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Abstrac t .  

The Kreiss Matrix Theorem asserts the uniform equivalence over all N x N matrices of power 
boundedness and a certain resolvent estimate. We show that the ratio of the constants in these 
two conditions grows linearly with N, and we obtain the optimal proportionality factor up to a 
factor of 2. Analogous results are also given for the related problem involving matrix exponentials 
e At. The proofs make use of a lemma that may be of independent interest, which bounds the arc 
length of the image of a circle in the complex plane under a rational function. 
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1. Introduction. 

Let  A be  an  N x N m a t r i x  tha t  satisfies the  power boundedness condition 

(1) p(A) = sup IIA"II < ~ ,  
.>_-0 

where  t l ' l l  = 11"1t2- By a p o w e r  series e x p a n s i o n  it is r ead i ly  ver i f ied tha t  A then  

also satisfies the  resolvent condition 

(2) r(A) = sup  (lzl-1)tl(zI-A)-lll < oo, 
Izl > 1 

and moreover r(A) <~ p(A). One of the assertions of the Kreiss Matrix Theorem 
[3, 4, 7] is that the converse  is also valid : if r(A) < o0, then p(A) < o0 also, and 
p(A) can be bounded  in terms o f  N and r(A) but otherwise  independent ly  of  A. 
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This result is useful in proofs of stability theorems for finite difference 
approximations to partial differential equations. 

In this note we resolve an old question contributed to most recently by Tadmor 
[8]: given N and r(A), how large can p(A) be? According to Tadmor, Kreiss's 
original proof in [-4] unwinds to give a far from sharp bound 

p(A) < [r(A)] N~, (VA) 

which subsequent improvements by Morton, Strang, and Miller lowered to 

p(A) < 6N(N +4)SSr(A), NNr(A), e9N2r(A) (VA). 

A few years ago Strang (private communication) observed that a paper of 
Laptev [5] implicitly derives a much more reasonable estimate [3] 

p(A) <~ (32e/n)N2r(A) (VA). 

Finally Tadmor's proof, which makes use of an elegant Cauchy integral 
argument adapted from Laptev, yields a bound that is linear in N, 

(3) p(A) <~ (32e/g)Nr(A) (VA). 

Tadmor conjectures that a linear dependence as in (3) is the best possible. 
However, up to now the strongest growth of p(A) with r(A) attained by an 
example has been logarithmic, i.e., p(A) ,~ r(A)logN [6]. 

First we will show that Tadmor's conjecture is correct, by exhibiting a family 
of matrices {AN} for which p(AN) ~ eNr(AN) as N ~ ~ .  By refining the Cauchy 
integral argument, we will then show that for arbitrary matrices (3) can be 
sharpened to p(A) <~ 2eNr(A). (Our proof is essentially Tadmor's, but gains the 
factor 16/n over his by dealing with complex functions directly rather than 
taking real and imaginary parts.) Together these results establish that eN is the 
optimal constant of proportionality relating p(A) to r(A) except for a possible 
factor of 2. The final section will prove analogous results for the continuous 
problem involving matrix exponentials e at . 

2. Example with p(AN) ~ eNr(AN). 

Consider the N x N Jordan matrix 

A=AN= I 0 

Y 
0 y 

0 
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with N >t 3, 7 >t N (these constraints could be relaxed considerably). For this 
matrix one has [[A"[[ = )'" for n ~ N - 1  and HA"I[ = 0 otherwise, so A is power 
bounded with 

(4) p(A) = yN- 1. 

On the other hand the resolvent matrix is 

- 1 V/z ( V / z )  2 . . .  (V/z )N-1-  

1 ~,/z (~,/z) 2 
(zl -- A)-  1 1 

Z 

1 

From the fact that IIBII ~< ~lBlil for any upper-triangular Toeplitz matrix B, we 
obtain with a little calculation the estimates 

)'2N/lzl if tzl i> v/2, 
I I ( z I -a) - l l l  <~ 

[TN-l(1--1zl/~,)-ltzl -N if Izl ~< T/2. 

By (2), one therefore has 

sup 
r(A) <~ max 1 .< ~ .< -t/2 

(O--1)~N-I(1--O/y)-IQ -N, sup (e--1)2N/o} 
e >~ #2 

This maximum is attained at a point p = 1 + N - t +  O(N-2), where the estimate 
becomes 

yN-1 
(5) r(A) ~ ~ (1 + O(N-  ')) 

since ~ i> N. Comparing (4) and (5) shows that for this example one has 

(6) P(AN) <<. (el~ --const) r(AN) , 

as required. 

3. Proof of p(A) <~ 2eNr(A) for all A. 

THEOREM" 1. Let A be an N x N matrix with r(A) < oo. Then 

(7) p(A) < 2eNr(A). 
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REMARK. The factor of 2 is probably unnecessary; see the remark after the 
lemma in the Appendix. 

PROOF. Suppose r(A) < ~ .  The matrix A" can be written in terms of the 
resolvent by means of a Cauchy integral (see [2], pp, 555-577) 

if (8) A" = z"(zI - A ) -  • ~ ldz' 

where the contour of integration is any curve enclosing the eigenvalues of A, 
which must all lie in lzl ~< 1 since r(A) < ~ .  Let u and v be arbitrary unit N- 

vectors, i.e., Ilull = Ilvll = 1. Then 

if v*A"u = ~-~i z"q(z)dz 

where q(z) = v * ( z I - A ) - l u .  Integrating by parts gives 

v*A"u = 2 n / ~ +  1) z"+ lq'(z)dz" 

Let the contour F of integration be taken as F:  Izl = 1 + 1/(n + 1). On this path one 

has Iz"+ll ~< e, and there follows the bound 

lv*A"ul <~ 2rc(n + 1) lq'(z)l tdzl. 

Now as verified on p. t55 in [8], q is a rational function of degree N. By the 
lemma in the Appendix, the integral above is accordingly bounded by 4nN 
times the supremum of [q(z)l on F, and by (2) this supremum is at most 
(n+ 1)r(A). Hence we obtain 

Iv*A"ul <~ 2eNr(A).  

Since [IA"ll is the supremum of Iv*A"ul over all unit vectors u and v, this proves 
the theorem. II  

4. Analogous results for e A t  . 

For problems that are continuous in time rather than discrete, stability 
depends on the boundedness of a family of matrix exponentials e at (t >i O) 
rather than of powers A ". Correspondingly, the resolvent of A is of interest for z 
in the right half plane rather than outside the unit circle. Following (1) and (2), 
define 
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(9) P(A)  = sup Ilemll and 
t~>o 

(10) R(A)  = sup Rezl l(zl-A)-t[I .  
Rez>0 

As before, one has R(A)<<. P(A)  readily, this time as a consequence of the 
Laplace transform formula ( z l - A )  -1 ~ -~, At = So e e dt. The continuous form of 
the Kreiss matrix theorem asserts that conversely, P(A)  can be bounded in 
terms of R(A)  and N, independently of A. We make this sharp by essentially the 
same argument used before: 

THEOREM 2. Let A be an N x N matrix with R(A)  < oo. Then 

(11) P(A)  <~ 2eNR(A) .  

REMARK. Again the factor of 2 is probably unnecessary. The Laptev/Tadmor 
estimate has a constant 32e/Tr, as in (3). 

PROOF. In analogy to (8), one has now 

1 f. 
e At = - -  leZ ' (zI  - A ) -  I dz,  

2hi d 

where the contour of integration can be taken as any line Re z = / z  > 0. 
Integration by parts gives 

1 fe~,q,(z)dz v*ea'u = - 2ni--t 

with q(z) = v * ( z l - A ) - l u .  Taking the contour # = 1/t now leads to the desired 
bound (11), again by the use of the lemma in the Appendix. • 

Constructing an example to prove that (11) is sharp, on the other hand, is 
trickier than it was in the power-boundedness case. The following example 
achieves growth proportional to N 1/2, not N. Omitting details, define 

A = A N =  

-1 ~, [ 
- 1  

- 1  7 
- 1  
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Then one has 

e At = e - t  

(Tt)N- 
1 7t . . .  ( N - l ) !  

1 7t 

For large 7, this matrix achieves maximum norm near t = N, where it is 
dominated by the upper-right entry, with mangitude approximately 

e-NNN--1) ,N-1 7N-1 
(12) P(AN)  ,.~ ( N -  1)! (2~N) 1/2 " 

For the second estimate we have used Stirling's formula. On the other hand the 
resolvent matrix is 

(z l  - A ) -  1 _ 
z + l  

1 z + l  "'" 

7 
1 

z + l  

For  large 7, Re z times the norm of this is maximized near z = 1/N,  where again 

the upper-right entry dominates and one has 

7N- x 
(13) R ( A N )  ,.~ - -  

e N  

C o m p a r i n g  (12) and (13) shows that in this example one has 
P(AN) /R (AN)  ,,, (m/2rc)l/2e. 

Appendix - Lemma on arc length of  a rational function on a circle. 

Let S be any circle or line in the complex plane, and define the L 1 and L~o 

norms over S by  Ilflh = Ssl f (z) l  Idz[, Ilfll~ = SUpslf(z) l .  The following lemma 
provided the key argument in proving Theorems l a n d  2. For  the case of a 
polynomial the result is a corollary of Bernstein's inequality [1], [[q'[l® ~< Nllqll~o 
for S = {z: Izl = 1},  but the extension to rational functions appears to be new. 
Since IIq'[ll represents the arc length of the image of S under q, the lemma has a 
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simple geometric meaning. The example q(z) = b(z-s), where b(z) is any finite 
Blaschke product of degree N (such as z N) and s is the center of S, shows that 
it is sharp except for a factor of 2. 

LEMMA. Let q be a rational function of degree N with no poles on S. Then 

Ilq'll, ~< 4nNIIqll®. 

REMARK. We beliex, e that the bound is valid with a factor 2n instead of 4n, 
but have been unable to.prove this. 

PROOF. Since the composition of q with a M6bius transformation is again a 
rational function of type N, we can assume without loss of generality that S is 
the unit circle. Define g(z) to be the angle of the tangent to q(S) at q(z), i.e. 

g(z) = arg [zq'(z)]. 

Let TV[g] be the total variation o f g  over S, i.e. the "total rotation" of q(S). The 
lemma is a consequence of the following two facts: 

(a) IIq'ii, ~< TV[g] ilqll~, 

(b) TV[g] <~ 4nN. 

The proof of (a) is a matter of integration by parts : 

tlq'ii, ~ lq'(z)i ldzl = ~ zq'(z)e -*9(:) dz = -U- 
1g 

=-i~q'(z)e-ig(=)dz=(~q(z)g'(z)e-'g(*)dz 

~< ItqllU~ la'(z)i ldzl = ilqll~ TV[g]. 

To prove (b), note that q' is of rational type ( 2 N - 1 ,  2N), so zq'(z) is of 
rational type (2N, 2N) and can be written as a product 

This implies 

2N 
zq'(z) = YI akz+b* 

k = 1 CkZ @ dk" 

g(z) ~ [akZ + bk'~ 
= ,= a r g t ~  j 
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and therefore 

rV[g]  <~ 2 TV arg - -  ~<4~N. II  
k = 1 \ckz + dk/J 
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Acknowledgements and remark. We are grateful to Paul Garabedian and Eitan 
Tadmor  for valuable discussions. Tadmor has pointed out that if A is an 
arbitrary but fixed bounded operator on t2 (infinite matrix) with r(A) < ~ ,  then 
the arguments of [6] can be adapted to show that IIAnll may grow as n ~ ~ in 
proportion to log n, but it is not known if it can grow faster. Our example of §2 
apparently sheds no light on this question, for if one seeks a family {AN} with 
r(AN) uniformly bounded in N, the numbers 7u have to satisfy 7N ~< 1 + O(1/N), 
which implies that p(AN) is also uniformly bounded. 
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