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ON CONVERGENCE AND DEGENERACY IN RATIONAL PADI
AND CHEBYSHEV APPROXIMATION*

LLOYD N. TREFETHEN AND MARTIN H. GUTKNECHT

Abstract. We study two questions associated with rational approximation of a function f(z) near the
origin z-0: continuity of the Pad approximation operator, and convergence of Chebyshev to Pad ap-
proximants as the domain of approximation shrinks to a point. Both become delicate in the case of
degenerate approximations, i.e. approximations whose numerator and denominator are deficient in degree. In
this situation various distinct definitions of convergence of sequences of rational functions make sense, and
we give a unified treatment that explains their interrelationships. Our results show that the answers to the
above questions are generally affirmative only in the nondegenerate case.
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Introduction. This paper is concerned with two problems connected with ap-
proximation by rational functions:

(1) continuity of the Pad6 approximation operator;
(2) convergence of Chebyshev to Pad6 approximants as the domain of approxima-

tion shrinks to the origin.
The first question has been investigated previously in [4], [8], [14], [15], and the second
in [2], [3], [6], [10], [11], [12]. Our purpose is to unify, correct, and extend some of the
results of these papers.

Both problems turn upon questions of the convergence of sequences of functions
within a fixed space R,n, the set of rational functions having at most m zeros and at
most n poles. Such convergence can be defined naturally in many different ways, and it
is not obvious a priori which of these is most appropriate. Since each of the papers
cited above considers on!y one or two of these definitions, the scope of the existing
results, and the connections between them, have been unclear. We hope to improve this
situation.

In particular we will investigate approximations involving a degenerate rational
function rR,,nmthat is, one with/<m zeros and ,<n poles, hence with a defect
d--min(m-I,n-,) that is positive. It is in the degenerate situation where the various
definitions of convergence become distinct, and also where the answers to (1) and (2)
are least obvious. The explanation for this is that in the degenerate case, r can be
multiplied by one or more pole-zero pairs (z- ’)/(z- ") and the result will still belong
to Rmn; if ’ and " are nearly equal, the effect of such a perturbation will be large near
these points but can be made arbitrarily small elsewhere. It is natural that this possibil-
ity should render convergence results somewhat complicated.

If r.Rmn has defect d, and ?Rmn is arbitrary, then r-? belongs to Rm+n_d,2n_d

and so can have at most m +n- d zeros. As a consequence the degree of agreement of r
with a function ? is in some sense determinedmin the absence of troublesome pole-zero
pairs--by how closely they agree at any rn + n + 1- d points. In both problems (1) and
(2) above the origin is a distinguished point, and so we are led to the following notion
of "H" convergence: "r-H r" denotes convergence as e -0 of the Taylor coefficients
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of degrees 0 through rn + n- d of r R to the corresponding coefficients of r. This is
one of a sequence of convergence definitions we consider (precise statements in 1):

cw: coefficientwise,
au" almost uniform away from poles of r,
A. uniform on some disk A about the origin,
Tay: all Taylor coefficients,
H: Taylor coefficients of degree _<m + n d,
/: measure.

In addition four other convergence definitions will be mentioned, mainly at the end of
1"

I: uniform on some interval I about the origin,
X: chordal metric on all of C,
X: chordal metric on compact subsets of C,
cap: capacity.

Definition I is of interest because it has been used in the papers of Werner and
Wuytack [14], [15] and Chui et al. [2], [3]. Definition X is stronger than all of the others,
and becomes relevant for rational functions deficient in neither numerator nor de-
nominator degree. Definition X is equivalent to cw, and cap to/.

Our main results can be abbreviated as follows, where cw is short for r--, r, and
SO on.

TI-IEOREM 1. (a) For arbitrary r one has

cwauATayH/.

If r is nondegenerate, all six definitions are equivalent. (b) If r is degenerate, they are all
distinct.

THEOREM 2. (a) The Padb approximation operator is always H-continuous, regardless
of degeneracy, hence also always I-continuous. (b) It is continuous in other senses only
when this follows from Theorem 1, i.e. only at a function f whose Padb approximant is

nondegenerate.
THEOREM 3. (a) Chebyshev approximations on a small domain eK containing a

neighborhood of the origin always converge in H as e0 to the Padb approximant rp,
regardless of degeneracy, hence also in l. (b) If rp is nondegenerate, K can bean arbitrary
set with at least rn + n + points (e. g. [- 1, 1] or [0, ]) and they will still converge, in all
senses. (c) If rp is degenerate they do not in general converge in any sense stronger than H.

Theorems 2-3 show that the solutions to problems (1) and (2) are closely related:
desired properties typically hold in the relatively weak H sense, but hold in stronger
senses only when this follows from general considerations involving sequences of
rational functions.

In addition we discuss at the end a variant of the Chebyshev vs. Pad6 question: not
whether Chebyshev approximants converge to Pad6 as the domain shrinks, but whether
the magnitude of the error in Chebyshev approximation converges to that for Pad6.
One sees easily that in general it need not, even when rp is nondegenerate.

Before beginning, it remains to make some specific remarks on how our results
relate to those obtained previously.

(1) Continuity of the Padb operator. The basic theorem in this area is due to Werner
and Wuytack [15]: in approximation of a real function f, the Pad6 operator is/-con-

tinuous at f if and only if rP(f) is nondegenerate. (The "if" half of this result was
known earlier.) Our Theorem 2 shows that the same statement extends to continuity
with respect to cw, au, A, and Tay, and that there is no need to restrict attention to real
functions.
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(2) Convergence of Chebyshev to Padb. In 1964 Walsh showed that r* re must
hold as e0 for complex approximation on small disks Izl<_e, if rp is nondegenerate
[11]. Our Theorem 3a is a generalization of this result. In 1974 he extended the
convergence statement to real approximation on [0,e] [12], but the proof he gave is
erroneous. Theorem 3b here gives a correct proof of this theorem, as well as generaliz-
ing it with regard to domain and definition of convergence. On the other hand in 1974
Chui, Shisha, and Smith claimed to show r*- rp for real approximation on [0,e],
regardless of degeneracy [2], [3]. However, our Theorem 3c shows that this conclusion is
false. The upshot of our results is that it appears there is very little difference regarding
the r* - rp problem between real and complex approximation, or between approxima-
tion on Izl_<e, [-e,e], and [0,e]. In all cases convergence in cw, au, A, or Tay is assured
only if rp is nondegenerate.

1. Convergence of sequences of rational functions. Let C denote the complex
plane topologized by the absolute value metric d(w,z)-Iw-zl. Let S denote the
extended plane C tO ( o } topologized by the chordal or spherical metric X defined by

(1 -+-Iwl2)’/(1 + Izl=)/2
for w, z C, and by continuity for w- o or z- [1], [7]. Under this definition S is a

compact 2-manifold, and X(w,z) can be interpreted as the Euclidean distance in R
between,, the points w and z on the Riemann sphere of diameter 1. For any two
functions f, g: S S, and any set KC_ S, define the uniform-norm distance between f
and g on K (possibly infinite) by

IIf- gllg: sup If(z) g(z )1,
zEK

and the chordal-metric distance X r(f, g) on K (at most 1) by

xr(f,g)-- sup x(f(z),g(z)).
zEK

Let X s be abbreviated by X.
Let m,n>_O be fixed integers, and let Rmn be the space of complex rational

functions r with at most m zeros in C (unless r----0) and at most n poles in C, counted
with multiplicity, and satisfying the additional condition r(0)4 . A function r: S S
belongs to Rmn if and only if it can be written as a fraction

(1.1) r(z) -p(z)-a+’’’ +amzm
q( z ) bo+ Srz b-I

for some coefficients ak, bkC. We assume that all common factors have been re-
moved from p and q, which makes this representation unique, and we refer to {a,}-
{ak(r)} and (bk}--(bk(r)} as "the coefficients of r as a rational function." Let/-<m
and ,_<n denote the exact degrees of p and q, so that if r0, then r has exactly/x zeros
and v poles in C. If r =--0, then/x-- and v-0.

D.FINITION. The defect of r is the nonnegative integer

d- d( r ) rrfin (m lx n v }

r is nondegenerate if/-m or ,-n (i.e. d-0); otherwise it is degenerate (i.e. d>0).
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Any r R,,,n has a Taylor series

(1.2) r(z)- 2 Ckzk
k=0

converging in a neighborhood of z 0. We refer to {ck) {ck(r)} as "the Taylor
coefficients of r", and for convenience we define also Ck--O for k<0. The coefficients
{a,}, (bk} and {c) are related linearly. To obtain this relation, equate (1.1) and (1.2)
and then multiply through by q(z). The result is the following infinite system of
equations:

(1.3)

C-n C-n+l C_

C-n+l -n+2 CO

Cm-- Cm--n+l Cm_

Cm--n+l Cm--n+2 C

Cm--n+2 Cm--n+3 Cm+

Of particular interest is the n n subsystem

(1.4)
Cm--n+ Cm bn

Cm C+n-- 1

ao
al

a
0
0

CO

C

Cm
Cm+
Cm+2

Let H denote the matrix in (1.4). Since H has the form hq= h i+a, it is a Hankel matrix.
If H is nonsingular, i.e. detH =/=0, then the coefficients (bk} are uniquely determined by
(c,,_,+1,.- .,c,,+,) as the solution to (1.4). Once these are known, the coefficients {a}
are uniquely determined by (Co,..., Cm) from the first m + rows of (1.3). All together,
{ak} and {bk} depend upon Co,’",Cm+ in this case, but not on the remaining
coefficients ck.

The following result is well known [1], [5].
PROPOSITION. r is degenerate if and only ifH is singular.
Proof. The solutions (ak}, {bk} to (1.3), (1.4) are unique if and only if H is

nonsingular. Such solutions correspond to all possible representations of r as a fraction
of the form (1.1), including those that are not in lowest terms. On the other hand a
lowest-terms quotient p/q is the unique representation for r if and only if it can be
multiplied by no fraction (z-a)/(z-a) and still remain a quotient of type (m,n),
which is to say, if and only if r is nondegenerate, g]

Thus when H is singular, the defect d is positive. It can be seen that in general
(ak} and {b,} are determined by Co,.. ",Cm+n_d(bUt not by Co,.. ",Cm+n_d_l).

Suppose f(z) oo=oCkZ, CkC, is a formal power series. The Padb approximant
rP Rmn to f is defined to be that rational function in R whose Taylor series agrees
withf to as high an order as possible. It can be shown that if the matrix H formed from
the coefficients (Ck} is nonsingular, then the coefficients of re are the unique solution
of (1.3) and (1.4), and --rP)(z)--O(zm+n+l). In general H may be singular, but rp is
always uniquely defined and satisfies (f--rP)(z)=O(zm+"+l-d). (Neither of these
estimates need be sharp.)
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Now let {r,)e>0 be a family of functions in Rmn and let r belong to Rmn also. We
will make use of the following six definitions of convergence of r to r as e --, 0.

cw ("coefficientwise") r -cw r if lime_oak(re) ak(r ) for 0 _< k _< m and
lim_obk(r)-b(r) for <_k<_n.

au ("almost uniform") reau r if lime_011re-rll/:0 for any compact KC_C that
contains no poles of r.

A ("wrt disk A") rea r if lime_011re-rlla-0 for some disk A-{zC "lzl_<},
>0.

Tay ("Taylor")/’e---Tay r if lim_oc(r)--c(r) for all k>0.
H ("Hankel") re,riflime_.oc(re)-c(r) forO<k<m+n-d.
ts (" measure") r-, r if for any i >0 and any compact Kc_ C, lim_.0g{z K"

Ir(z) r(z)l >8} 0, where g is the Lebesgue measure on .
The following theorem describes the relationships between these definitions of

convergence. In the statement "cw" is an abbreviation for r-w r, and so on.
THEOREM 1. (a) If r is nondegenerate, then

cw *au*A *Tay

(b) If r is degenerate, then

(1.6) cw au A_ Tay H/,

except that aucw holds if r has no poles in C.
Proofs--arbitrary r. First we prove those implications asserted to hold regardless

of whether r is nondegenerate, namely the five rightward implications in (1.5)-(1.6).
(a) cw au. If r cw r, then the denominator polynomials qe converge coefficient-

wise to q, which implies that the zeros of qe converge to zeros of q or to o. If KC_ C is
compact and contains no poles of r, it follows that for all sufficiently small e, the poles
of r are uniformly bounded away from K. Therefore for small enough e, the values
re(z) (z K) depend continuously on the coefficients of re, hence on e, in a manner
uniform in z for z K. This implies lim_.011r- rll -- 0.

(b) au A. Trivial.
(c) A Tay, If rea r, there is a disk A on which r is analytic with lime_01lre-rll a

=0. If IIr-rlla<, then r is analytic on A too. Therefore the Taylor coefficients for
both r and r can be computed by Cauchy integrals around Izl-, and the uniform
convergence on that circle implies that these integrals converge.

(d) TayH. Trivial.
(e) Hg. If re-H r, then Ck(Are)O for O<_k<m+n--d, where Are-re-r

Rm+n_d,2n_d. Setting M=m+n-d and N=2n-d, we see that it is enough to show
that if reRMv satisfies c(re)-O for O<_k<_M, then re-. 0.

For each e, let re(z ) be written as a quotient pe(z)/qe(z) with the normalization
[[qella- 1, where A is the unit disk. (This is a different normalization from that of (1.1).
Further specification regarding common factors and a constant of modulus is unnec-
essary.) The condition [[qe[[a-1 implies [b[_<l for each coefficient of qe, and since
pe(z) qe(z) _oCZ the conclusion lime_.011Pella 0 then follows by the ck0 hy-
pothesis.

Now let KC_2 be compact, and let 8>0 be arbitrary. Clearly IIpll:0 also as
e 0. On the other hand we have (zK’lre(z)[>i} C_ (zK" [qe(z)l<llPellr/i}, and it
is readily seen that the latter set has measure bounded by const(l[Plli/)2IN. Therefore
the measure of this set goes to 0 with e, which is just what is required to establish r t, 0
(see [1, vol. 1, 6.6]).
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Proofs--degenerate r. Next we prove those relationships asserted to hold if and
only if r is degenerate, namely the leftward nonimplications in (1.6). If rRmn is
degenerate, then /<m and ,<n hold. Therefore for any a,zoC with z0:/:0, the
function

{ a )r(z)- r(z) 1+

belongs to Rmn too. By choosing a and z0 judiciously, we construct a sequence of
counterexamples that establish the required results. Detailed verifications are left to the
reader. In the case r(z)=--O, each construction should be modified by setting simply
r( z )-- a/(1 Z/Zo).

(f) au cw. Assuming r has a finite pole at z0, take r(z)-r(z)(1 +e/(Z-Zo)).
(g) A au. Take r(z) as in (f), but with z0 equal to any nonzero complex number

that is not a pole of r.
(h) Tay A. Take r(z) r(z )( + e- //( z/e)).
(i) H Tay. Take r(z)-r(z)(1 +e+n+-u/(1-z/e)).
(j) # H. Take r(z)-r(z)(1 / 1/(1-z/e)).
Proof--nondegenerate r. Finally, assume that rRm, is nondegenerate. To com-

plete the proof of Theorem 1, it is enough to show #cw"
(k) #cw. If r is nondegenerate, assume it has n finite poles z,. .,z,; the case of

m zeros is analogous. It is clear that if r-, r, then for all sufficiently small e, r must
have n poles z() satisfying z()z as e 0. This implies qw q, henceq q. From
this and r --,, r, one can concludep p, hencep p, hence r r.

We now make some remarks on the additional notions of convergence mentioned
in the Introduction. They are defined as follows:

I ("wrt interval 1") ri r if lim_.ollr-rllI--O for some interval I- [-,/$], i>0.
x ("chordal") rx r if lim_oX(r,r)-O.
Xr ("almost chordal") rx,r if lim_oXr(r,r)-O for any compact KC_C.
cap ("capacity") r-->capr if for any 8>0 and any compact K C_C,

lim_.0cap{z K" [r(z)-r(z)l>/$ } -0, where cap is the logarithmic capacity [7].
We state without proof some basic facts relating these definitions to the others.
THEOREM lc.
(i) If r is nondegenerate, then A .I. Otherwise AI but I A.
(ii) If both -m and ,- n hold, then X * cw. Otherwise Xcw but cw o X.
(iii) X r* cw.
(iv) cap *#.
Result (iv) is, of course, quite different from the more familiar situation cap

cap that holds for approximation by arbitrary rational functions rather than rational
functions of fixed type (m, n) ].

2. Continuity of the Pad6 approximation operator. Let m,n>_O be fixed and let
f(z)-ECkzk be a formal power series. Thenfhas a unique Pad6 approximant rp Rmn
and we let P denote the operator

P’frp.

In fact rp depends only on the coefficients CO,’’’,Cm+ n, and if the defect is d>0, it
depends only on Co,..., Cm+-d" (To be precise,f-f= O(z"++ l-d) implies P(f) e(f),
but f-f=O(zm+-d) does not.) Therefore the most reasonable way to define conver-
gence off to f in the Pad6 approximation context is"

ffif lim_0ck(f) c(f) for 0 -<k-<m + n.
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Since only finitely many terms off have any influence, we can be careless as to whether
f is a full power series or just a set of numbers CO,’’’,Cm+n. On the other hand for
defining convergence of P(f) to P(f) all of the choices discussed in 1 are reasonable
candidates. To each definition of convergence corresponds a different definition of
continuity of the Pad6 approximation operator. We say that P is H-continuous at f if

f --*f implies P(f) u P(f), and so on.
If re-P(f) is nondegenerate, then for most senses of continuity it is an easy

matter of linear algebra to show directly that P is continuous at f. Essentially the
required argument is given in [8, Thm. 3.17] (for rational interpolation), [4, Thm. 8] (for
Newton-Pad6 approximation), in II of [14] (under the stricter assumption that rp is
normal), and probably elsewhere too. An explicit statement that P is continuous in the
nondegenerate case appears perhaps first as [15, Thm. 4.1], where /-continuity is
established. The case where re is normal was treated earlier in [14]. Our approach here
is to show that P is H-continuous regardless of degeneracy, from which continuity .in
other sense follows as a corollary of Theorem a, if rp is nondegenerate.

THEOREM 2a. Let f be arbitrary. The Padb approximation operator P is H-continuous
at f.

COROLLARY (by Theorem 1). If re is nondegenerate, then P is also cw-, au-, A-, and
Tay-continuous at f. Whether or not re is nondegenerate, P is it-continuous at f.

Werner and Wuytack have established/t-continuity previously in [15, Thm. 6].
Proof. In fact one has local Lipschitz H-continuity with a constant of exactly 1.

For we have already mentioned that re--f--O(zm+n+l-d), and we claim that the
analogous identity holds for sufficiently nearby perturbationsfof f. To see this, observe
that for either (#,v)-(m-d,n) or (tt, v)-(m,n-d) (with the obvious modification if
rp ----0), rp is also the Pad6 approximant to f in R, and is nondegenerate with respect
to that class. By the Proposition of the same nondegeneracy holds for nearby f, since
small perturbations of a nonsingular matrix H are nonsingular. Therefore for all f
suffic_ient.ly near to f one has P(f)--f=O(z++l)--o(zm+n+l-d), hence a fortiori
P,,n(f)--f= O(z "+"+ l-d), as claimed. E]

The main result of[15] is the following converse to Theorem 2a" if rp is degenerate,
then P is /-discontinuous at f. The proof involves multiplications of rp by cleverly
chosen pole-zero pairs. Our proof below generalizes this result to Tay-discontinuity,
hence also discontinuity in cw, au, and A. Also, in [15] Werner and Wuytack present
their argument only for the case in which rp lies in a 2 2 square block in the Pad6
table, and they suggest that the proof for the general case will require the introduction
of several pole-zero pairs rather than one. However the following proof, which has no
block size restriction, shows that one is enough.

THEOREM 2b. If re is degenerate, then P is Tay-discontinuous at f.
COROLLARY (by Theorem b). If rp is degenerate, then P is also cw-, au-, and A-

discontinuous at f.
Proof. Let f,m,n be given, let f have the form f(z)-ctzt+ct+lZt++ with

ctvO, and let P(f)-rp Rmn have defect d>0. Then

(2.1) f( z ) re(z) + a2 m+n+ l-d+ O( z m+n+2-d)

for some a C, possibly zero. To begin with, assume re 0, which implies l<_m+ n-d.
If ave0, then for each e >0, define

ae,+n+ -d-t/c )(2.2) r(z)--rP(z) 1+ ]- ),-
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Since rp is degenerate, r belongs to Rmn for each e and has defect at least d-1. This
implies that for r-P(f) to hold for somef, it is enough thatf satisfy

(2.3) f( z ) r( z ) + O(zm+n+2-d).
To achieve this, let f be that function which has the Taylor coefficients of f for degree
>--m+ n+ 2-d and those of r for degree _<m+ n+ 1-d. Now from (2.1) and (2.2) it
follows that the coefficients of f and r agree up to O(e) for degrees _<m + n + 1- d.
Therefore ff as e 0, while from (2.2), re-ray rp. This establishes discontinuity as
claimed.

If a-0, replace aem+n+ -a-t by e"+n+2-a-t in (2.2).
It remains to treat the case rP=--O, which will occur whenever f(z)--O(zm+l). If

m-->n-- 1, we set

aEm+n+l-d(2.4) r(z)-

or r,(z)--em+"+2-d/(1--z/e) if a--0, and then the proof is again valid. Therefore
assume rn _<n- 2. In this event rp has defect d--n, while (2.4) has defect m _<n-2, and
so that proof breaks down at (2.3). If f(z)-O(z"+), let f have the Taylor coefficients
off for k>_n+ 1 and those of e"+/(1-z/e) for k<_n. Then r=P(f)-e"+/(1-z/e)
"Tay 0 as e ---> 0, butff, and discontinuity is established.

On the other hand iff(z)-azr+O(z K+l) with a:/:0 and m+ <_K<_n, setf(z)-
e+f(z) and r-P). Then for any e>0, r will have Kth coefficient a4:0, while rp has
Kth coefficient 0. Thus again one has/’e"*Tay rp.

In summary, the Werner-Wuytack result that P is continuous at f if and only if
rpQ) is nondegenerate holds not only for/-continuity, which seems after all a some-
what unnatural definition of continuity for a problem with no intrinsic restriction to
the real axis, but also for continuity with respect to definitions cw, au, A, and Tay.

3. Best approximation on small domains. Suppose KC_ C is a compact set, f is a
fixed function, and for each e>0, r*r is a best approximation to f in Rm, on eK. In
1934 Walsh posed the question [10]: as e 0, must r*K approach rP? We are especially
interested in three choices of K:

A--(z’lzl--<}, I=[--1,1], J-[O, 1].
In his original paper Walsh settled the question in the affirmative for polynomial
approximation on these regions, showing [10, pp. 175-176]

(3.1) r,r,r--au rp if n--0

providedf is analytic (case A) or sufficiently differentiable (cases I,J) at the origin.
To obtain analogous theorems for rational approximation, it is convenient to make

use of the linear system (1.3), and therefore natural to assume that rp is nondegenerate.
In 1964 Walsh extended (3.1) to

(3.2) r "--> an rp if rp is nondegenerate

for f analytic in a neighborhood of the origin [11]. In Theorem 3a below we generalize
this result as follows: if K is any region containing a ball around the origin, then

r*r rp as e 0, regardless of degeneracy. Thus H- and/-convergence always occur,
by Theorem a, and if rp is nondegenerate, one also has convergence with respect to
cw, au, A, and Tay.
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A decade later Walsh published the analogous result for the half-interval:

(3.3) r au rp if rp is nondegenerate

for fcm+n+l[o,], some >0 [12]. This theorem is correct, but Walsh’s proof has an
error in it: his equation (13) does not follow from his equation (12), and it appears that
no simple modification can get around this problem. In Theorem 3b below we give an
alternate proof that avoids this error, and in the process generalize the domain: we
show that if K is any bounded set with at least m/ n / points, then r*K cw rp if r is
nondegenerate. In particular K can be disconnected or discrete, and it need not contain
the origin.

Walsh did not speculate as to whether the nondegeneracy condition is necessary
for (3.2) and (3.3) to hold. This question was taken up by Chui, Shisha, and Smith, also
in 1974. For the problem of approximation of a real function fcm+n+l[o,] by
rational functions with real coefficients, they claimed [2], [3]

(3.4) rI r regardless of degeneracy.

However, this assertion is false. We will demonstrate this in Theorem 3c by exhibiting a
counterexample that is a modification of some related examples derived in [6]. The
error in the proof of [2] comes in the last sentence of the paper, where the authors
appeal to the fact cwI (in the notation of our Theorem 1), without having imposed
the normalization b0= (eq. (1.1)) in the definition of cw that is needed for this
implication to hold.

In general it appears that if r is degenerate, then nothing can be said about
convergence in senses stronger than H, regardless of what domain K is under considera-
tion, and in fact Theorem 3c will give examples with r*K -’Tay rp for K= A, I, and J, for
0oth real and complex approximation.

THEOREM 3a. Let f be analytic in a neighborhood of the origin and have the (m, n)
Padb approximant rp with defect d. Let KCC be a bounded set that contains a disk about
the origin, andfor each e, let r*r be a best approximation in R,, to fon eK. Then

(3.5) r*tc t rp as e 0.

COROLLAtY (by Theorem a). Under the same hypotheses one has r*r r, and if in
addition d--O, one has convergence also with respect to cw, au, A, and Tay.

Remark. The assumptions that f is analytic and that r*r is the best approximation
are unnecessarily strict. All that is needed for the proof is II r*-rPll-o(em+n-d).

Proof. By definition rp is analytic at the origin and its Taylor coefficients agree
with those off through degree m+ n d. Since K is bounded, this implies

and therefore also

[[f r*K[[eK’-- o( em+n--d).
Subtracting these estimates yields

(3.6)
Now without loss of generality assume K contains the disk A. Then (3.6) will hold in
particular on the boundary of eA, and by a Cauchy integral this implies the estimate

ck( rP- r*tc ) o( e"+n-d-k )
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for the kth Taylor coefficient of rP--re*K For k<_m+n-d one therefore has c(r*r)-
c(rp) as e -, 0, and this is the definition of r*

THEOREM 3b. Let f be analytic in a neighborhood of the origin and have the
nondegenerate (re,n) Padb approximant rp. Let KC_C be an arbitrary bounded set
containing at least m + n + points, which need not include the origin. Then

(3.7) r*rcw r as e 0.

COROLLARY (by Theorem a). Under the same hypotheses one also has convergence
with respect to au, A, Tay, H, and

Remark. The remark following Theorem 3a applies again here, and now it is more
important. To guarantee IIr*c-rPll-o(em+ ), it will be enough for f to have m+n+
derivatives at the origin with respect to the set t_J eK, which may consist of a union of
rays through the origin (such as J or I) rather than a complex neighborhood. Also, if
f()=f(z), then the conclusion holds for real best approximations r*x as well as
complex ones.

Proof. Let r’ and r*tc be represented as

rp(z) P(z) r,r(z) -p(z)Q(z) q(z)

normalized by Q(0)-I and [Iqllr 1. As in the previous proof, one obtains the
estimate (3.6) with d=0,

By the normalization of Q and q we can multiply through to obtain

Since the function inside the norm is a polynomial of degree at most rn / n, and since K
contains at least m+ n / points, this estimate can only hold if in fact

By a Cauchy integral over Izl-e, this implies that the polynomials pQ and Pq have
approximately equal coefficients,

(3.8) c(pa)-c(eq)+o(1), k-O,...,m+n.

Now if n-0, then Q--q=-1, and (3.8) is the conclusion (3.7) we are looking for.
Therefore assume n >0. In this event the nondegeneracy assumption implies P 0, and
since P is independent of e and IIqll-1, it follows that for each sufficiently small e,
Pq has a coefficient bounded below in modulus by a fixed constant. Together with
(3.8) this implies that the sets of zeros of pQ and Pq must converge to each other as
e0 in the following sense: if z,’",Zm+ and ’l,’" ",’m+, are the zeros of these
polynomials, counted with multiplicity, and padded with numbers zg-o or ’- owhen the degree is less than m/ n, then for some ordering of the subscripts one has
X(Zk,k)O for each k as e-0. Now the zeros of P and Q are independent of e, and if
rp is nondegenerate, either there are rn of the former or there are n of the latter, or
both. Suppose P has rn zeros; the other case is analogous. Then the convergence of the
zero sets of Pq and pQ implies that for all sufficiently small e,p has degree exactly m,
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with its zeros converging as e0 to those of P. It follows then that the zeros of q also
converge to those of Q, with possibly some additional zeros converging to c. From
here (3.7) is a ready consequence. []

Remark. Comparing Theorem 3b to Theorem 3a, one sees that in permitting a
general region K, we have lost the ability to conclude r*r--,n re in the absence of
nondegeneracy. An example shows that this cannot be helped: take f(x) x, (m, n)
(0, 1), K= { 1, }. For each e, the best approximation is then

Z

which has a pole at the origin, so r*r re certainly does not hold. On the other hand
it is still conceivable that some conditions on f and K weaker than the assumption
A C_K would be enough to ensure r*r re.

Having established r*r- re under appropriate hypotheses, we come now to the
task of giving examples to show that if re is degenerate, then convergence in stronger
senses than H will not in general take place. (Of course, degeneracy will not always
cause nonconvergence; for example, the best real approximation in R0n to f(x)-x on
el is 0 for all e, which converges to the degenerate Pad approximant re=--O in every
sense.)

THEOREM 3C. There exist examples of integers m,n and entire functions f with the
following properties"

(i) re*A-Tayrp,
(ii) re*l.,TayrP,
(iii) /’e-,Tay /’P.

Analogous examples also exist if each problem is restricted to approximation of real
functions by real rational functions, in which case one also has r*r- re. (By a "real"
function on A, we mean a function f with f(f) =f( z ).)

COROLLARY (by Theorem lb). The.same nonconvergence results hold with respect to
cw, au, and A.

Proof. There are six statements to prove, which we label A-C, I-C, J-C, A-, I-,
J-. Probably examples exist in each category for arbitrary m >-0, n > 1, but we will not
worry about achieving this generality.

A-C. Take (m,n)-(O, 1) and f(z)-zE-z 5, hence re----0. In the proof of Theorem
4 in [6] it was shown that for all e,r has a pole in the region Izl<-pe, for some fixed
constant p. It follows also from the arguments there that one has IIf-Oll-IIf-rlla
>conste5 as e0. This implies Ilri*a(eto)ll>--conste for each of the three roots of
60

3 1, and therefore r must have the form

(3.9) r(z)- z-eb(e)

with a(e) bounded below and b(e) bounded both above and below by constants. It
follows that the Taylor coefficients ck(r) for k_>6 diverge to as e 0, so in
particular rTay re

A-R. The example and argument above are suitable here too. Since b(e) is real,
obviously rz re also.

1-C. Consider f(x)--x, (m,n)=(0, 1). It is shown in [6] that r is not a constant,
but has a pole somewhere in C. A scale invariance argument shows that ri must
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therefore have the form

ae2

(3.10) r(Z)-z_eb
for some constants a and b, independent of e. Obviously r.Ty rp

I-. Consider f(x)-x 2, (re, n)-(0,2). By the equioscillation theorem, r cannot
be a constant, for a constant yields at best three equioscillation points. So it must have
a pair of real poles, symmetric with respect to the origin, and a scaling argument gives

X 2 e2b2

which again implies re-,,-Tay r’, and also r,I rp.
J-C and J-R. For both of these situations the example and argument of case I-C

apply. The equioscillation theorem shows that the best approximation to f(x)-x on eJ
is not a constant, either in real or complex approximation; therefore in each case it
must have the form (3.10), which implies r...Tay r’. For real approximation one also
has r.,-,I r P, and in fact in this case the coefficients of the solution have been calculated
explicitly by Maehly and Witzgall [8]" they are a- -1/4, b-(1 + 7-)/2. IS]

All of the above examples have rp 0, and it may seem that this might make them
exceptional. However, examples with rP0 can also be invented. For example, con-
sider type (2,1) approximation to f(z)-z+z7+z5 on eh. Now rP(z)-z, but the
arguments of [6] show that r.-,Tay rp holds regardless.

Throughout this section we have investigated whether r*K and rp approach each
other as e 0. However, for some purposes it may be more interesting to know whether
I- r*ll and ILl- rPll approach each other. Let

Ilf- rPIIK
OK-- ILf r*KIIK

be a measure of the agreement between these two. For Pad6 approximation to be
asymptotically best, one should have oK as e 0. The following examples reveal
that in general this need not occur, even if rp is nondegenerate, but that on the other
hand it may occur even if r*Kay rP.

First, suppose K is the diskA and f is analytic at 0, as in the proofs A-C and A-R
above. Then whether or not rp is degenerate, for small enough e the function f-rp

maps [z[=e onto a curve of winding number at least m+nO-1-d whose modulus is
constant up to a factor + O(e). By Rouche’s theorem one concludes oK-- O- O(e) [9].
Thus oK does not imply r*K--Tay rP.

Second, let K be any bounded region that contains a disk about the origin. An
extension of the above argument shows OK_<Const as e0, but it is easy to devise
situations in which oK is bounded away from 1, even when rp is nondegenerate. (For
example" let K be the eccentric disk [z 1/2[_< 1, and take f(z) z, (m, n) (0, 0). Then
[[f--rPllK--3e/2, but Ilf--r*KllK--e, so OeK:- for all e.) Thus /’e*K---)TayrP does not
imply oK- 1.

Third, consider any of the examples in the proofs l-C, l-R, J-C, J-R above. Here
one has oK--=const> as e -00, independent of e, and so neither oK- nor/’e*K--->Tay rp

holds.
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Finally, take K=[1/2, 1] and letfbe a COO function on [0, oo) whose Taylor series at
the origin is that of some fixed roo Rmn, degenerate or nondegenerate, but which
equals some slightly different rkR, on each interval 4-kK, k->0. Then IIf-r**ll:=0
but [[f-rPl[rvO for each e=4-k, so in this case the ratios or are not even bounded as

"-> 0o
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