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Nonlinear Equivalence, Reduction of PDEs to ODEs and Fast Convergent Numerical
Methods. By E. E. ROSINGER. Pitman, Boston, 1982. 247 pp. $21.95. Paper. ISBN
0-273-08570-0.

In 1956, Lax and Richtmyer published their well-known theorem on difference
schemes for time-dependent problems, relating the consistency and stability of the scheme
to the convergence of the approximate solution to the exact solution. The present
monograph provides a generalization of the Lax—Richtmyer theorem to nonlinear
evolution equations. The theory is developed in a way that is independent of the type of
equation that is being developed (e.g., parabolic or hyperbolic). The theory includes the
case of nonlinear equations with “finite blowup time”; that is, equations for which a
solution may fail to exist, or to have a given regularity, after a finite amount of time. The
results apply especially to smooth solutions of the original problem. To handle the
estimates of derivatives that inevitably occur, the author defines and makes considerable
use of a “level V of relative numerical smoothness” of a function. This is a concept very
similar to the “inverse assumptions” that occur in finite element analysis; the number V is
the constant that occurs in the inverse assumption.

The author uses his theory to formulate and analyse some new versions of the method
of lines for approximating evolution equations. The book concludes with some new
discretizations that are said to perform better than the traditional ones in certain
circumstances. Some numerical examples are given for soliton solutions of Burgers’
equation.

This work contains original results, due almost entirely to the author. The exposition
is very clear and easy to read. The book should be of interest to those working in evolution
equations and their numerical approximation.

R. B. KELLOGG
Institute for Physical Science and Technology
University of Maryland

Fourier Analysis of Numerical Approximations of Hyperbolic Equations. By R.
VICHNEVETSKY and J. B. BOWLES. Society for Industrial and Applied Mathematics,
Philadelphia, 1982. xii + 140 pp. $21.50. ISBN 0-89871-181-9.

It is well known that the Fourier transform is a valuable tool for the analysis of
discrete numerical models of partial differential equations. But traditionally, Fourier
ideas have been applied mainly to the single purpose of testing the von Neumann
condition: does the discrete model admit any sinusoidal solutions with amplification
factors greater than 1 in modulus? The classic book by Richtmyer and Morton presents a
wealth of material relating the answer to this question to stability and convergence, and
may be said to be the culmination of the “amplification factors” style of Fourier analysis
of numerical methods.

But Fourier analysis can reveal much more than just the presence or absence of
growing modes. Consider the Crank—Nicolson or trapezoidal approximation to the model
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hyperbolic equation u, = u,,
(1) vt = o] 4 W+ o — vl — o),

where h and k are the step sizes in space and time. The differential equation admits
solutions exp (i(wt + {x)), where w is the frequency and £ is the wave number, if and only
if w and £ satisfy the dispersion relation w = £&. But an easy substitution shows that
Crank-Nicolson imposes instead the numerical dispersion relation

wk k|,
2) tan > = sin &h.

Thus in Fourier space a discrete numerical model takes the form of a trigonometric
approximation to the ideal dispersion relation. Unlike its ideal counterpart, the numerical
dispersion relation is periodic in both £ and w.

By proceeding from here in Fourier space a great deal can be learned, and this is the
purpose of the new book by Vichnevetsky and Bowles. The order of accuracy of the
discrete model is the order of contact of the numerical and ideal dispersion relations at the
origin £ = w = 0. The dissipativity of the model, if any, depends on whether w has a
nonzero imaginary part for £ £ 0. The phase velocity ¢ = —w/£ reveals something about
numerical errors. These and related matters occupy the first five chapters of the book. The
authors emphasize that discrete models can be viewed as digital filters, a topic from
electrical engineering whose analysis in the Fourier domain is already well established.

The use of the Fourier transform becomes particularly interesting when Vichnev-
etsky and Bowles turn in the second half of the book to the concepts of dispersion and
group velocity. The group velocity, defined by C = —dw/dg, describes the propagation of
wave energy in any dispersive but nondissipative linear system—such as a solid crystal,
the surface of a pond, or a finite difference model. In the case of Crank—Nicolson,
differentiation of (2) gives the result

k
3) C = —cos &h cos? % ,
a trigonometric approximation to the ideal function C = —1 for u, = u,. For the past

decade Prof. Vichnevetsky has been one of a few voices advocating the importance of
group velocity to the behavior of numerical methods. This book gives several impressive
numerical demonstrations that it is this quantity that determines how a discrete model
really behaves.

Vichnevetsky and Bowles are particularly interested in the influence of group
velocity on the propagation of parasitic waves, that is, sawtoothed numerical solutions
with £ ~ w/h that are physically spurious. From (2) and (3) one sees that for each
sufficiently small w > 0, Crank—Nicolson admits one wave solution with £ € [0, w/2h)
and another with £ € (w/2h, w/h]; the first has C < 0, but the second has C > 0. Similar
results hold for many nondissipative discrete models. Thus parasitic wave energy often
travels in the physically wrong direction, and this explains why spurious wiggles often
appear upstream of a boundary or discontinuity in numerical calculations. The authors
show that the amplitude of such wiggles can be predicted by calculating numerical
reflection coefficients at the boundary, and derive many interesting consequences. This
kind of analysis is quite easy and should have been done long ago, but was not; much of it
is new with Vichnevetsky.
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Thus the present book is truly original, presenting a novel set of ideas of considerable
importance. Unfortunately, its execution is disappointing. The book seems more a
succession of examples than a unified treatise, exhibiting considerable repetition but not
much depth. Various small points of wording, notation, mathematical precision, and
graphics have been carelessly handled. The design of the whole looks rather like a
somewhat hasty concatenation of Vichnevetsky’s earlier papers.

A more serious weakness in this work is that it communicates very little perspective
about its subject matter. The authors spend too much time with the particular example of
the space-centered, semi-discrete model of u, = cu,, drawing specific conclusions that
obscure the generality of what they are doing. It is particularly distressing that they
repeatedly fail to connect their ideas to related topics in the numerical analysis literature.
The following are some topics intimately related to the themes of this book, but which the
authors completely fail to mention:

« “Modified equations” for asymptotic analysis of difference formulas;

» Quantitative mathematical results on numerical oscillations about discontinuities;

¢ Periodic dispersion relations as used in solid state physics for analyzing sound and

light vibrations in crystals;

« “Absorbing” or “radiation” boundary conditions for artificial boundaries;

» Stability for discrete models of initial boundary value problems.

In failing to apply their ideas to shed new light on established subjects such as these,
Vichnevetsky and Bowles have missed the opportunity to make their book a truly major
contribution to numerical analysis. In failing to even give appropriate references, they
have limited its value as a text.

To summarize, I encourage anyone working with computational methods for partial
differential equations to take a look at this book for a valuable exposure to the fascinating
phenomena of numerical wave propagation. But in this book the “waves” style of Fourier
analysis of numerical methods has not yet reached its culmination.

LroyDp N. TREFETHEN
Courant Institute of Mathematical Sciences

Optimization Theory and Applications. By LAMBERTO CESARI Springer-Verlag, New

York, 1983. xiv + 542 pp. $68.00. ISBN 0-387-90676-2.

Modern optimal control theory was developed in the early 1950’s as can be seen from
the dates of the published pioneering research (Bellman et al. (1956)[1], Bushaw (thesis
1953, paper in the Lefschetz series [9], 1958)[2], Fliigge Lotz (1953)[3], Gamkrelidze
(1958)[4], Hestenes (1950)[5], Krasovskii (1957)[6], LaSalle (1959)[7], Lefschetz
(1950)[9], Pontryagin et al. (1960)[10], Wazewski (1961)[13]). In the 1960’s it became
sufficiently formalized so that complete books on the subject started to appear. It was, of
course, realized that optimal control theory is a part of the calculus of variations, a subject
almost as old as the infinitesimal calculus itself, but the relation between the classical and
the modern theory was not at all clear at the beginning. Indeed, the classical calculus of
variations treats mainly “interior” maxima and minima, while the modern version puts
much more emphasis on those extrema which lie on the boundary of some constraint set.
Therefore equations become inequalities, the classical results have to be changed
appropriately and the need arises to use different methods of approach. A book
representing these new methods in all their power and elegance is Lee and Markus [8].

The gap between the classical and the modern approach was clearly bridged in the
research literature, but most books on the subject still remained on one or the other side of



