that
subdivision of the interval of integration is required. In the 12-vertex example
mentioned above, the switch to compound Gauss-Jacobi integration decreased the
error from 10-2 to 2 10-7.

There remains one circumstance in which integration by compound Gauss-Jacobi
quadrature as described here is unsuccessful. This is the case of an integration interval
with one endpoint quite near to some prevertex zk corresponding to a vertex wk .
We cannot evaluate such an integral by considering an interval which begins at zk, for
the integral would then be infinite. The proper approach to this problem is probably the
use of integration by parts, which can reduce the singular integrand to one that is not
infinite. Depending on the angle/3, one to three applications of integration by parts will
be needed to achieve this. We have not implemented this procedure.

The subtlety of the integration problem in Schwarz-Christoffel computations is
worth emphasizing. It is customary to dispatch the integration problem as quickly as
possible, in order to concentrate on the "difficult" questions: computation of accessory
parameters and inversion of the Schwarz-Christoffel map. We believe, however, that
the more primary problem of computing Schwarz-Christoffel integrals--the "forward"
problem--should always remain a central concern. Any numerical approach to the
parameter problem or the inversion problem is likely, to employ an iterative scheme
which depends at each step on an evaluation of the integral (1.2), and so the results can
only be as accurate as that evaluation.

2.4. Solution of system by packaged solver. The unconstrained nonlinear system is
now in place and ready to be solved. For this purpose we employ a library subroutine"
NS01A, by M. J. D. Powell [11], which uses a steepest descent search in early iterations
if necessary, followed by a variant of Newton’s method later on. (The routine does not
use analytic derivatives.) It is assumed that a variety of other routines would have served
comparably well.
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adopted in 2.3wthat no quadrature interval shall be longer than twice the distance to
the nearest singularity zk--the compound Gauss-Jacobi formulation achieves essen-
tially the full accuracy typical of Gaussian quadrature rules operating upon smooth
integrands. That is, the number of digits of accuracy is closely proportional to Nquad, the
number of quadrature nodes per half-interval, with a very satisfactory porportionality
constant in practice of approximately 1.

It is important not only to be capable of high accuracy, but to be able to measure
how much accuracy one has in fact achieved in a given computation. To do this we
employ an accuracy testing subroutine, which is regularly called immediately after the
parameter problem is solved. Given a computed set of accessory parameters C and {Zk},

-1 -i

FIG. 5(a)

10

10-8

5 10 15 20

]rquad

FIG. 5(b). Quadrature accuracy as a function of number of nodes. The error estimate Eest is plotted as a

function ofNquad[Or the polygon ofFig. 5(a). The upperand lower curves correspond to simple Gauss-Jacobi and
compound Gauss-Jacobi quadrature, respectively.
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this subroutine computes the distances Wk- Wc[ for each Wk (20 and the distances
IWk-l--Wk+ll for each Wk =o0, making use of the standard routine for compound
Gauss-Jacobi quadrature. The numbers obtained are compared with the exact dis-
tances specified by the geometry of the polygon, and the maximum error, Eest, is printed
as an indication of the magnitude of errors in the converged solution. It is now probable
that subsequent computations of w(z) or z(w) will have errors no greater than roughly
Eest.

Most often we have chosen to use an 8-point quadrature formula. Since each
interval of integration is initially divided in half by the quadrature subroutine, this
means in reality at least 16 nodes per integration. With this choice Eest consistently has
magnitude ---10-s for polygons on the scale of unity.

Figure 5b gives an indication of the relationship between the number of quadrature
nodes and the error Eest; it shows Eest as a function of Nquaa for a 6ogon which is shown in
Fig. 5a. Two curves are shown: one for simple Gauss-Jacobi quadrature, and one for
compound Gauss-Jacobi quadrature. The exact quantities here should not be taken too
seriously; examples could easily have been devised to make the difference in per-
formance of the two quadrature methods much smaller or much greater.

4.2. Speed. Any application of Schwarz-Christoffel transformations consists of a
sequence of steps; for convenience we use the names of the corresponding subroutines
in our program"

INITmset up problem
QINITmcompute quadrature nodes and weights
SCSOLV--solve parameter problem
TEST--estimate accuracy of solution
ZSC, WSC, etc.--compute forward and inverse transformations in various appli-

cations
Among these tasks INIT, QINIT and TEST all take negligible amounts of time

relative to the other computations" typically less than 0.1 secs. on the IBM 370/168 for
INIT and QINIT, and for TEST a variable time that is usually less than 5% of the time
required by SCSOLV. What remains are three main time consumers: SCSOLV, ZSC,
and WSC.

We begin with WSC, which performs the central evaluation of (1.2) by compound
Gauss-Jacobi quadrature. This evaluation takes time proportional to Nquad (the
number of quadrature nodes) and to N (the number of vertices). The first propor-
tionality is obvious, and the second results from the fact that the integrand of (1.2) is an
N-fold product. Very roughly, we may estimate

(4.1a) time to solve w w(z): 0.25 Nquad N msec.

for double precision computations on the IBM 370/168. Taking a typical value of
Nquad- 8, which normally leads to 8-digit accuracy, (4. l a) may be rewritten

(4.1b) time to solve w w(z)" 2N msec.

For the minority of cases in which the interval must be subdivided to maintain the
required resolution, these figures will be larger.

To estimate the time required to solve the parameter problem, we combine (4.1)
with an estimate of how many integrals must be computed in the course of solving this
problem. To begin with, at each iteration aboutN integrals are required by NS01A (the
exact number depends on the number of vertices at infinity). On too of this, it is a fair
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estimate to say that 4N iterations will be required by NS01A to achieve a high-accuracy
solution. We are therefore led to the estimate

(4.2a) time to solve parameter problem: Nquad N3 msec.

or, taking again Nquad 8,

(4.2b) time to solve parameter problem: 8N3 msec.

These estimates correspond fairly well with observed computation times for the
parameter problem: two problems with N 5 and N 18 may be expected to take
about 1 and 50 seconds, respectively. It is clear that computing a Schwarz-Christottel
transformation becomes quite a sizeable problem for polygons with more than ten
vertices. In particular, such computations are too time-consuming for it to be very
practical to approximate a curved domain by a polygon with a large number of vertices.

Finally, we must consider the time taken by subroutine ZSC to invert the
Schwarz-Christoffel map. This too is proportional to Nqd, and quite problem depen-
dent. We estimate very roughly"

(4.3a) time to solve z z(w): Nquad N msec.

or, with Nquad 8,

(4.3b) time to solve z z (w)" 8N msec.

Note that inverting the Schwarz-Christoffel map is only about four times as
time-consuming as computing it in the forward direction.

In practice, computational applications will vary considerably in the use they make
of a Schwarz-Christoffel transformation once the parameter problem is solved. If only a
few dozen applications of ZSC or WSC are required, then the computational time for
solving the parameter problem will dominate. If thousands of such computations are
needed, on the other hand, then the parameter problem may become relatively
insignificant. The latter situation is most likely to hold when plotting is being done, or
when a high-accuracy solution in the model domain is to be computed by means of finite
differences.

In summary, high accuracy is cheap in Schwarz-Christoffel transformations; what
consumes time is solving problems involving a large number of vertices.

5. Computed examples and applications.
5.1. Iterative process for a single example. Figure 6 shows graphically the process of

convergence from the initial estimate in an example involving a 4-gon. Routine NS01A
begins by evaluating the function vector (2.4) at the initial guess, then at each of N- 1
input vectors determined by perturbing the initial guess by the small quantity DSTEP in
each component. As a result, the first N pictures always look almost alike, which is why
the series shown begins at IT 4 rather than IT 1. Each plot shows the current image
polygon together with the images of concentric circles in the unit disk (which appear
as "contours") and the images of radii leading from the center of the disk to the
current prevertices Zk.

These pictures have an elegant bonus feature about them: they may be interpreted
as showing not only the image polygon but simultaneously the domain disk, including
the prevertices Zk along the unit circle. To see this, look at one of the inner "contour"
curves, one which is apparently circular, and the radii within it. Since w w(z) is a
conformal map within the interior of the disk, the radii visible in this circle must
intersect at the same angles as their preimages in the domain disk. Thus the inner part of
any one of these image plots is a faithful representation on a small scale of the circular
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FIG. 6. Convergence to a solution of the parameter problem. Plots show the current image polygon at each
step as the accessory parameters {zt,} and C are determined iteratively for a problem with N 4.

domain. We see in Fig. 6 that the prevertices are equally spaced around the unit circle
initially (IT 4), but move rapidly to a very uneven distribution. This behavior, which is
typical, indicates why the use of a compound form of Gauss-Jacobi quadrature is so
important (see 2.3).

The sum-of-squares error in solving the nonlinear system is plotted as a function of
iteration number in Fig. 7 for the same 4-vertex example. Convergence is more or less
quadratic, as one would expect for Newton’s method. The irregularity at iteration 19 is
caused by the finite difference step size of 10-8 used to estimate derivatives, and would
have been repeated at each alternate step thereafter if the iteration had not terminated.

5.2. Sample Schwarz-Christoffei maps. Figures 8 and 9 show plots of computed
Schwarz-Christoffel maps for representative problems. The polygons of Fig. 8 are
bounded and those of Fig. 9 are unbounded. Observe that contour lines bend tightly
around reentrant corners, revealing the large gradients there, while avoiding the
backwater regions near outward-directed corners and vertices at infinity. Like the plots
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FIG. 9. Sample Schwarz-Christoffel transformations (unbounded polygons). Contours are as in Fig. 8.

of Fig. 6, these may be viewed as showing simultaneously the image polygon and the
domain disk.

Figure 10 shows similar plots in which streamlines rather than contour lines have
been plotted, so that the configuration may be thought of as portraying ideal irrotational
fluid flow through a two-dimensional channel. To plot these streamlines an analytic
transformation of the disk to an infinite channel with straight parallel sides was used in
conjunction with the Schwarz-Christoffel transformation from the disk to the problem
domain.

5.3. Discussion of applications. The usefulness of conformal mapping for applied
problems stems from the fact that the Laplacian operator transforms in a simple way
under a conformal map. Let f: C --> C map a region flz in the z-plane conformally onto a
region fl in the w-plane, and let Az and Aw denote the Laplacian operators O/Ox+
O/Oy and 0/0u + O/Ov, respectively, where z x + iy and w u + iv. Then we may
easily show

for :12z --> suitably differentiable. A conformal map has If(z)[ > 0 everywhere; thus
from (5.1) it follows that if &(z) is the solution to the Laplace equation Az 0 in ,
subject to Dirichlet boundary conditions (z)= g(z) on the boundary Fz, then (w)=
(f-l(w)) is a solution to the Laplace equationA 0 in the image region 12w f(12z),
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(a)

(b)

(c)

(d)

FIG. 10. Sample $chwarz-Christoffel transformations. Contours show streamlines for ideal irrotafional,
incompressible fluid flow within each channel.

subject to the image boundary conditions O(w)= g(.f-l(w)) on the boundary Fw
f(Fz). (We have assumed that f maps Fz bijectively onto the boundary of f,. This is not
always true, but it is true if both regions are bounded by Jordan curves. See [8, Thm.
5.10el.)

More generally, from (5.1) we can see that Poisson’s equation, AzCh(z)=p(z),
transforms under a conformal transformation into a Poisson equation in the w-plane
with altered right-hand side:

(5.2) AwO(W) f(f-l(w))l-2p(f-l(w)).
Furthermore, more general boundary conditions than Dirichlet also transform in a
simple way. For example, the Neumann condition (a/Onz)Ch(z) h(z), where (9/(gnz is a
normal derivative in the z-plane, transforms to (a/Onw)O(w)= If(f-l(w))l-lh(f-l(w)).
We do not pursue such possibilities further here; for a systematic treatment see Chapter
VI of [9].

Traditionally, conformal mapping has been applied most often in two areas. One is
plane electrostatics, where the electrostatic potential q satisfies Laplace’s equation.
The other is irrotational, incompressible fluid flow in the plane, which may be described
in terms of a velocity potential that also satisfies Laplace’s equation. We will outline
some ways in which a known conformal map might be used in such application.
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Conformal maps do not solve problems, but they may reduce hard problems to easier
ones. How much work must be done to solve the easier problem will vary considerably
with the application.

(1) In the best of circumstances, the original problem may be reduced to a model
problem whose solution is known exactly. This is the case in the fluid flow
problems of Fig. 10, in which a crooked channel may be mapped to an infinite
straight channel of constant width.

(2) If a problem of Laplace’s equation with pure Dirichlet or Neumann boundary
conditions can be mapped conformally to a disk, then Poisson’s formula or
Dini’s formula (see [9]) provide integral representations of the solution at each
interior point. Such integrals may be evaluated readily on the computer to yield
high accuracy solutions. The primary disadvantage of this approach is that a
new integral must be evaluated for each point at which the solution is desired.

(3) If the solution will be required at many points in the domain, then it is probably
more efficient to solve Laplace’s equation by a trigonometric expansion of the
form bo + Y, kin= r k (ak sin kO + bk cos kO)’, coefficients ak and bk are selected so
as to fit the boundary conditions closely. A disadvantage of this method is that
convergence of the expansion may be slow if the boundary conditions are not
smooth.

Imw=2
-4 2

-3+ 1.5i

Im w =0, d =0

2.0

1.5

0.0

(a)

-5 0 5
X

(b)

IEI arg El

3.1 + 1.4i 1.7564 1.3082 --.3823
3.01 + 1.49i 1.9486 2.4403 --.2833
3.001 + 1.499i 1.9889 5.2137 --.2572
3.000 + 1.500i 2.0000 oO --.2500

(c)

FIG. 11. Laplace equation example: electric potential and field between two infinite sheets.

(a) Problem domain: region between two conducting sheets.

(b) Field strength along the top boundary (solid line) and bottom boundary (broken line).

(c) Computed potential and field strength at three points near 3 + 1.5 i.
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(4) Finally, if simpler methods fail, a solution in the model domain may be found
by a finite-difference or finite-element technique. For problems of Poisson’s
equation or more complicated equations this will probably normally be
necessary.

5.4. Laplace’s equation. Figure 11 presents an example of type (1) as described in
the last section. We are given an infinite region bounded by one straight boundary fixed
at potential 0 and one jagged boundary fixed at q 2. We may think of this as an
electrostatics problem. The central question to be answered computationally will be"
what are the voltage and the electric field E -Vq at a given point, either within the
field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-Christoffel
transformation, then analytically onto an infinite straight channel (as in the examples of
Fig. 10). In the straight channel q and E are known trivially, and this information may
be transferred to the problem domain through a knowledge of the conformal map that
connects them and of its (complex) derivative. We omit the details, which are straight-
forward.

Figure 11 (b) shows IEI as a function of x on the upper and lower boundaries of the
region. To see more of the behavior of the solution field near a reentrant corner, we also
compute the field at three points near 3 + 1.5i. These results are given in Fig. 11 (c).

5.5. Poisson’s equation. Consider the 7-sided region shown in Fig. 12(a). We wish
to solve Poisson’s equation

AS(x, y) 1/2 sin 2x(1- 2(y + 1)2)

(a)

Transformation
Grid and setup Fast Poisson
(r O) time solver time Max. RMS

4 x 8 1.3 secs. <.01 secs. 0.132 0.0309
8 16 2 secs. .01 secs. 0.055 0.0085
16 32 5 secs. .03 secs. 0.031 0.0037
32 x 64 16 secs. .15 secs. 0.026 0.0012

(b)
FIG. 12. Poisson equation example. Problem is transplanted conformally to the unit disk and solved by

finite differences.
(a) 7-sided problem domain, including image of 16 x 32 finite-difference grid in the unit disk.
(b) Computed results for four different grids. Time estimates are [or an IBM 370/168.
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on this region, subject to Dirichlet conditions

qb(x, y)=p(x, y)= sin 2x(y + 1)2

on the boundary. We proceed by mapping the domain to the disk and solving a
transformed problem in the disk in polar coordinates by means of a second-order fast
finite difference solver (PWSPLR, by P. Swarztrauber and R. Sweet). p(x, y) is the
correct solution in the interior as well as on the boundary, so we can determine the
accuracy of the numerical solution.

This is not as satisfactory a procedure as was available for Laplace equation
problems. According to (5.2), the model problem here is Poisson’s equation in the disk
with an altered right-hand side containing the factor If’(z)l 2, where f is the composite
map from the disk to the 7-gon. Two difficulties arise. The first is that to set up the
transformed equation in the disk, p(wij) must be computed for every wij w(zi) which
is an image of a grid point in the disk. This is time consuming, one hundred times more
so in this experiment than the fast solution of Poisson’s equation once it is set up.
Second, I"(z)l2 is singular (unbounded, in this example) at each prevertex zk, and this
appears to interfere with the second-order accuracy which we would like to observe.
The table in Fig. 12(b) attests to both of these problems.

5.6. Eigenfrequencies of the Laplace operator. Petter Bj0rstad (Computer
Science Dept., Stanford University) has recently combined the present Schwarz-
Christottel computation with a fast finite-difference scheme to successfully compute
eigenvalues and eigenvectors of the Laplacian operator on polygonal regions. These
results may be interpreted as giving the normal modes and frequencies of a thin
membrane in two dimensions, or of a three-dimensional waveguide with constant
cross-section. This work will be reported elsewhere.

6. Conclusions. A program has been described which computes accurate Schwarz-
Christoffe transformations from the unit disk to the interior of a simply connected
polygon in the complex plane, which may be unbounded. Key features of the compu-
tation have been:

(1) choice of the unit disk rather than the upper half-plane as the model domain,
for better numerical scaling ( 2.1);

(2) use of complex contour integrals interior to the model domain rather than
along the boundary, making possible the treatment of unbounded polygons
(2.1);

(3) use of compound Gauss-Jacobi quadrature in complex arithmetic to evaluate
the Schwarz-Christoffel integral accurately ( 2.3, 3.1);

(4) formulation of the parameter problem as a constrained nonlinear system in
N-1 variables ( 2.1);

(5) elimination of constraints in the nonlinear system by a simple change of
variables ( 2.2);

(6) solution of the system by a packaged nonlinear systems solver; no initial
estimate required in practice ( 2.4);

(7) computation of a reliable estimate of the accuracy of further computations,
once the parameter problem has been solved ( 4.1);

(8) accurate evaluation of the inverse mapping in two steps by means of a
packaged o.d.e, solver and Newton’s method ( 3.2).

Previous efforts at computing Schwarz-Christoffel transformations numerically
include [1], [6], [7], [10], and [13]. The present work differs from these in that it deals
directly with complex arithmetic throughout, taking the unit disk rather than the upper
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half-plane as the model domain and evaluating complex contour integrals. This makes
possible the computation of transformations involving general unbounded polygons.
(Cherednichenko and Zhelankina [1] also treat unbounded polygons, by a different
method.) Two other important differences are the use of compound Gauss-Jacobi
quadrature, and the application of a change of variables to eliminate constraints in the
nonlinear system ((5), above). We believe that our program computes Schwarz-
Christoffe transformations faster, more accurately, and for a wider range of problems
tha previous attempts.

A variety of directions for further work suggest themselves. Here are some of
them.

(1) More attention should be paid to the problems of evaluating the forward and
inverse S-C maps once the parameter problem has been solved. The two-step
method for the inverse map described in 3.2 is reliable, but it uses too much
machinery. Recently Petter Bj0rstad and Eric Grosse of Stanford University
have replaced (3.1) with a power series expansion for problems in which all the
nodes of a finite-difference grid must be mapped from one domain to the other,
thereby speeding up the evaluations of w(z) and z(w) by an order of magni-
tude. This kind of addition is very important for applications.

(2) The program could easily be extended to construct maps onto the exterior of a
polygonmthat is, the interior of a polygon whose interior includes the point at
infinity. This extension would be necessary, say, for applications to airfoil
problems.

(3) It should not be too great a step to raise the present program to the level of
"software" by packaging it flexibly, portably, and robustly enough that naive
users could apply it easily to physical problems. Conformal mapping is
currently far behind many other areas of numerical mathematics in the
development and distribution of software.

(4) The program might be extended to handle the rounding of corners in Schwarz-
Christoffe transformations (see [8]). What about mapping doubly or multiply
connected polygonal regions, perhaps by means of an iterative technique
which computes an S-C transformation at each step?

(5) More generally, the Schwarz-Christoffel formula should be viewed in context
as a particularly simple method in conformal mapping which is applicable only
to a limited set of geometries. Direct comparisons with programs that can treat
curved boundaries, especially those based on integral equations, would be
informative. In some applications the S-C transformation might profitably be
used as part of a larger program. In fact, the S-C formula (1.2) itself has a
natural generalization to the case of curved boundaries, which may be obtained
formally by allowing an infinite number of vertices with infinitesimal external
angles. R. T. Davis [3] has implemented this formula numerically with very
promising results.

Most important, further work is needed in the direction of applications to Laplace’s
equation, Poisson’s equation, and related problems. Irregular or unbounded domains
are generally troublesome to deal with by standard techniques, particularly when
singularities in the form of reentrant corners are present. Schwarz-Christoffel trans-
formations offer a means of getting around such difficulties in a natural way. More
experience is needed here.

Note. This work is described in more detail in [12], and a program listing is given
there. An experimental copy of the package with documentation and sample driver
programs may be obtained from the author.
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