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REAL POLYNOMIAL CHEBYSHEV APPROXIMATION
BY THE CARATHIODORY-FEJIR METHOD*

MARTIN H. GUTKNECHT- AND LLOYD N. TREFETHEN:

Abstract. A new method is presented for near-best approximation of a real function F on [-r, r] by
a polynomial of degree m. The method is derived by transplanting the given problem to the unit disk, then
applying the Carath6odory-Fej6r theorem. The resulting near-best approximation is constructed from the
principal eigenvalue and eigenvector of a Hankel matrix of Chebyshev coefficients of F.

It is well known that as - 0, the mth partial sum of the Chebyshev series of F agrees with the best
approximation to a relative error O(’r). In contrast, our approximation is shown to differ from best by at
most O(7"2m+3). m similar result is given for approximation on [-1, 1] as m oe. Such high-order agreement
is of both practical and theoretical importance. In particular, it establishes a real analogue of the phenomenon
that on the complex unit disk best approximation error curves tend to closely approximate circles.

Several numerical examples are presented.

Introduction. Two main ideas are combined in this paper. The first is that by
means of the Joukowski map x =1/2(w + w-a), the real Chebyshev approximation
problem on the unit interval [-1, 1 can be related to a complex Chebyshev approxima-
tion problem on the unit disk Iwl < 1. Under this transplantation near-best approxima-
tions for one problem often correspond to near-best approximations for the other,
and so an approximation method for one problem can be carried over to the other.
The second is that exceedingly good near-best approximations on the unit disk can
be computed by an application of the Carath6odory-Fej6r theorem, which involves
the principal singular value and singular vector of a Hankel matrix of Taylor series
coefficients. Transplanting this technique to [-1, 1] leads to a powerful real near-best
approximation method that is based upon the principal eigenvalue and eigenvector
of a Hankel matrix of Chebyshev series coefficients of the function to be approximated.

Both of these ideas take advantage of the phenomenon that in approximation
on the unit disk best approximation error curves tend to closely approximate perfect
circles. The complex "CF method" was developed by Trefethen in response to this
phenomenon, partly to explain and partly to exploit it [18], [19]. The transplantation
technique was proposed in connection with Pad6 approximation by Frankel, Gragg
and Johnson [5], [7], and has been extended by Gutknecht [8]. Combining the two
leads to the conclusion that a real best approximation error curve not only equioscil-
lates, but also approximates the real part of a multiply winding Blaschke product in
the complex plane. In fact, the great majority of analytically known examples of
Chebyshev approximations are either complex examples with perfectly circular error
curves (finite Blaschke products), or transplantations of these to a real interval. Such
examples will be discussed in a unified way by Gutknecht in a forthcoming paper.

Both the Joukowski transplantation and the CF theory extend to rational approxi-
mation; for the latter see [9] and [19]. However, as the rational theory is more
complicated and as some of its results are more limited, this paper is confined to the
polynomial case. Section 1 presents the CF method. Section 2 establishes two a
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posteriori theorems to the effect that if the error curve of some approximation nearly
equioscillates, then the approximation is close to best. Section 3 applies these theorems
and asymptotic results from [18] concerning approximation on small disks to the
problems of approximation on [-r, ’] as r -> 0 (Theorem 3.4) and on [-1, 1] as m -> oo
(Theorem 3.5). Section 4 presents a few numerical examples.

1. Description of the method. Let the unit interval, disk and circle be denoted
I [-1, 1], D {z: Izl<l} and 0D {z: Izl 1}, and let I(-) [-r, -]. Let I1" III(’r), I1" IIc3O,
etc. be the corresponding supremum norms. In the sequel x will generally denote a
real and w a complex variable; lower case letters will be used for functions of w and
upper case for functions of x.

We begin with a real function F(x) that is continuous on I(r). Let P*m denote
the unique best approximation to F of degree at most m with respect to II" [li(,). For
any finite >_-0, F possesses a partial Chebyshev expansion of the form

(1.1) F(x) El(X) + Rl(x) 5 ’ akTk +R(x),
k=0

where each coefficient ak is defined by an inner product (cf. [2, p. 117])

ag F(x T 277" 47"2 X

Our fundamental transplantation is the map

1
(1.2) x x(w) -(w + w-),

which for x I(’), w OD leads to the well-known formula

(,x_)(1.3) T =(w+w
In particular,

(1.4)

where

M1
S’. a(wFM(x)-F,(x)

k=m*l
+w-k)= 1 [(w)+(w-)],

M

(1.5) f(w)=-- agw .
k=m+l

Here is the version of the Carath6odory-Fej6r theorem that we shall make use of"
TaEOREM 1.1. f has a unique extension q of the form

M

q(w)= bgw ,
with b ak for m + 1 <-k <-M, thatis analytic outside OD and bounded there except
near the pole at , and has minimal norm [Iqlloo among all such analytic extensions.
q is given by the Blaschke product

(1.6) q(w)=Aw
M-m-1

M Lll "t- "1" lM_mW
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where A is the largest eigenvalue in absolute value of the real symmetric Hankel matrix

(1.7) A

am+2 aM

a"1.+2
0

k aM

and u (ul," , UM-m)r is a corresponding real eigenvector.
Proof. Due to Carath6odory and Fej6r [1] and Schur [15]. See also [6], [18] and

[19]. 1
From (1.6)it follows that Ilqlloo-[A[, Takagi [17, p. 17] showed that there is

always an eigenvector u with u # 0 so the coefficients {bk} can be computed recursively
by

-1
(1.8) bk:=(bk+lU2+ "+bk+M-m-lUM-m), k=m,m-1,.

Ul

The CF method for near-best approximation on 0D [18] consists of taking
---0 bw as an approximation to f(w). Such a truncation of q can be transplanted
by (1.2) to provide a corresponding near-best approximation on I(’). Here even more
accuracy can be achieved than in the complex case, however, for q can be truncated

cfat the term k =-m rather than k 0. We define the real CF approximation P,,,M of
F on I(r) by

(1.9) P,M(x)=F,(x)- 2 bTll

pCmf,M is related to

(1.10) p(w)=-- Z bw

by

(1.11)
1P.M(X)-F,(x) [p(w)+ p(w-1)].

In particular, for x e I(r),
cf(1.12) P,,,M(X)-Fm(x) Re p(w),

and from (1.4),

(1.13) FM(x)-F,,(x) Re f(w).

From these equations it is apparent that if f-p is nearly circular on OD with winding
cfnumber at least m + 1, then FM- P,n,M will nearly equioscillate on 1(7-) at a set of at

least m + 2 points.
It follows from Theorem 1.1 that in complex Chebyshev approximation on the

unit disk IA] provides a lower bound for the optimal error:

One might speculate that the same would hold for real approximation on an interval,
but this is not true. A counterexample is degree-0 approximation on [-1, 1] to

F(x) 4x-4x3= Zl(X)- Z3(x)= Re (z -z3).
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In this problem

while the optimal error is

1.540.

2. Two a posteriori estimates for near-best approximation. If F-P,, nearly
equioscillates on a set of m + 2 points in I(r) then, by the de la Vall6e Poussin inclusion
theorem, P, approximates F with nearly minimal error. We wish to conclude that
IIP-P*I[ is small. Such a conclusion can be derived from either a strong unicity
theorem or a theorem on Lipschitz continuity of the best approximation operator [2,
pp. 80-82]. In either case, we need here a constant that is uniform for all intervals
I(r) in some range r (0, r0], and we need to know how it depends on m.

The existence of a uniform strong unicity constant or a uniform Lipschitz constant
(the former implies the latter) is guaranteed under suitable assumptions, cf. [4], [10],
[13]. Essentially, one needs to have that for each r there exists an alternant with well
separated points. Here, we make a more specific assumption, namely that the alterna-
tion points are close to the Chebyshev abscissae.

THEOREM 2.1. Let P,, be an arbitrary approximation to F of degree at most m on
I(r). Suppose there exist m +2 points TXo>X1 >’’’ >Xm+l --T in I(’) on which
F-Pm alternates in sign with

(2.1) IIF-P.II,()-m!n I(F-P,.)(x)I e

for some e, and suppose that xi r cos 4’i with

(2.2) ,,]Tr 1
bi- m / 1

-<-
2x(m +1

for each ] and some ,,( > 1. Then

(2.3) IIP, P*[II(,)<= e

where

K (2m +1)

Proof. It is easy to construct a continuous function/6 with lip- Fib(,)= e/2 such
that/-P,, exactly equioscillates between +/-IIP-PII, on the point set {x.}. Pm is
then the best approximation to/ on I(r). To prove the theorem, it will suffice to
show that 1/K is a lower bound (uniform in r) for the strong unicity constant of
and P,,. This will imply that 2 is a corresponding Lipschitz constant [2, p. 82], i.e.,
that if/ is any continuous function on I(r) and "*P, its best approximation, then

Choosing/ F will yield (2.3).
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To compute K we use a construction presented by Cline [3], which in essence
appears also in an earlier paper of Maehly and Witzgall [11]. To begin with, one has

(2.4) 1-= min max sign {(P-P,)(xj)}O(xj),

where Q is any polynomial of degree m and norm 1; cf. [2], [3]. But, as shown by
Maehly and Witzgall and by Cline, one may restrict Q in (2.4) to range over the m + 2
polynomials QdlIQII[,(,, where QI interpolates sign(ff’-Pm)on {x}l"

(2.5) (-1)iO’Ol(Xi) 1 /j * I.

Moreover, max{llQ/ll(,)}"+1---0o

Now Ql(" cos &) is a trigonometric polynomial of degree m in 6, which implies
by Bernstein’s inequality

[dOt(r cs )l mllOl[li;

see, e.g., [14, p. 103]. Setting xf r cos (f/(m + 1)), we get from (2.2) and (2.5)

1
(2.6) Ol(Xf)l 1 + mlOlll,

2x(m + 1)a"

Cline showed, in an example [3, 4], that (-1)O(x) I(V] # l) implies [lO[[z.
2m + 1. Together with (2.6) this implies

and therefore

Remark. Condition (2.2) may be replaced by

-1

7"

=2x(m +1)3"

The proof remains the same except that now A. A. Markov’s inequality [14, p. 105]- m2llQl[li) is required.
The estimate (2.3) is best possible in the sense that tends to the strong unicity

constant for the extremal signature {(xf, (-1)i)}’G as X c.
For asymptotic results for m oo on a fixed interval, we will need a result with

a weaker hypothesis than (2.2).
THEOREM 2.2. Suppose the assumptions of Theorem 2.1 hold except that (2.2) is

weakened to

(2.7)
m+l -2(m+1)"

Then

for some K > 0 (independent of m).
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Sketch of proof. As in the proof of Theorem 2.1, we show that, for each with
O<-I <- m + 1, IIQlllZ(,)is bounded by K". One way to do do this is to write Ql in
Lagrange interpolation form as a sum

(2.8)
m+l m+l

( X Xk )O/(x)=r Y (-1)i [I
x/=o k=0 X k

jl kj,l

If Xk X for all k, then each denominator 1-[ (xi-xk) in (2.8) is bounded in magnitude
from below by (m + 1)2-m-1. One the other hand, from (2.7) it can be shown that no
term (Xi--Xk)- increases by more than a fixed proportion, independent of m, when
{x} is replaced by {Xk}. Moreover, each numerator 1-I (X--Xk) is bounded by 2".
Therefore each summand of (2.8) is bounded by Km/(m + 1) for some K. 71

3. Asymptotic results for small intervals. For the following results we specialize
to the case M 3m + 3, which turns out to be the minimal appropriate choice for real
CF approximation on small intervals. (For practical computation on finite intervals
there is no reason to stop at M--3m / 3. However, it is an artifact of the theorems
here that although the same orders of convergence with respect to r can be established
with any M -> 3m + 3, the associated constants grow worse as M increases.) Therefore
let P denote P,3m+3 from now on. Note that {ak}k=o, pCrm, P, etc. depend on r.
For convenience, we shall assume in all proofs, without loss of generality, that Fm --0.

All of our asymptotic results are based on the following facts from [18] concerning
the CF extension q of Theorem 1.1.

LEMMA 3.1. Let the Taylor coefficients {a} off satisfy

(3.1) [am++l <= 71[am+ll 0 for 1 <_-- <_-- 2m + 2.

Then there exist constants ro > O, a > O, fl > 0 such that, for all r <- to,

(i) q has winding number exactly m + 1 on OD

(ii)

(3.2) Ilq-a+lwm+’]]o <-9/m + lrla+ll;
(iii)

(3.3) 2m

In particular this holds for ro , a 3, [3 6.
Proof. (i) and (iii) follow by applying [18, Lemma 7] with v M- m 1 2m + 2

and z W
-1 to f(w)/(am+l wM).

To prove (ii), we use the inequality

k=0

from the proof of [18, Thm 9]. From (3.3) we readily derive

-1

Ibl a2m+2(’)m+2[am+ll/(1 [3"r)

under the stated bounds for a,/, r. From (3.1) we also have

3m+3 72Y. Ib l
k=m+2
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72Since 5 + x/8(m + 1)+f <= 9",/m + 1, these three inequalities imply (ii). [3
Lemma 3.1 implies that F-P nearly equioscillates on I(r).
LEMMA 3.2. Assume that (3.1) holds with r <- 73-5, and analogously that the remain-

der term of (1.1) satisfies

(3.4) [IF- FM[II(r) fIR 3m+3 Ill(r)
2m+3

Then
(i) for all w OD (hence all x x(w) I(r)),

(3.5) F(x)_pCrm(X)_(1 b__.] Re q(w)
am+l /

1
<-- (22r)2m+31am+1i;

(ii) there exist m + 2 points r Xo > x >" > Xm+l --r in I(r) on which F-P
alternates in sign and such that

(3.6)

(iii)

(3.7)

(3.8)

(iv) and i in addition r <- (10x/m + 1)-1,

xi r cosb, with
1 6r

m+l x/m+l

Proof. The idea of the proof is to show that f-p is circular up to O(r2m+2) on
0D, hence that Ft-P equioscillates up to O(r2m+2) on I(r). Such a development
leads naturally to an exponent 2m + 2 in (i), (ii) and (iii). However, it turns out that

+1since Re w-m-l= Re w on OD, the term of degree k =-m- 1 that dominates the
deviation of f- p from a circle fails to introduce any deviation from perfect equioscilla-
tion in Fv-P. This is the reason for the higher exponent 2m +3 in (i) and (ii).
Unfortunately, keeping track of this "bonus" will lengthen the proof.

Proof of (i). By (3.3) we get for all w OD

q(w) + p(w)-- f(w)-- b-m-l W-m-al
(3.9)

--m-2

Ib l la +ll 2+2 (r)t- lam+iI.
k=-m 1=2m+3 a 1 -fir

Now, due to (1.12) and (1.13),

am+l /

[F(x)-F(x)] + Re {/(w)- p(w)- q(w) + b--lW-m-a }

b -m-1 -m-1+ Re{q(w)-a+w }.
am+l

By noting that Re w

(3.10)

--m--1 m+lRe w and
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due to (3.3), and by using (3.2), (3.4) and (3.9), we get

am+ ,I

(3.)
2m+22m+31 Ce )2m+2x/m 2m+3+ + 9(a/3 +1 lam/l.--< 1 z 1

In particular, for 3,/3 6, r-<_, one obtains (i) after some numerical estimates
that use the bound x/m + 1 <- 2"/.

Proof of (ii). Since q has real coefficients and maps 0D onto a circle of radius
about 0 whose winding number is re/l, there are m+2 ordered points 1=
w0, w,. , w,+ =-1 on the upper half of 0D such that

(3.12) Req(wj)=q(wj)=O-q(-1)ilAI, ]=0,... ,re+l,

where Crq +1. Let xi x(wj) be their images under (1.2). If we can show that the
right-hand side of (3.5) is smaller than (1-b-m-1/a,,/)lhl, then (3.6) follows from
(3.5). Now, since

M m+l

q(w)- Y’. akw= Y bgw
k=m+2 k=-o

m+lmay be thought of as a CF extension of a,+lW its norm is at least equal to that
m+lof the minimal extension, which is a,+lW itself. Consequently, using (3.1) again,

we have

M

(3.13) I*1 Ilqll0D ela.+l- E
k =m+2

So for (3.6) is suffices to show that

1 m+31am 70( b_=_m_l(22r) 2 +l <- 1
am+l ]

This inequality is easily derived from (3.10) under the assumptions on a,/3, r.

Proof of (iii). By (3.1) and the minimality of q,

(3,14) I Ilqlloo -<_ II/q[oo <-_ 1+1_"
Hence, from (3.5) and (3.10), we conclude

If(x)-P(x)-Re q(w)[ <- " (OlT)2m+2-l-" (22T)2m+3 lam+,l

<= (22,r)2m+21am+ll
which implies (3.7).

Proof of (iv). Finally, if r <_-(10/m + 1)-, then by (3.2)

IIq am+l Wm+III,gD 94m + lrlam+ll--<1 la,,+ll.

In particular at w. e ii, by (3.12),

’q(-1)il/I
sign(a,,+) e l= =--la + l 10’
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which implies rq sign (am+l) and therefore

i(,,+1)6, _< 9/m + 1 r <
9

=10’

hence, by elementary trigonometry and (3.13),

Isin((m + 1);)1 < la.+,194m + lr < 104m + lr =< 1

This implies that the arguments &j satisfy

(m + 1) bj-
m +--- -< 104m + lr sin-l(1)-< 16x/rn + lr,

which proves (iii). 71
Lemma 3.2(ii) implies, by the de la Vall6e Poussin theorem, that if the Chebyshev

coefficients of F fall off faster than powers of , thenP achieves near-minimal error:

(3.15)

By means of Lemma 3.2(iv) and the results of 2, one could go further and derive a
similar bound on Ile-e*ll,(,. However, the constants involved here (72, 22, etc.)
are much too large for such estimates to be useful or realistic. Instead, our purpose
is to apply Lemma 3.2 to derive orders of dependence on r of [leg-eLIl,(, and other
quantities. The reason for taking such pains with numerical constants has been to
make sure that Lemma 3.2 can treat both r 0 and m m.

We will need a lemma relating Taylor and Chebyshev coefficients. The proof,
which we omit, is based on the formula

a=2 c+2
/=0

which holds for sufficiently small r if F is analytic at x 0.
LEMMA 3.3. Let F be at least k + 2 times differentiable at x O, with kth Taylor

coecient c F)(O)/k. Then as 0

(3.16)

IfF is entire and

a 21-krkCt + O(Tk+2).

(3.17) lim / ic/__l
k-, Ck

then (3.16) holds uniformly in k as
Here is our main theorem on approximation on small intervals’
THZORZM 3.4 (r 0). LetFbe anyfunction with a Lipschitz continuous (3m + 3)rd

derivative at x 0 and satisfying Fm+X)(O)/(m + 1)! c,+a O. For each " > O, letP
be the CF approximation to F on I(r) defined by (1.9) with some fixed M >= 3m + 3,
and let E* denote [IF-P*II,,. Then as r- 0 E* decreases according to

(i) E* Ic,,,+,12-’’m+(1 / O(’2));
the CF method is accurate to the orders

(ii) I,l E*(1 + O(r2"+2)),
(iii) I[F PII,) *(1 + O(r2"+3)),
(iv) IIPZ-P*II,- O(E*’r2m+3);
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and the best approximation error curve has the property
(v) II(F-P*,,)(x)-Re (w)[[,(,= O(E*r2"+3),

where is a scalar multiple of some (m + 1)-winding Blaschke product that is real on
the real axis, is analytic in 1 <-[w[ < oo, and has winding number m + 1 on OD.

Proo] (cf. [18, Thm. 10]). We continue to assume M 3m + 3, so that Lemma
3.2 is directly applicable. For larger M the constants grow worse but the orders are
unchanged.

Statement (i) is well known and not difficult to prove; see Nitsche [12, Thm. 4].
Lemma 3.3 and the Lipschitz assumption imply that, although the assumptions

of Lemmas 3.1 and 3.2 may not hold for F, for some sufficiently small 3’ > 0 they
must hold for the function F defined by 16(x)= F(yx). Since approximation of O on
I(r) is equivalent to approximation of F on I(yr), and since O(r2m/3) is equivalent
to O((y’)2"/3), it follows that to prove (ii)-(v) we may assume, without loss of
generality, that (3.1) and (3.4) are satisfied. Lemmas 3.1 and 3.2 are therefore
applicable. (ii) and (iii) then follow from (3.7) and (3.6) together with the de la Vall6e
Poussin theorem. Because of (3.8), Theorem 2.1 or 2.2 can also be applied to (3.6)
to give (iv). Finally, (v) follows from (iv), Lemma 3.1(i), and (3.5), taking

q=(1-(b-,,-1/am+l))q.

Essentially the same argument yields an almost equally powerful theorem for
approximation as m oo on a fixed interval.

THEOREM 3.5 (m oo). LetF be an entire junction whose Taylor series coefficients
satisfy (3.17). Let O >0 be arbitrary. For each m >-O, let P be the CF approximation
to F on I defined by (1.9) with M= 3m +3, and let E* denote IIF-PLIII. Then as
m oo, E* decreases according to

(i) E* 1c,+112-’(1 + O(p2));
the CF method is accurate to the orders

(ii) IAI E*(1 +
(iii) IIF-PII, E*(1 +
(iv) llP-P*llz O(E*p=m+3);

and the best approximation error curve has the property
(v) II(F-P*m)(x)-Re (w)ll, O(E*p2m+3),

where is a scalar multiple of some m + 1-winding Blaschke product that is real on the
real axis, is analytic in 1 <-Iwl < oo, and has winding number m + 1 on OD. Statements
(i), (ii) and (iii) still hold if the factor /- is removed from the hypothesis.

Proof (cf. [18, Thm. 11]). Given r > 0, approximating F(x) on I is equivalent to
approximating (x)=-F(x/r) on I(r), as in the last proof. Lemma 3.3 and (3.17)
imply that for any p, there is some mo> 0 such that for all m >- too, all of the assumptions
of Lemma 3.1 and 3.2 are satisfied with r p/(22K), where K is the constant in
Theorem 2.2. The proof now runs like the last one except that only Theorem 2.2,
not Theorem 2.1, can be used, as the right-hand side of (3.8) is only guaranteed to
decrease like (m +.1__) -1, not (m + 1)-2.

If the factor /k is eliminated, then the extra assumption for Lemma 3.2(iv) may
no longer be satisfied, so (iv) and (v) need no longer hold.

Theorem 3.5 does not apply to functions with some Taylor coefficients that are
zero or very small, such as even or odd functions, but it is an easy matter to generalize
it in this direction. Let (3.17) be modified to assert that for some increasing sequence
of indices {mj}, ICmi+l[ dominates its successors according to

lim sup C’m’+l+l (mi)l/2=O.
jcx3 l>=l Cmi+
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Then the conclusions of Theorem 3.5 hold for m m

cf4. Numerical examples. Given F as in (1.1), our procedure for constructing P,n,M
consists of four steps:

(1) Compute the first M Chebyshev coefficients {ak} by projecting F to 0D by
(1.2), then applying the fast Fourier transform (FFT).

(2) Find the largest eigenvalue of A in absolute value and a corresponding
eigenvector by means of routines from EISPACK [16].

(3) Compute bm, bm-1,’",b-,, recursively with (1.8). A few additional
coefficients b-,,-1, b-,,-2, can also be computed for an estimate of how much the
error curve of P,t will deviate from a circle.

cf(4) Construct P,,,M as a sum of Chebyshev polynomials with (1.9), and convert
it to a single polynomial if desired.

Details of this procedure for the problem of complex rational CF approximation
are given in [19]. In practice the most time consuming step is (2). The speed of this
eigenvalue computation depends critically on the dimension of A, which in turn
depends on what value M is large enough to make the difference between F and FM
negligible. Therefore CF approximation is fastest for smooth functions F whose
Chebyshev series decrease rapidly. Step (1) is also fastest in this case, as fewer points
may be taken in the FFT. Moreover, the CF method is itself most accurate when F
is smooth.

For a given near-best approximation P, to F, define

(4.1) aE IIF-P.,I[, -m!n [(F-gm)(Xi)],

where the points xi belong to an alternant of length m +2 that yields the smallest
such difference. The de la Vall6e Poussin theorem then gives the bound

(4.2) IIF -P*II IIF-ell [IF- e*ll + a.
cfIf Pm= P,n,M, this bound is generally very tight.

For example, Tables 1 and 2 summarize the behavior of the CF approximant
cfP,,M for the functions F(x)= e and F(x)= In ((x + 3)/2). M has been taken here to

be 25, which is more than enough to make FM F (hence Pm,MCf pcf,,,oo) negligible in
both cases. Each computation took around 0.05 sec. on an IBM 370/168, excluding
the time spent searching for extrema to apply (4.1). These tables show how extra-
ordinarily accurate the real CF method can be.

Table 3 shows comparable numbers for approximation of a function that is not
smooth, F(x)= Ixl. Now M 120 has been used, leading to computation times of

cf cfroughly 2 sec. Even so, for the final entry of the table Pm,--Pr,, was not negligible,
so that AE is greater there than it would have been had M been larger.

Figure 1 shows error curves for various CF approximations on [-1, 1]. These
give further indication that the method is best suited to approximation of smooth
functions.

The asymptotic behavior predicted in Theorem 3.4 can readily be observed
numerically. For example, consider approximation of e on I-r, r] with m 1. Table
4 shows IIF-PII( and the quantity AE for 7=4, 2, 1, , 1/4. As -40 one should
observe liE- rP,III(-) O(r2) and hence AE The final
column indicates that in this example AE behaves like

AE (0.128407)7 + 0(7"9).



CHEBYSHEV APPROXIMATION, CARATHtODORY-FEJtR METHOD 369

F(x) e
x

F(x) .i- x

O.OOO002

0.000000

-000002

0.04

0.0;

0.00

-0.0;

-0.04

-LO 0.5 0.0 0.5 1.0

m=2

m=6

O.OOt

0.0o0

-o.ooi

0.02

0.00 m 2

-0.02

-t.O -0.5 0.0 0.5 1.0

m=6

0.0 m= 2

or 3

-0.I

b.o6

0.04

0.02
m: 6

0o00
or 7

-0.02

-0.04

-LO -0.5 0.0 0.5 LO

FIG. 1. Error curves for various real CF approximations on [-1, 1].
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TABLE 1.
CF approximation to F(x) e on [-1, 1].

m I1 IIF-PII, AE

0 1.19608 42668 1.17540 99930 4.2 (-4)
1 .27879 94302 .27880 18479 6.0 (-7)
2 .04501 73878 .04501 73884 1.8 (-11)

TABLE 2.
CF approximation to F(x) In (x + 3)/2 on [-1, 1].

m IAI IIF-PII, mE

0 .34571 10782 .34664 79871 1.5 (-4)
.02982 95424 .02983 01138 1.3 (-7)

2 .00342 39799 .00342 39808 2.1 (-10)
3 .00044 16161 .00044 16161 <7 (-13)

TABLE 3.
CF approximation to F(x)-lxl on E-l, 1].

m IAI IIF-PII, AE

0 or .44827 .53396 6.8 (-2)
2 or 3 .11359 .13901 2.3 (-2)
4 or 5 .06161 .07587 1.4 (-2)
6 or 7 .04185 .05179 9.6 (-3)

TABLE 4.
Degree CF approximation to F(x) e on [-’r, "r] for various

IIF Prll AE AE/R

16.79618 25729 1.4(-2) .13515
1.51410 48013 8.1(-5) .13025
.27880 18479 6.0(-7) .12908
.06425 18670 4.5(-9) .12856
.01573 37522 3.5(-11) .12844

Thus not only is the convergence of the order predicted, but the constant term is very
small.

Acknowledgment. We are truly indebted to the referee, who read the manuscript
with remarkable care and corrected an error in the proof of Lemma 3.1.

Note added in proof. The authors have become aware that some aspects of the
"real CF method" appear in the work of Bernstein, Achieser, Talbot, Clenshaw,
Darlington, Lam, D. Elliott, Hollenhorst, and G. H. Elliott (in historical order).
References will be given in [8]. In particular, M. Hollenhorst derives in his dissertation
(Universitiit Erlangen-Niirnberg, 1976) nonasymptotic error bounds for the poly-
nomial approximation defined by (1.9) with the lower bound -m in the sum replaced
by 0. Because of this replacement, his approximation is considerably further from the
best approximation than ours.
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