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Abstract: In classical Kirchhoff flow, an ideal incompressibie fiuid flows past an obstacle and around a motionless
wake bounded by free streamlines. Since 1869 it has been known that in principle, the two-dimensional Kirchhoff flow
over a polygonal obstacle can be determined by constructing a conformal map onto a polygon in the log-hodograph
plane. In practice, however, this idea has rarely been put to use except for very simple obstacles. because the conformal
mapping problem has been too difficult. This paper presents a practical method for computing flows over arbitrary
polygonal obstacles to high accuracy in a few seconds of computer time. We achieve this high speed and flexibility by
working with a modified Schwarz-Christoffel integral that maps onto the flow region directly rather than onto the
log-hodograph polygon. This integral and its associated parameter problem are treated numerically by methods

developed earher by Trefethen for standard Schwarz-Chnstoffel maps.
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z: physical space coordinate (region bounded by obstacle and free streamlines),
w: velocity potential (slit plane),

x = \/2w/W + x4 (upper half plane)

¢ =dw/dz: hodograph or conjugate-velocity (gearlike region
2 = ~log { (polygonal region or Riemann surface).

Figure 1 shows the geometry we are concerned with. An ideal incompressible fluid in the
complex z plane undergoes irrotational flow rightward past a solid obstacle I".

* Supported by an NSF Mathematical Sciences Postdoctoral Fellowship, by the U.S. Dept of Energ\ under contract
ME_AMNY_7£ TDNAINTTI VY aeed Lo, olon Toocele. s A B e da A Y el lmemmn aem ] LD ool ot NACTA
LAV L-IULNVIOV/ /=¥, allu U_y ine lllblllulc 101 \/Ulllpulcl r\ppubauuub lll DLICHLC dllu EHEIHCCI llls, INAOA
Langley Research Center. This work was performed while the author was at ICASE and at the Courant Inistitute of

Mathematical Sciences.

0377-0427/86,/33.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)



252 A.R. Elcrat, L.N. Trefethen / Free-streamline flow over an obstacle

Fig. 1. Geometry of the Kirchhoff flow problem.

The complex velocity is denoted by v(z) and is normalized by v(e0) = 1. The obstacle consists of
n solid line segments I, = (z,_,, z,), 1 <k < n, bounded by vertices z,, 0 <k <n, and yn
denotes the angle of I, counterclockwise from the horizontal. At an unspecified stagnation point
z4 along TI', the flow divides between an upper part passing over z, and a lower part passing
under z,. At z, and z, the fluid does not undergo infinite acceleration and turn 180° back on
itself; rather, it continues smoothly towards z = + oo by flowing around a wake in which v =0.
The curves of discontinuity separating the wake from the moving flow are two free streamlines
with stream function equal to zero, which we label I'_ and I',. The shapes of I'_ and I', are
unknown a priori, but are determined implicitly by the condition that all along both of them,
|v(z){ must be constant and equal to 1. The physical origin of this condition is the requirement
that the pressure should have the constant value p_ throughout the wake, and be continuous
across I'_and I'; |v]|=1 then follows from Bernoulli’s equation.

Here then is our Kirchhoff flow problem: given an obstacle I', calculate the free streamlines I',
stagnation point z,, and velocity field v(z) for a flow of the type described, together with
associated numerical quantities such as lift and drag.

Free-streamline flows of this kind have a long history. They were introduced by Helmholtz and
Kirchhoff [8] in 1868/9 in an attempt to resolve D’Alembert’s paradox: in ideal potential flow
(with no wake), the pressure forces around an object balance exactly and so the drag is zero [13].
Similar ideas apply also in the study of jets and cavities, where the free streamlines typically
separate a liquid from a gas. We will say very little about the physical aspects of our problem,
which is obviously idealized; for surveys of the large mathematical and physical literature of
wakes, jets, and cavities, see [2,5,7,9,10,13,19]. For some recent computational work in this area,
see [1,3,14].

The Kirchhoff flow problem can be cast as a problem in complex analysis. Let { denote the
hodograph variable, which is simply the complex conjugate of velocity:

§(z)=0(z). (1)



A.R. Elcrat, L.N. Trefethen / Free-streamline flow over an obstacle 253

% / | \ o |
Y
Lol R

a a 3

v

~

/ / / / /o 0="1 X3 *» n-1
/ / / /

(a) (b)

- o d L S
Fl1g. 2. w ana x aomains.

Let G, denote the region of moving flow bounded by the solid boundary I" and the unknown free
streamlines I',. Since the fluid is incompressible and irrotational, v (if interpreted as a real
vector) is the gradient of a real velocity potential $(z) satisfying Laplace’s equation. Equivalently,
{ is the complex derivative of a complex velocity potential w(z) = ¢(z)+iy(z),

{(z)=dw(z)/dz, (2)

w* = w(z,) at which the flow divides to go around the Oostacie. Wiihout loss
can take W = 0, so that G,, is the slit planeC — R ™.

T o1l crilhcaniiamt samnmienizladl e 3¢ 1o Aacivalla ¢4 wadivan 7 ta o half elacas T at « lha n

19 Dllllplll_y buUbC\.luClll lllallll}uldllullb, 1V 1D UCHIIAUIC LU ITUULT Uw o a lldll'yldllc. et A UL a
new complex variable related to w by

2

w=1iW(x—x,), x=2w/W + x,, (3)
ag tmdiratad 1. Tia MWhY oA sereitn oo — wef 20y 3 Taws I/ — M e d .. = f _ 1 I\ caera ~rmotanmic thans
ad> Hiuivalcd 1 1'1g. 4\ V), allu wlile A’k = AL Wk} I1CIC ¥y T IR dlll A g = | 1, 1) altCT Luilsdtalily liat
will be chosen so that x,= —1 and x, = 1. Now G, = x(G,) is the upper half plane, with [—1,1]
cnrracnanding ta T and with {f — an — 1Y and (1 A~ carragenandineg ta T and T racnantivaly
\/\JILVOPUIIUIIIE LSV allua vviilii \ Ay L} Ali\l \L, W, UUIIUQPUIIUAIIE W 1L allu i1 +9 l\—OlJ\v\rllV\«l
We write X; =x(I}), X, =(I'})

The classical hodograph method of solution for Kirchhoff flows begins by calculating a
conformal map of G, onto the hodograph domain G, = {(G,). What makes thi he
fact that although G, is unknown because of the free streamlines, G, is (more or less) known. On
the solid boundary, { has known argument, since the flow must be tangential. This argument is
™ — v, m or —y,m, depending on whether the point on the boundary lies downstream of z, in the
dlrectlon of z, or z,, respectively:

[ m—ym forzel,, x <x,,
arg {(z) = (4a)
~ YT forzel,, x>x,.
On the free streamlines, { has known modulus:
i§{(z)i=1 forzer,. (4b)

Thus G, is a ‘gearlike’ region bounded by circular arcs and subsets of rays passing through the
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origin. If we introduce the log-hodograph variable
2(z)= —log {(z), (5)

then the corresponding domain G, is bounded by vertical and horizontal line segments.
Therefore a conformal map of G, onto G, can be written explicitly in the form of a
Schwarz—Christoffel integral. The classical solution method first calculates this map, thereby
obtaining the analytic relationship between { and w, and then integrates (2) to get w and { as
functions of z.

In practice, the only flows that have ever been obtained in this way involve very simple
obstacles I', such as the flate plate considered by Kirchhoff and certain wedges [2,7,13]. As the
number of sides increases, the conformal mapping problem rapidly becomes too difficult for
analytical solutions. The following are the principal reasons why this is true, and why even
numerical solutions have not been carried very far.

The first difficulty is that although the conformal map onto any polygon can be expressed by
the Schwarz-Christoffel formula, this formula depends on accessory parameters or prevertices
whose values must be determined numerically. This is the Schwarz-Christoffel parameter
problem. In the past, researchers concerned with free-streamline flows have not had methods
available for solving the parameter problem reliably. Our own interest in this project was
motivated in part by the fact that the second author has recently developed a numerical method
that does this, computing the map onto an arbitrary polygon typically in just a few seconds of
computer time. This method has been implemented in a Fortran package called SCPACK [15,16].

A second difficulty is that even if the prevertices for the map {2(x) are known, the further
integration of (2) must be performed to recover quantities of physical interest. As a result,
Kirchhoff flow calculations based in the traditional way on the log-hodograph domain may be
time-consuming, requiring on the order of minutes of computer time.

The final and most serious difficulty is that except in the case of a very simple obstacle, G, is
generally a polygonal Riemann surface rather than just a polygon, and contains slits and/or
branch points of unknown dimensions and even of unknown topology. The occurence of a
Riemann surface is in itself not a serious problem, for the Schwarz—Christoffel formula can
readily be modified to handle such domains [4]. But the presence of unknown dimensions and
topology is more serious. To overcome this problem, one can formulate and solve a generalized
Schwarz-Christoffel parameter problem [17] in which some of the conditions that determine {(z)
involve dimensions in G, rather than G,. We have successfully performed such calculations for
certain geometries, and hope to describe these results in a later paper. But it seems that this kind
of calculation always requires careful attention to the details of the geometry of the hodograph
domain. As a result the construction of a single computer program to handle a wide range of
obstacles by the hodograph method seems to be a difficult matter.

In this paper we combine the numerical ideas of SCPACK with an analytical trick that appears
in §4.1 of the book by Monakhov [10] (see also [18]) to calculate Kirchhoff flows over arbitrary
polygonal obstacles much more efficiently than the classical hodograph method permits. The key
idea is that since our flow problem has only a single pair of free streamlines meeting at infinity,
z(w) can be written in the form of a modified Schwarz-Christoffel integral. By working with this
integral directly, we dispense with all explicit consideration of hodograph domains, hence of
Riemann surfaces and unknown slits and branch points, and we also avoid the need for a second
integration. The result is a computer program that solves the problem of Fig. 1 for an arbitrary
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obstacle to high accuracy typically in a matter of seconds. that is, at an expense comparable to
that of finding the conformal map onto a closed polygon with the same number of vertices.

Section 2 describes our modified Schwarz—Christoffel map for z(w'), adapted from Monakhov.
Section 3 outlines an efficient procedure for computing it numerically. Section 4 gives numerical
results for some idealized problems. In later papers we will consider in greater detail certain
particular configurations of physical interest, and we will also investigate models featuring a
wake pressure p,... < p... which is essential if one wants quantitative agreement with laboratory
data.

Our Fortran package for Kirchhoff flows i1s a modification of SCPACK called KIRCHI.
Machine-readable copies of SCPACK and KIRCHI1 can be obtained by contacting the second
author.

2. The modified Schwarz-Christoffel integral

To put the modified Schwarz—-Christoffel formula in context, we begin with a description of
the standard Schwarz—Christoffel problem. Suppose P is a polygonal region in the complex
z-plane with vertices z,, 1 < k < n, and sides I, = (z, _,, z,) oriented at angles y,m counterclock-
wise from the real axis, and define the external angle parameters 8, by

Bi=Yie1— %> 1<ksn—1 (6)

and B8,=v, —v,+ 2. (For convenience we write z,=z,, z,,, =12, etc.) Let z=1z(x) be a
conformal map of the upper half complex x plane onto P, with z(x= )€}, and let
X, = x(I,) be the interval (x,_,, x,) bounded by the prevertices x, _; = x(z,_,) and x, = x(z,).
where x, <x,< :-+ <x,. Then arg(dz(x)/dx) is a known function on all of R which has
constant value y,m on each X,, and jumps by B, at x,:

arg dz/dx=vym forxe(x,, o), (7a)
Aarg dz/dx=B1 atx=x,, 1<k<n. (7b)

The basis of the Schwarz—Christoffel formula is the fact that it is easy to write down the function
dz/dx determined by these conditions. Let g, be defined by

g(x)=(x—x,)7", (8)

with the branch chosen so that g, (x) is positive for x > x,. Then g, has constant argument on R
except for a jump by B, at x,. To be precise, it maps Im x > 0 onto the wedge bounded by the
rays e A"R* and R*, as shown in Fig. 3(a). If follows that dz/dx can be written as a product
of these wedge maps,
dZ iy z iym . -8
To(x)=Aem [T g (x)=d e [ (x—x,) 9)
k=1 k=1

for some A > 0. The Schwarz—Christoffel formula is the integral of this,
z(x)=C+ae [ T (x - x,) "dx, (10)
k=1

where C is a complex constant.
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Returning to Kirchhoff flow problem, consider now the function z(w) that maps the slit plane
G, of Fig. 2(a) onto the flow domain G, of Fig. 1. Instead of knowing arg dz/dw for all z € R,
by (2)—(4) we now know arg dz/dw for x€l-1,1] and |dz/dw/ elsewhere. Defining 8, again

J \=7 T o / i b | L} / 1 o Ik O
by (6) and setting B, = 1, we can write
arg dz/dw=v o or x = v {113)
ls \.ll-/ A8 44 ,nll AVLI A A", \LL“}
Aarg dz/dw=8,n atx=x,, 1<k<n—-1 and k==x, (11b)
fdz/dw|=1 forxe X, ie. |x|>1, (11¢)
arg dz/dw=0 at x = oo0. (11d)

Thus the Kirchhoff flow problem is a modification of the Schwarz-Christoffel problem (7) in
which a constant-modulus condition rather than a constant-argument condition is applied over
part of the boundary. As soon as one formulates the problem in these terms it becomes evident
that here again, dz/dw can be written as a product. Let #, be defined by

B,
X=X
\l—x,(x+\/(l—x2 (1-x7)/
and h, similarly, where the branch is taken so that k. (x) is positive for x € (x,, 1). Obviously

h, has a smgulanty like that of g, at X, plus addmonal singularities at x = +1 In fact, A,

maps Im x > 0 onto the pie-slice-shaped region bounded by the ray e A"R ™, the ray R ", and

the circle | z| =1, as shown in Fig. 3(b). (If 8, > O, the region becomes an inverted pie slice with

sides meeting at oc.) Because every 4, has modulus 1 outside [ — 1,1}, we can write dz/dw as
dz 1

== TIh(x). (13)
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Here and below, [1, denotes the product over k=1, 2,..., n—1 and k= *, and ¥, is the
analogous sum.

By construction, the function on the right in (13) satisfies all of the conditions (11) except
possibly (11d). We must choose x, so that (11d) is satisfied too. To do this, note that by an easy
computation

arg h,(00) = =B, cos™!(—x,),

with the analogous formula for 4, and therefore

arg( e”"”l—lhk(oo)) =v,m— 2 BicosT'(—x;).
Condition (11d) therefore amounts to

Ym = 2. By cos™'(—x,) =0,

that is,

n—1
Xy = —cos(y,,'rr— Y B, cos“(—xk)). (14)
k=1
The Kirchhoff flow can now be written as the integral of (13),
z(w)=c+e**~“f [Tk, (x")dw". (15)

For this formula to be usable we want to integrate with respect to x rather than w. By (3), dw’
can be replaced by W(x’ - x,)dx’, and we get

x,—x* r_ iy, ~ ’ ’ ’
) dx’'=C+ We /(x x*)ljhk(x)dx (16)

2(x)=C+ fo

in direct analogy to (10).

The factor (x’ — x,) in (16) cancels another factor (x’ — x,)~! hidden there in 4. Conse-
quently z(x) has singularities at x,, 0 < k < n, but not at x,. We can write the integral out in
full as follows:

z(x)=C+ We”"“fx(l —Xyex+ \/(1 - xz)(l —-xf) )

n—1 -8
x 11 dx’.
k=1(1~xkx+ (1—x2)(1—x,3) )
This is essentially equation (5) of [10, p.185], except that Monakhov unjustifiably assumes x, =0
and hence w, = w,.

(17)

3. Numerical solution procedure

The last section reduced the Kirchhoff flow problem of Fig. 1 to the modified Schwarz—Chris-
. toffel integral (16). As always in Schwarz-Christoffel mapping, before one can make use of this
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integral one must solve a parameter problem in order that not only the angles but also the lengths
of sides of G. come out right. In this case the parameter problem involves n —1 unknown
prevertices { x, }:

n— 1 unknowns: x,, x,,...,x,_, satisfying -1 <x; < --+ <x,_, <1. (18)

The correct values for { x, } will be determined by an iterative process. Suppose that at some step
of this iteration a set of estimates { x, } is available. Then we first calculate a corresponding value
x 4 from (14), and a value W from the side-length condition

W[:l(x’ —x )T (x)dx

derived from (16). This leaves n — 1 further side-length conditions to be satisfied:

Wf-“l(x'—x*)nhk(x’)dx’ =|zk+1—zk" 1<k<gn—-1. (19)

=]z, —z,]

n — 1 equations:

Thus the count is right, and under suitable additional hypotheses, the existence of a unique
solution to (18)-(19) can presumably be proved. For general { x, } these equalities will not hold,
and the errors in them will be used to devise a new guess { x, } for the next iterate.

We now sketch how we carry out this process numerically in the Fortran package KIRCHI.
Most of the ideas are adapted from SCPACK and are discussed more fully in [15].

Solution of nonlinear system of equations

There is little reason to write one’s own program to solve (18)-(19); excellent robust programs
for this purpose already exist in the public domain. Several of these are based on the ‘hybrid’
method developed by Powell, which combines a steepest descent algorithm in early stages with a
quasi-Newton algorithm as the solution is approached. One well-known program of this kind is
the HYBRD1 code in the MINPACK library from Argonne National Laboratory, U.S.A. All of
our own work has used instead Powell’s code NSO1A [11], which can also be found in the
Harwell Subroutine Library. Although one could in principle compute the Jacobian matrix for
(18)—(19) exactly, NSO1A achieves superlinear convergence while requiring function values only.
Beginning with the trivial intial guess of equally spaced prevertices, KIRCH1 typically converges
to machine accuracy in around 4n iterations.

Change of variables to eliminate constraints

The parameter problem as written is constrained by the prevertex ordering conditions (18). If
these constraints are ignored, meaningless iterates will be generated and the correct solution will
generally not be found. However, it is a simple matter to eliminate the constraints by adapting
the change of variables introduced in SCPACK and also proposed by Reppe [12]. Define

y=logt— k=1 )k <n—1. (20)
Xe+1 7 Xg

Then there is a one-to-one correspondence between sets of unconstrained parameters { y, } € R"~!
and sets of constrained parameters {x,} satisfying (18). To work in these variables, one can
simply write the function evaluation subroutine called by NSO1A so that it takes as input { y, }
instead of { x, }. The effect of this is that in our experience so far, KIRCH]1 has converged to the
correct solution for every obstacle I" attempted.
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Compound Gauss—Jacobi integration
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x,)"# for some analytic function 4 near each prevertex x,, 1 <k <n—1, and the numerical
integration procedure must take this smoularlty into account or it will be hopelessly inefficient.
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lead to one pr revertex x, being so near another one x, that the associated smgulanty strongly

n ation ending at x, (see also [12]). The solution devised there was to
divide the interval into subintervals on which Gauss— Jacobl or pure Gauss (-Legendre) rules are
applied, with the length of these subintervals chosen dynamically in such a way that none is ever
longer than the distance to the nearest singularity {15]. This is what is meant by compound
Gauss-Jacobi quadrature. We recommend the same procedure for Kirchhoff flow computations.
It has proved highly effective in KIRCHI, where we consistently obtain integrals accurate to

around d digits when 24 is taken as the standard number of quadrature points per interval.
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changes abruptly from a straight segment to a smooth curve. Again the singularity must be

treated properly if the integration if to be efficient. To determine its form, note that at x,, say,
the boundary of the log-hodograph domain G, defined by (5) consists of an intersection of a
vertical and a horizontal straight line segment. Therefore 2(x) has the form (x)=2(x,)
+h(x)yx — x, near x, with & analytic. If follows that the integrand of (16), say H(x), has a
cinanlarmtu Af tha camo tuma ac Q(x) at T a Hiv\Ne=bL{ /v — v Y fAr cnma naw anmalutis
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function A. To integrate this, introduce a new variable y = \/x" — x, . Then the integral becomes
X X=Xy
= [Y 2
[ H(dx=[7 T 2yH(y? 4 x0)dy, (21)
X Q
0

and the integrand on the right is analytic at y =0, so it can be treated by Gauss-Legendre
quadrature. We apply this rule in the usual compound way.
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3
=,

of the inverse map

i what is needed for aulvuls ine parameter

problem or producing plots of streamlines and equipotential lines as in the next section. To
1 o ol .Q o

determine the potential or velocity at a given pomt in space, however, one needs to evaluate the
inverse map x(z). The obvious approach to this is to solve the equation z(x) = z iteratively for x
by Ne n’s _r_n_ct.hod. Smcc dz/dx is knnwn exactly as the int-grand of (16), this i tv.ranon can be

convergence in 3 or 4 1terat10ns.
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Computation of drag and lift
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W o (x—xy)
Fiw=— [ “=—"*dx. (23)
2/, $(x)

By (16), if { were ¢, this would be a formula for 1i(z, —z,). In other words to determine F,9%,

we have reflected I across the free streamline I'_ into a new obstacle I", and each force along I’
corresponds to a distance along I

rflow _ /s 2\ -~ A\
ra.h —1\4,, Zu). L‘l'}

This interpretation of the forces on I" suggest immediately how to compute them numerically:
one calculates the dimensions of I" by the usual compound Gauss—Jacobi quadrature procedure,
making use of the branch ¢ instead of ¢ and of Gauss—Jacobi formulas based on exponents
By = —By.

In the wake, the pressure has the constant value correponding to |v, | =1, so the forces are
given by

—_~

prake - L [T = L - dw= W [-‘/-(x—x*)dx= i(z -z,) (25)

ab =2 2J,. ¢(w) 2 ). i(x) 20 el
where we have assumed that the wake lies to the left as I' is traversed from z, to z,. From
(23) (25) it follows that the total force on the obstacle from both sides is

n P

F= F°W+I-“,,‘_”(§‘°——2-(z"—z,,), (26)
since z, = Z,. It is customary to resolve this number into its components,

F=Edrag+iF!iﬂ=(CD+CL)L! (27)

where the drag and lift coefficients C, and C are defined in terms of some reference dimension

r ~L T oL o :A.\ -
L. O 1, SUCIL 45> 11>

~ T s la 1. el
tal height or iengtn.

equivalent." be obtained by integrating (25) clockwise around any contour enclosing [—1,1] in
this domain
W r(x—x4)
F= -—95 S (28)
2 §(x)
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Clearly this numer is equal to 271 times an appropriate residue at sc, but in practice it is just as
convenient to obtain F from (26) by computing integrals for ?, and =, .

n

4. Computed results

To test the accuracy of KIRCHI, we have compared lift and drag coefficients computed by it
Wll.ll vauuus valucs llldl dIcC EIVCII lll I.IlC ll C rec. ruu we i ( i
exact solutions are known: the flat plate due Klrchhoff in
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symmetrlcal 4-p1ece wedge studied by Wu and Wang in 1964 [20], and a plate with spoiler

studied anv uslv bv the first author [3]. (The values tabulated under the heading "LS’ in [3] are

vvvvvvv vaLRS )y VY A Lllot aiiiid 220 VAILLS 3QULIAITN el 0 balliiis uu m (v &2

in error, and were replaced for this comparison by Elcrat’s previously announced corrections.)
We also considered a circular arc of half-angle 55°, studied by Brodetsky in 1923 and Schmieden
in 1929 [13], which we approximated by inscribed polygons. In all of these cases KIRCHI1
reproduces the published values C, and C; up to small discrepancies which we attribute to the
published sources, except that the numbers of Sekerzh—Zenkovich reported in [7] appear to be
wrong.

On the basis of these tests and other evidence, we believe that KIRCHI1 can reliably compute
flows to arbitrary accuracy over arbitrary polygonal obstacles with up to one or two dozen
vertices. The number of correct digits obtained increases roughly linearly with the number of
Gauss-Jacobi quadrature points per interval, and therefore the accuracy can be doubled by
roughly doubling the computation time.

We will now present some new Kirchhoff flow calculations of our own, summarized in Figures
4-9. Our purpose in presenting these examples is first, to demonstrate visually that the ideas
described above really work, and second, to record some further numbers for comparison with
future experiments. Examples of more direct physical interest will be considered in later papers.

Each figure shows the obstacle I' together with a system of streamlines at invervals Ay = 0.1
and equipotential lines at intervals A¢ = 0.2. These curves are obtained by mapping a rectilinear
grid in G,, conformally into G,. The first thing to notice in looking at the figures is that evidently
the Kirchhoff flow problem has indeed been solved—for along the free streamlines, the
equipotential lines are in each case evenly spaced, signifying constant flow speed. Moreover, since
the successive lines are separated by distances of 0.2, the speed has the correct value 1. By
contrast, note that in the examples with large drags especially, the separation between adjacent

berdmlIHCb or CqUIPOICHlldl llIle 1I1 UlC lIlIlOW Cl’lCl OI Il'le plO[S lS VlSlDly grealer
T‘ Ph RS P 'S P Py -~ 2 te T e i R I
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t come out especially small are those along which the fluid is nearly stagnant.
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A e

Fig. 4. n =1; number of steps: 1; number of logs: 1000,/9000; C, = 0.879802; C, = 0; W = 0.280050.

problem scales roughly as n? times this number of steps, and for drawing the plot, as n? times a
large constant [15]. A convenient and machine-independent way to measure the computer times
for these tasks is to count the total number of complex logarithms calculated in all products (17)
during the computation, for these calculations turn out to dominate the total computer time. In
each figure the first logarithm count listed corresponds to the solution of the parameter problem,
and the second to the construction of the plot. The counts are approximate.

It remains to state the dimensions and reference length L of the various obstacles, and to
make a few comments on each.

Flat plate (Fig. 4). This is the problem treated by Kirchhoff, whose solution can be found in
several of our references, e.g. [S]. The plate has length L = 1. The exact values for C, and W are
2w /(4 + ) and 2 /(4 + =), respectively.

Wedge (Fig. 5). Here the plate still has length L =1 but has been bent at the middle, with the
lower half inclined at an angle 45° and the upper half at 30°. The computed stagnation point lies
on the lower face at a distance 0.017348 from the vertex. Even simple wedge problems of this
kind cannot be solved analytically.

Plate with separation from rear face (Fig. 6). This obstacle, motivated by the model proposed
by Chaplygin and Lavrentiev mentioned above [7], consists of a plate of length L = 1 inclined at
angle 30° that bends back 180° at the leading edge into another plate of length 3. In other words,
it is an inclined plate with separation prescribed at the middie of the back face. Note that the
sharp edge in I" maps to a broad channel extending to oo in I. The stagnation point lies at a

_______ 10Q0°2°¢N0 £ o oL

s B4 n Q 2 Prgh DEDN
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€
Plate with spoiler (Fig. 7). Here a spoiler of length 0.2 at angle 45° has been added to the last
ahctanla farmino tha aaamatryv canciderad nravioncly hy the firct anthar [ and alea by Raceanini
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Fig. 6. n = 2; number of steps: 9; number of Jogs: 1100 ,/18000; Cp =0.000375; C = 1.266179: W = 1.459669.
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Fig. 7. n = 3; aumber of steps: 17; number of logs: 2600,/36000; Cp = 0.162420, C=0635514; W =1.141775.
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Fig. 8. n = 3; number of steps: 13; number of logs: 1500,/29000; Cp, = 0.386738; C = 0; W = 2.150311.

[1]. The stagnation point moves up to a distance 0.090124 from the leading edge, and the
singularity there weakens considerably. .

Equilateral triangle (Fig. 8). This obstacle is a symmetrical equilateral triangle with side length
L =}, having four vertices all told since the two separation points are mathematically distinct.
The flow crosses over itself, hence is nonphysical. We give this example to emphasize that
nothing in our formulation requires that the Kirchhoff flow, or even the obstacle itself, be
embeddable in the plane. We have also computed some extremely nonphysical flows over various
more exotic obstacles, but there is no space to present them here.

Charm bracelet (Fig. 9). Finally, we include this 13-gon, whose aerodynamic importance is
limited, to emphasize that the methods described in this paper work for arbitrary polygons. The
three straight legs, inclined at angles 45°, 90°, and 30°, each have length 1, and they meet each
other at distances 0.15 and 0.1 above the square and the triangle, respectively, both of which have

.

Fig. 9. n =13; number of steps: 96; number of logs: 319000,/265000; Cp, = 0.428060; C = —0.044866; W =1.159328.
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side lengths 0.15. The reference length is L = 1. Note that the sections 2, — 2, and 2, — %,, of T’
are so small, since the fluid is nearly stagnant there, that they are scarcely visible in the plot.
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