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Abstract. We consider the problem of rational Chebyshev approx-
imation of an analytic function on the unit disk, and survey known
results related to nearly-circular error curves and to the
Carathécdory-Fejér (CF) method for near-best approximation. The
real CF (or Chebyshev-CF) method for approximation of a contin-
uous real function on an interval is also described.

1. THE PROBLEM .

This paper will present a relatively easygoing account of
some recent developments in complex Chebyshev approximation that
relate to "the CPF method", to "nearly circular error curves”, and
to “the AAK theory”. This should be a good introduction to the
second lecture of Gutknecht in this volume [4], where the CF table
and related matters are studied carefully. Also closely related
are the third lecture of Henrici [10], where the ideas described
here are applied to analyze the asymptotic behavior of best
approximations, and the lectures of Meinguet [12], where the AAK
theory is developed in an elegant way at a higher level. Most of
the material presented here appears in greater detail in [16] and
[17].

Let S be the unit circle |z| =1, D the unit disk
lz] <1, and Py the set of complex polynomials of degree at
most m . If £ -is a function continuous on D and analytic in
D , it is natural to ask, how well can f be approximated on D
by a polynomial pe Pm with respect to the supremum norm? Since
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f and p are analytic, the maximum modulus principle ensures
that it is enough to consider the boundary circle, so we define

sup
lloll = .5 le2] .
The polynomial Chebyshev approximation problem is this: find a
best approximation. (BA) p*¢ Pm to f such that
inf

le-erll = G55 lle-ell -

More generally, we can consider approximation by rational
functions of type (m,n) that are constrained to have no poles
in D. Let Ry, be the set of such functions. The rational
Chebyshev approximation problem is then: find a BA r* e R, such
that .

inf
le-erll = o llE=xll -

We let E* , or E;'m , denote this infimum.

In polynomial approximation, p* exists and is unique and
is characterized by the Kolmogorov criterion, although in practice
this characterization is not very useful for computing BAs. 1In
contrast, although r* exists too, it need not be unique for
n>0 — a fact first established at this NATO meeting! [8] 1In
the rational case no characterization of BAs is available, and no
very satisfactory algorithms for their computation are known. 1In
fact the CF method that we will describe, although in principle
it delivers only a near-best approximation, often comes closer to
best than can practicably be achieved by other means. For details
about the general theory of complex Chebyshev approximation, see

_the first paper of Gutknecht in this volume [3].

Unlike real Chebyshev approximations, complex BAs on the unit
disk are not very important for the construction of function eval-
uation procedures for computers, perhaps because it is rare that
a function defined on all of € can be reduced to a representation
on a disk. However, there are other applications in which the
unit circle comes into its own, particularly in the areas of
linear systems theory [11] and digital signal processing [14].

The reason is that both of these problems involve linear processes
with constant coefficients that act on a discrete time variable;
they are therefore naturally analyzed by Fourier methods, but
because the time variable is discrete, its dual variable has a
bounded domain, which is conveniently reduced to S through an
application of the z-transform. The paper of Meinguet in this
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volume is motivated by systems theory applications [13], while
for applications of CF ideas to digital filter design, see [6].

2. THE NEAR-CIRCULARITY PHENOMENON

Cur approximation problem has a simple geometric interpret-~
ation. Given f and an approximation r , consider the image
(£-r)(S) , which is called the error curve for r . The Cheby-
shev approximation problem is obviously equivalent to the follow-
ing: find r* so that the error curve can be contained in a
circle about 0 of minimal radius. See Fig. 1.

S
Q N

Figure 1. 'l‘he‘ error curve

A priori, we do not know much about what the error curve for
r* will look like, except that it must touch the boundary circle
at at least m+2 points. But when best approximations are com-
puted numerically, a remarkable fact emerges: their error curves
are often very nearly perfect circles with winding number m+n+l .
For illustration, consider the plots shown in Fig. 2. 1In Fig. 2a,
the error curve for the type (1,1) Padé approximant to eZ is
plotted, and it is evidently a closed loop with winding number
méntl = 3 . Fig. 2b shows on the same scale the error curve for
the BA r* . This curve also has winding number 3, but one can
no longer see this, because its modulus varies as 2z traverses
S by less than 1% . In approximation of type (2,1) , this
figure becomes 0.01% , and it decreases rapidly further as m
and n are increased.

The question is, how can this near-circularity phencmenon be
accounted for?
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Figure 2. Exrror curves for type (1,1) approximation of ez .

To begin with, we can observe that if an approximation r
happens to have a nearly circular error curve, then it is nearly
best. The proof is essentially Rouché's theorem.

THEOREM 1. Suppose the error curve for reRp, has winding
number at least m+n+l about the origin. ' Then

e ltg-r(2)| s E* s e-=ll -

In particular, if the error curve is a perfect circle, then
r=7r* .

Proof. The second inequality is nothing more than the def-
inition of E* . For the first, suppose to the contrary £ -x*||
< min,.g |(f -r) (z)l . Then simple gecmetry shows that the func-
jon (E=-x)-(f-r*) =xr*-x must have the same-winding number
as f£-r on S , which by assumption is at least m+n+l . But
this is impossible, for r* -r belongs to Rm-l-n,2n , and hence
has at most mtn zeros in D . 4

Thus "nearly circular implies nearly best”, which makes the
near-circularity phenomenon at least plausible. Nevertheless,
the implication runs in the wrong direction, so we will need
additional ideas to see why the phenomenon is in practice so
pronounced.
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3. THE CARATHEODORY-FEJER METHOD

Another clue to near~circularity can be obtained from the
following observation: in many extremal problems in function
theory where a supremum norm is involved, solutions occur that
involve circles or arcs of circles. For example, a standard proof
of the Riemann mapping theorem for a Jordan region  containing
0 considers the set of all analytic functions on § normalized
by £(0)=0, £'(0)=1 . Among these, that function with minimal
norm ||f|[ is precisely the conformal map from { to a disk —
which means, it maps the boundary 3Q onto a circle as .
another well-known example of an extremal problem whose solution
involves circles is the Nevanlinna-Pick problem of interpolation
with minimal norm in the disk ([20], chap. 10).

These problems in effect contain an infinite number of un-
known parameters — the Taylor coefficients of an analytic function.
In contrast, the Chebyshev approximation problem has a finite
number of unknown parameters. This is the essential reason why
near-circles rather than perfect circles appear.

Qur analysis is based on an extended problem that is closely
related to both the above proof of the Riemann mapping theorem and
to Nevanlinna-Pick, namely the Carathéodory-fejér problem.. Let g
be a polynomial of degree 4 , and consider the set of extensions
of g to a Taylor series d that is dnalytic and bounded in D .
Carathéodory and Fejér asked in 1911l: what extension g , if any,
attains minimal norm H&H ? They fQund the following solution:

a minimal extension § exists, it is unique, and it is the Taylor
series of a function that is a constant times a finite Blaschke

product of order vs<d,

z) = ¢ A ceC, z,eD
i=1 Z'iz-l ! i :

Thus §@ maps S onto a perfect circle with winding number at
most d . Moreover, Schur showed in 1917 that § can be computed
analytically by solving a certain matrix eigenvalue problem.

Our original polynomial approximation problem can be viewed
as follows: we are given coefficients Anglr Anpr coe v and_gsked
to find ag, ... ,a; so that Zg akzk has minimal norm on D .
(Wwithout loss of generality we have assumed that the Taylor series
of the given function f begins at degree m+l .) The CF problem
reverses the prescription: given aAgs eee sy what infinite set
of coefficients Anel’ p42r oo leads to a series Xo akzk of
minimal norm? Since the number of unknown parameters is now in-
finite, circular error curves become possible.
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The idea of the CF method is perhaps now obvious. First,
truncate the given function £ at some high order M , so that
it takes the form £(z2) = e':M]_akzk . Next, apply the CF theorem
to construct an extension o?. £ backwards to a Laurent series
Ez) = 4, a,z® that has minimal norm on S . Finally, with a
little luck, the coefficients of negative index in this expansion
will be small, so that the coefficients ags «+. ,ay determine a
polynomial p°f that is close to p* .

To describe the CF method more precisely, let us generalize
to the rational approximation problem. Given f analytic in D
and continuous on D , we seek a BA r*¢g Ry - Now let
denote the set of functions that are meromorphic in 1< |zl Lw,
have vsn poles in 15 |z|<» and at most m-v poles at =
(i.e. a'zero at = of order at least v-m , if m<v ), and are
bounded in 1< |z| S except near these poles. Equivalently,
imn is the set of functions that can be represented in the form

I o/ 1 o
T(z) = z / e z
Ko % ka0 X _

where the numerator converges in € - D and is bounded there ex-
cept near « ., Consider then:

EXTENDED APPROXIMATION PROBLEM. Find z©* eﬁm such that
-2l = S2F [le-2| .
. *&Fm T
Like the CP problem, this extended problem has a solution that can
be explicitly constructed. For general £ of the class consid-
ered (in fact for £eL”(S) ), the procedure for this is exactly
what is taken up in the AAK theory published in 1971 by Adamjan,
arov, and Krein [1,13]. Let us however again assume £eP, for
some large M , in which case the solution is simpler and can be
worked out on the basis of an extension of the Carathéodory-Fejér
theorem to rational approximation published by T. Takagi in 1924
[5,15]. (For the intermediate possibility fe Ryy ¢ See the paper
[4] by Gutknecht in this volume.)

Let H _, denote the (M-m+n) x (M-m+n) Hankel matrix

am_n +1 &m-n +2 ce o aM
a
- - m=-n+2 . .
o-n . . *
: : 0
a
_ 3 M o
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Let

H . = Uugfd

m-n
be a singular value decomposition (SVD) of Hyn — i.e. U isa
square unitary matrix ( vl = gf ), and I is a square diagonal
matrix of nonnegative real singular values arranged in non-
increasing order, 2 = diag(ogs ees 4Oy y) v 99203 2=+ 2
OMemen-1 - IR particular, let g, be the nth singular value of
Hpon (starting from the Oth), and let u{®) pe the corresponding
nth singular vector, namely the nth column of U , which we write
in the form

(n) o T
u (u0 . ul rese s uM-m-i-n-l) .

(If the coefficients a, are real, the SVD reduces to an eigen-
value decomposition.) Then the following is the basic theorem,
due to Carathéodory and Fejér, Schur, Takagi, and Trefethen, that
the rational CF method is based on:

. THEOREM 2 [17]. fThe function f has a unique BA I* in
Ry and it is given by
’ 7 g U, +U,Z+...+U ZH-mn-1
m-n+l 0 "1 M-m+n-1

- - =] -
!104'!112 +...+UM_m+n_l

(£=-1%)(z) = °n z -M+m=-n+l

The error curve (f-I*)(S) is a perfect circle about the origin
with radius ||£-%*|| = 0, , and if o, is a simple singular
value of By pn s it has winding number exactly m+n+l . a

The rational CF method now consists of constructing r* and
then truncating it to obtain an approximation r‘:f € Rpn that is
hopefully near-best. Here is the recipe. In practice, many of
these computations are best performed numerically with the Fast
Fourier Transform, as indicated (see [9]).

Step 1. Given £ analytic in D , compute its Taylor coef=-
ficients ags eee 1By for some large M (FFT).

Step 2.' Set up the Hankel matrix Hp_, and compute its nth
singular value and vector.

Step 3. Factor the denocminator of the Blaschke product in
Thm. 2 to determine its n (or fewer) zeros outside D (FFT).
The polynomial with these zeros is the denominator q°f of x¢f.
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Step 4. Multiply by qu to obtain the numerator p* in
the representation

-y m k ph k
r*(z) = k___,):_-dez / k§o ekz .

Compute coefficients do, ces dm of this function (FFT).

Step 5. Truncate terms of negative degree in the numerator
of I* to obtain the CF approximant

cf m k n k
r (z) = kgo dkz / kéo ekz .

The truncation r* -+ rcf described in Step 5 is only one
("Type 1") of several reasonable methods for obtaining an approx-
imation in R, from E* . Various others are mentioned in [5],
and it is not yet clear which is best.

4. ACCURACY OF THE CF METHOD

The CF method construction leads immediately to a beautiful
result:

THEOREM 3 [17]. o (H ) < E* .
3 m-n mn

Proof. Theorem 2 implies o, = ||£-2*|| , and since Rn &
Rpn » one has also |[|£-%E*|| s [[£-r*|| = &~ .
This theorem gives some algebraic insight into best approximations
that is far from trivial.

Now for all we know a priori, the bound of Thm. 3 could be
very crude. But the following table of results for £(z) = e?
shows that in practice, just the opposite can be the case:

*»
@ ‘n%en’  Zm
(0,0) 1.258 1.344
(1,0) 5575 .5586 TABLE 1
(2,0) .177374 177377

(3,0) .043368927 .0433689...

Obvicusly the inequality in Thm. 3 is sometimes virtually an
equality. Indeed the ellipsis in the last line of Table 1 reflects

the fact that we have not succeeded in computing the exror E;o
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for e more accurately than by applying Thm. 1l to r°f. Although
the examples in this paper involve only e%? , similar results hold
for many other functions. ' )

For more insight let us look in detail at the problem £(z) =
e® , (m,n) = (1,1) . Here the SVD construction leads to the
following extended BA in R, : :
2-#0.000246682-1-b0.99613054-+0.589551952

1 - 0.43416584z

<<+ +0,00000983z "

£*(z) =

Obviously the terms of negative degree in the numerator are very
small. Truncating them gives

rcf(z) 0.99613054 + 0.58955195 2
1 - 0.43416584z !
and since E*-—rCf is small, rCf must have a nearly circular

error curve, which by Thm. 1 means it is near best. In fact,
numerical computation gives the following representation for r* ,
which is obviously almost the same as et .

0.99625 + 0.58952 z
1 - 0.434142

r*(z)

Ideally, a general theory would be available that would show
exactly why the CF method is so accurate for a function like e? ,
and delineate just what functions the method performs well for.
Unfortunately, Thm. 3 is the only fully general theorem regarding
CF approximation that we have. However, the following asymptotic
results have been obtained in [17] and (18], and show that at
least in a limiting sense, the CF method is highly accurate, and

error curves are nearly circular.
We wi}l need a normality condition.

ASSUMPTION A. The Padé approximant rP to f of order
(m,n) has n finite poles, and its Taylor series agrees with f
exactly through the term of degree m+n .

Essentially this assumption requires that the determinant of a
certain Hankel matrix- section of Bp.p be nonzero, which is a
standard hypothesis in Padé approximation; see the lectures in
this volume by Brezinski [2].

Now for any € >0 , consider approximation of £(ez) on D.
(Or equivalently, consider approximation of £(z) on |z| s € .)
By ‘a fairly lengthy but elementary argument, one derives the
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following estimates for the accuracy of the CF approximant:

THEOREM 4 ([17,18]. As e-+o0 ,

e2m+2n+3

=22 =0, = of )
and
“rcf_r,” = 0(52m+2n+3)
uniformly for all BAs r* , and
€= 22| = [l£-zo|| = o(e?™2n*4)

These orders of accuracy are remarkably high, when one considers
that ||£-r*|| has order ™™l as ¢+0 . Thus the CF method
has a relative accuracy of 0(eBt n+2) . Padé approximation, by
contrast, has relative accuracy O0Of(eg) .

Furthermore, the CF method also gives information about the
BA (or BAs) r* . Since the error curve of &* ig perfectly
circular, Thm. 4 together with the associated bound |[|&*-rSE|| =
0(e?®+2n+3)  ynp)jes that the error curve of z+ must be nearly
circular:

THEOREM 5 [17,18]. as e-+0 ,
min 2m+2n+3
|-z - zes |(E=2*)(z)| = o(e ) .

Moreover, this estimate is sharp in that there exist functions for
which the left hand side has magnitude at least const. ¢°@*+2n+3
for some fixed constant. a

Naturally one would also like estimates for the limit m . N
+ @ with a fixed value of € . A theorem in this direction for
the case n=0 is given in [16], but the general rational approx-
imation problem has not been treated.

5. REAL CF APPROXIMATION

The CF method and the phenomenon of near-circularity can be
transplanted to a more general domain Q by means of a conformal
map of the exterior of N onto the exterior of D . The resulting
procedure makes use of a Hankel matrix of Faber series coefficients,
and is called the Paber-CF method. For details see the second
lecture by Gutknecht in this volume [4]. Gutknecht has also
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developed Laurent-CF and Fourier-CF methods for related problems,
which extend the CF idea in analogy to the work of Gragg, et al.
on Laurent-Padé and Fourier-Padé approximation [4,5].

Here we will discuss the particularly interesting case of
transplantation to a real intexrval, where a real CF or Chebyshev-CF
method is obtained that turns out to be even more powerful than on
the disk. (Related ideas were developed earlier by S. Darlington,
D. Elliott, B. Lam, and others; see [19] for a discussion and
references.) The real CF method is presented at length in [7] and
[19].

Let PF(x) be a continuous real function on I = [-1,1] ,
which for simplicity as before we will assume has a finite expan-
sion in Chebyshev polynomials, '

M
F(x) = 1650 aka(x) ’ akea .

If xe€I and 2z2e¢S are related by x = Rez =|/2(z+z-1) ., then
a widely known but underutilized formula expresses Ty(x) in terms
of 2z :

k ) 3

1, -k
Tk(x) = Rez = ‘2-(2 +z ) .

To apply a CF method to F , we consider the analytic function £
defined by

=

so that one has
1 -1
F(x) = Ref(z) = 3 (£(z) +£(z )) .
If the CF/Takagi construction is carried out for £ — so that we
are working with the singular value (or eigenvalue) decomposition

of a Hankel matrix of Chebyshev coefficients of F — we obtain
the optimal approximation ¥*eRy, to £ on S,

ivz) = 2 azf/ .} ezX
koo %%/ kEo %% -

By cross-multiplication, the real part of I* can be written
in the form

(E*(z) +E%(z"1))

(ST

Re t*(z) =
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2 i Kegk ®
kB0 %E 2 ) By 4Ty (k)
- Bk, -k, - 2.

w20 ek(z z kEo eka(x)

for some new sets of coefficients {Gk}, {ék} . Assuming m2n ,
we now truncate this expression in the obvious way to obtain the
Chebyshev~CF approximant

m .
cf KkZo &Ti (%)
R (x) = —n_— .
kgo eka(x)
(If m<n , the definition of R°f is more complicated. See [19].)

Now by construction, R°Y belongs to Ry, and has reai coef-
- ficients. But beyond this, why should we expect it to be close to
the real BA R* to F ? To see the answer, cbserve that if
R°E(x) ~ Re £*(2z) , then

- (F-R°E)(x) ~ Re(£-2%)(z) .

By Thm. 2, (£-%*)(S) is a perfect circle with winding number
m+n+l (assuming Un(Hm_n) is simple), and therefore Re (f-r*)(z)
equioscillates m+n+2 times between values +0, as =z traverses
the upper half of S . Therefore Rpf . correspondingly, must
have a nearly-equioscillating error curve on I , which by the
g well-known theorem of de la Vallée Poussin [12], implies that R®
is near-best. :

£

Thus the justification of the real CF construction is a matter
of showing RCE(x) m Re Z¥#(z) , that is, the truncated terms
§m+1, am+2. s are small. Again, it would be nice to have a non-
asymptotic theory for this, but none is available; in fact even
Thm. 3 fails to extend (except with the loss of a factor of two)
to Chebyshev-CF approximation. In analogy to Thm. 4, on the other
hand, one can derive a very satisfactory asymptotic result. The
following theorem relates to approximation of F(ex) on [-1,1],
and requires again that F satisfy Assumption A. Note that the
powers of € here are even higher than in Thm. 4, a result of the
fact that fewer terms are truncated here in going from E¥* to
R°f than in the complex CF method.

THEOREM 6 [19]. as e-+o0, -
3m+2n+3
€

le-aell, = o, = o™,

n

and
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IIRCf-R*”I - 0(23m+2n+3) .
The second estimate can be replaced by o(e3m+2"+4) in the special
case n=0 ,
=]

As in the complex case, the asymptotic accuracy of the real
CF method is overwhelmingly apparent in many computational exam-
Ples where € is not at all small. Table 2 shows results for
polynomial approximation of F(x) = eX . a comparison with the
numbers of Table 1 confirms that, as the asymptotic results sug-
gest, the CF method is even more powerful on I thanon D .
(From a computational point of view, however, the CF method for
D remains probably the more important, because for approximation
on I rapidly convergent alternatives such as the Remes algorithm
are available [12].)

w*
(m,n) o‘nmm-n) Emn
(0,0) L.196 1.17S
(1,0) .2787994 .27880... TABLE 2
2,0) .04501.73878 .04501738...

(3,0) .005528370108712 .0055283701087...

Since Thm. 6 is the analog for real CF approximation of Thm.
4 for the complex case, one naturally wonders, what about a real
analog of Thm. 5? Sure enough, it is easy to derive by CF methods
- the following result: as €-+0 , best aporoximation error curves
equioscillate up to 0(e30+20+3) | This would be very interesting,
were it not of course well known that error curves in real Cheby-
shev approximation equioscillate exactly! In other words the
sharpness statement in Thm. S5 is very significant, and does not
extend to real approximation.

Nevertheless, it seems that the high accuracy of the real CF
method must reveal something about the structure of BAs in real
Chebyshev approximation. One can, for example, state a somewhat
awkward theorem to the effect that as €+ 0 , real BA error func-
tions approach the real parts of Blaschke products up to
- 0(e3m*20+3y [7 191, 1t remains to be seen whether this fact can
be recast in some way that makes its significance for approximation
on the interval as clear as that of the near-circularity results
for the unit disk.
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