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Abstract: In classical Kirchhoff flow, an ideal incompressible fluid flows past an obstacle and around a motionless 
wake bounded by free streamlines. Since 1869 it has been known that in principle, the two-dimensional Kirchhoff flow 

over a polygonal obstacle can be determined by constructing a conformal map onto a polygon in the log-hodograph 
plane. In practice, however, this idea has rarely been put to use except for very simple obstacles. because the conformal 
mapping problem has been too difficult. This paper presents a practical method for computing flows over arbitrary 
polygonal obstacles to high accuracy in a few seconds of computer time. We achieve this high speed and flexibility by 
working with a modified Schwarz-Christoffel integral that maps onto the flow region directly rather than onto the 
log-hodograph polygon. This integral and its associated parameter problem are treated numerically by methods 
developed earlier by Trefethen for standard Schwarz-Christoffel maps. 
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1. Introduction 

Notation 
z: physical space coordinate (region bounded by obstacle and free streamlines). 
w: velocity potential (slit plane), 
x=/m+ X, (upper half plane), 
{ = dw/dz: hodograph or conjugate-velocity (gearlike region or Riemann surface), 
a = -log 5 (polygonal region or Riemann surface). 

Figure 1 shows the geometry we are concerned with. An ideal incompressible fluid in the 
complex z plane undergoes irrotational flow rightward past a solid obstacle r. 
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Fig. 1. Geometry of the Kirchhoff flow problem. 

The complex velocity is denoted by u(z) and is normalized by u( co) = 1. The obstacle consists of 
n solid line segments r, = ( zk_ ,, z,), 1 < k < n, bounded by vertices zk, 0 G k Q n, and y,n 
denotes the angle of r, counterclockwise from the horizontal. At an unspecified stagnation point 
z* along r, the flow divides between an upper part passing over z, and a lower part passing 
under zO. At z0 and z, the fluid does not undergo infinite acceleration and turn 180’ back on 
itself; rather, it continues smoothly towards z = + cc by flowing around a wake in which o = 0. 
The curves of discontinuity separating the wake from the moving flow are two free streamlines 
with stream function equal to zero, which we label r_ and r+. The shapes of r_ and r+ are 
unknown a priori, but are determined implicitly by the condition that all along both of them, 
1 u(z) 1 must be constant and equal to 1. The physical origin of this condition is the requirement 
that the pressure should have the constant value p, throughout the wake, and be continuous 
across I’_ and r+; ( u I= 1 then follows from Bernoulli’s equation. 

Here then is our Kirchhoff flow problem: given an obstacle r, calculate the free streamlines r+, 
stagnation point z *, and velocity field u(z) for a flow of the type described, together with 
associated numerical quantities such as lift and drag. 

Free-streamline flows of this kind have a long history. They were introduced by Helmholtz and 
Kirchhoff [8] in 1868/9 in an attempt to resolve D’Aiembert’s paradox: in ideal potential flow 
(with no wake), the pressure forces around an object balance exactly and so the drag is zero [13]. 
Similar ideas apply also in the study of jets and cauities, where the free streamlines typically 
separate a liquid from a gas. We will say very little about the physical aspects of our problem, 
which is obviously idealized; for surveys of the large mathematical and physical literature of 
wakes, jets, and cavities, see [2,5,7,9,10,13,19]. For some recent computational work in this area, 
see [1,3,14]. 

The Kirchhoff flow problem can be cast as a problem in complex analysis. Let 1 denote the 
hodograph variable, which is simply the complex conjugate of velocity: 

l(z) = D(z). (1) 
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(a) (b) 

Fig. 2. w and x domains. 

Let G, denote the region of moving flow bounded by the solid boundary I’ and the unknown free 
streamlines r*. Since the fluid is incompressible and irrotational, u (if interpreted as a real 
vector) is the gradient of a real oelocity potential G(Z) satisfying Laplace’s equation. Equivalently, 
[ is the complex derivative of a complex velocity potential w( 2) = +(z) + i$( z), 

S(z) = dw(z)/dz, (2) 

where the stream function q(z) is conjugate to 9. The function w(z) is analytic in G,, and maps 
G, conformally onto a slit plane G, = w(G,), shown in Fig. 2(a), where the slit begins at the point 

w* = w( ZJ at which the flow divides to go around the obstacle. Without loss of generality we 
can take w* = 0, so that G, is the slit plane C - Iw +. 

To simplify subsequent manipulations, it is desirable to reduce G, to a half-plane. Let x be a 
new complex variable related to w by 

w=fW(x-x*)*, x=&GpF+x*, 

as indicated in Fig. 2(b), and write xk = x( wk). Here WE R and x* E ( - 1, 1) are constants that 
will be chosen so that x0 = - 1 and x, = 1. Now G, = x( G,) is the upper half plane, with [ - l,l] 
corresponding to r and with ( - cc, - 1) and (1, cc) corresponding to r_ and T+, respectively. 
We write X, = x( r,), X, = (r,). 

The classical hodograph method of solution for Kirchhoff flows begins by calculating a 
conformal map of G, onto the hodograph domain G, = {(G,). What makes this possible is the 
fact that although G, is unknown because of the free streamlines, G, is (more or less) known. On 
the solid boundary, 1 has known argument, since the flow must be tangential. This argument is 
71- yk71 or - ykn, depending on whether the point on the boundary lies downstream of z * in the 
direction of z0 or z,, respectively: 

arg Z(z) = 
7r-yk77 forzErk, x<x*, 

- yk* forzErk, x)x*. 

On the free streamlines, f has known modulus: 

IS(z)]=1 forzEr*. (4b) 

Thus G, is a ‘gearlike’ region bounded by circular arcs and subsets of rays passing through the 
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origin. If we introduce the log-hodograph variable 

Q(Z) = -log S(Z), (5) 

then the corresponding domain G, is bounded by vertical and horizontal line segments. 
Therefore a conformal map of G, onto G, can be written explicitly in the form of a 
Schwarz-Christoffel integral. The classical solution method first calculates this map, thereby 
obtaining the analytic relationship between 1 and w, and then integrates (2) to get w and 5 as 
functions of 2. 

In practice, the only flows that have ever been obtained in this way involve very simple 
obstacles r, such as the flate plate considered by Kirchhoff and certain wedges [2,7,13]. As the 
number of sides increases, the conformal mapping problem rapidly becomes too difficult for 
analytical solutions. The following are the principal reasons why this is true, and why even 
numerical solutions have not been carried very far. 

The first difficulty is that although the conformal map onto any polygon can be expressed by 
the Schwarz-Christoffel formula, this formula depends on accessory parameters or preuertices 
whose values must be determined numerically. This is the Schwarz-Christoffel parameter 
problem. In the past, researchers concerned with free-streamline flows have not had methods 
available for solving the parameter problem reliably. Our own interest in this project was 
motivated in part by the fact that the second author has recently developed a numerical method 
that does this, computing the map onto an arbitrary polygon typically in just a few seconds of 
computer time. This method has been implemented in a Fortran package called SCPACK [X,16]. 

A second difficulty is that even if the prevertices for the map Q(x) are known, the further 
integration of (2) must be performed to recover quantities of physical interest. As a result, 
Kirchhoff flow calculations based in the traditional way on the log-hodograph domain may be 
time-consuming, requiring on the order of minutes of computer time. 

The final and most serious difficulty is that except in the case of a very simple obstacle, GQ is 
generally a polygonal Riemann surface rather than just a polygon, and contains slits and/or 
branch points of unknown dimensions and even of unknown topology. The occurence of a 
Riemann surface is in itself not a serious problem, for the Schwarz-Christoffel formula can 
readily be modified to handle such domains [4]. But the presence of unknown dimensions and 
topology is more serious. To overcome this problem, one can formulate and solve a generalized 
Schwarz-Christoffel parameter problem [17] in which some of the conditions that determine S(z) 
involve dimensions in GZ rather than G,. We have successfully performed such calculations for 
certain geometries, and hope to describe these results in a later paper. But it seems that this kind 
of calculation always requires careful attention to the details of the geometry of the hodograph 
domain. As a result the construction of a single computer program to handle a wide range of 
obstacles by the hodograph method seems to be a difficult matter. 

In this paper we combine the numerical ideas of SCPACK with an analytical trick that appears 
in $4.1 of the book by Monakhov [lo] (see also [IS]) to calculate Kirchhoff flows over arbitrary 
polygonal obstacles much more efficiently than the classical hodograph method permits. The key 
idea is that since our flow problem has only a single pair of free streamlines meeting at infinity, 
z(w) can be written in the form of a modified Schwarz-Christoffel integral. By working with this 
integral directly, we dispense with all explicit consideration of hodograph domains, hence of 
Riemann surfaces and unknown slits and branch points, and we also avoid the need for a second 

integration. The result is a computer program that solves the problem of Fig. 1 for an arbitrary 
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obstacle to high accuracy typically in a matter of seconds. that is, at an expense comparable to 
that of finding the conformal map onto a closed polygon with the same number of vertices. 

Section 2 describes our modified Schwarz-Christoffel map for z( M’), adapted from Monakhov. 
Section 3 outlines an efficient procedure for computing it numerically. Section 4 gives numerical 
results for some idealized problems. In later papers we will consider in greater detail certain 
particular configurations of physical interest, and we will also investigate models featuring a 
wake pressure pwake < pm, which is essential if one wants quantitative agreement with laboratory 

data. 
Our Fortran package for Kirchhoff flows is a modification of SCPACK called KIRCHI. 

Machine-readable copies of SCPACK and KIRCHl can be obtained by contacting the second 
author. 

2. The modified Schwarz-Christoffel integral 

To put the modified Schwarz-Christoffel formula in context, we begin with a description of 
the standard Schwarz-Christoffel problem. Suppose P is a polygonal region in the complex 
z-plane with vertices zk, 1 < k < n, and sides r, = ( zk_ ,, zx-) oriented at angles yx.~ counterclock- 
wise from the real axis, and define the external angle parameters Pk by 

&=Y~+,-yk, 1 <k<n-1 (6) 

and & = yi - y, + 2. (For convenience we write z0 = z,, z,+, = zl, etc.) Let I = z(x) be a 
conformal map of the upper half complex x plane onto P, with z(x = x) E r,, and let 

X, = x(rk) be the interval (x,-i, xk) bounded by the preoerrices xk_, = x(I~_,) and xk =x( z~>. 
where xi c x2 < * * * < x,. Then arg(dz(x)/dx) is a known function on all of IR which has 
constant value yk7r on each X,, and jumps by @k~ at xk: 

arg dzjdx = y,n for x E (x,, co), (7a) 

Aarg dz/dx=PkT at x=xkr l<k<n. (W 

The basis of the Schwarz-Christoffel formula is the fact that it is easy to write down the function 
dz/dx determined by these conditions. Let g, be defined by 

(8) 
with the branch chosen so that gk(x) is positive for x > xk. Then g, has constant argument on Iw 
except for a jump by Pk~ at xk. To be precise, it maps Im x > 0 onto the wedge bounded by the 
rays e- iP~n[W + and Iw +, as shown in Fig. 3(a). If follows that dz/dx can be written as a product 
of these wedge maps, 

g(x) =A eiyln fi gk(x) =A eiyIqko, (x - xk)-81, 
k=l 

(9) 

for some A > 0. The Schwarz-Christoffel formula is the integral of this, 

X n 
z(x) = C + A eiyln 

/n( 
x’ - xJ”dx’, 

k=l 
(10) 

where C is a complex constant. 
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Fig. 3. Mapping properties of the individual factors g, and h, in the Schwarz-Christoffel and modified 

Schwarz-Christoffel integrands, respectively. 

Returning to Kirchhoff flow problem, consider now the function z(w) that maps the slit plane 
G, of Fig. 2(a) onto the flow domain G, of Fig. 1. Instead of knowing arg dz/dw for all z E Iw, 
by (2)-(4) we now know arg dz/dw for x E [ - l,l] and ]dz/dw 1 elsewhere. Defining & again 
by (6) and setting j?* = 1, we can write 

arg d z/d w = y,,n forx=x,, @la> 

Aarg dz/dw=j?,n at x=xk, l<k<n-1 and k= *, (lib) 
]dz/dw]=l 

arg dr/dw = 0 

forxEX*, i.e. ]x]>l, 

atx=cc. 

(llc) 

(lid) 

Thus the Kirchhoff flow problem is a modification of the Schwarz-Christoffel problem (7) in 
which a constant-modulus condition rather than a constant-argument condition is applied over 
part of the boundary. As soon as one formulates the problem in these terms it becomes evident 
that here again, dz/dw can be written as a product. Let h, be defined by 

i I 

--PA 

Ux) = 
x - Xk 

1-x,x+\i(l-x*)(1-x,z) ’ 
(12) 

and h * similarly, where the branch is taken so that hk( x) is positive for x E ( x~, 1). Obviously 
h, has a singularity like that of g, at xk, plus additional singularities at x = + 1. In fact, h, 
maps Im x > 0 onto the pie-slice-shaped region bounded by the ray e-iPk”(W +, the ray Iw +, and 
the circle I z I = 1, as shown in Fig. 3(b). (If & > 0, the region becomes an inverted pie slice with 
sides meeting at cc.) Because every h, has modulus 1 outside [ - l,l], we can write dz/dw as 

dz 1 

z=?= I 
eiYn”nh,(x). 03) 
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Here and below, II, denotes the product over k = 1, 2.. . . , n - 1 and k = *, and I* is the 

analogous sum. 
By construction, the function on the right in (13) satisfies all of the conditions (11) except 

possibly (lld). We must choose x* so that (lld) is satisfied too. To do this, note that by an easy 

computation 

arg Irk(~) = -Pk cos-‘( -x~), 

with the analogous formula for h., and therefore 

arg( e”,~“~h,(m)) = 7,” - C/Ik cos-l( -xk). 
l 

Condition (lld) therefore amounts to 

y,lT - cp, cos-‘( -xJ = 0, 
* 

that is, 

i 

n-l 

x*= -cos y,lT- c &COS-'(-Xk) . 
x-=1 ) 

The Kirchhoff flow can now be written as the integral of (13). 

z(w) = C + eiYuv /“‘n h, (x’)dw’. 
l 

For this formula to be usable we want to integrate with respect to x rather than 
can be replaced by W( x’ - x *)dx’, and we get 

z(x)=C+ w/.‘xi(:G*dx’=C+ We’X,q~~‘(x’-x,)rlIh,(x’)dxt 

in direct analogy to (10). 
The factor (x’ - x,) in (16) cancels another factor (x’ - x*)-l hidden there 

quently z(x) has singularities at xk, 0 G k G n, but not at x,. We can write the 
full as follows: 

z(x) = C + WeiY,l” -x*x + \lo(1-x2)) 

x--k 
-PA 

dx’. 
-xX,x+ (1 -x2)(1 -x,2) 

(14) 

(15) 

N’. By (3) dw’ 

06) 

in h,. Conse- 
integral out in 

(17) 

This is essentially equation (5) of [lo, p.1851, except that Monakhov unjustifiably assumes x* = 0 
and hence w0 = w,,. 

3. Numerical solution procedure 

The last section reduced the Kirchhoff flow problem of Fig. 1 to the modified Schwarz-Chris- 
toffel integral (16). As always in Schwarz-Christoffel mapping, before one can make use of this 
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integral one must solve a parameter problem in order that not only the angles but also the lengths 
of sides of G. come out right. In this case the parameter problem involves n - 1 unknown 
prevertices { xi } : 

n - 1 unknowns: x,, x2,. . . , x,_, satisfying - 1 < x, < - - - -C x,_, < 1. (18) 

The correct values for { xk } will be determined by an iterative process. Suppose that at some step 
of this iteration a set of estimates { xA } is available. Then we first calculate a corresponding value 
x * from (14) and a value W from the side-length condition 

I / 
W -“(x-x*)l&(x’)dx +, -zO] 

Xl, l 

derived from (16). This leaves n - 1 further side-length conditions to be satisfied: 

n - 1 equations: j~~-~“‘(x~-x*)~h*(x’)dx~I=,~X-, -zk(, 1 <k<n-I. 09) 
XI 1 

Thus the count is right, and under suitable additional hypotheses, the existence of a unique 
solution to (18)-(19) can presumably be proved. For general (xx- } these equalities will not hold, 
and the errors in them will be used to devise a new guess { xk} for the next iterate. 

We now sketch how we carry out this process numerically in the Fortran package KIRCHl. 
Most of the ideas are adapted from SCPACK and are discussed more fully in [15]. 

Solution of nonlinear system of equations 

There is little reason to write one’s own program to solve (18)-(19); excellent robust programs 
for this purpose already exist in the public domain. Several of these are based on the ‘hybrid’ 
method developed by Powell, which combines a steepest descent algorithm in early stages with a 
quasi-Newton algorithm as the solution is approached. One well-known program of this kind is 
the HYBRDl code in the MINPACK library from Argonne National Laboratory, U.S.A. All of 
our own work has used instead Powell’s code NSOlA [ll], which can also be found in the 
Harwell Subroutine Library. Although one could in principle compute the Jacobian matrix for 
(18)-( 19) exactly, NSOl A achieves superlinear convergence while requiring function values only. 
Beginning with the trivial intial guess of equally spaced prevertices, KIRCHl typically converges 
to machine accuracy in around 4n iterations. 

Change of variables to eliminate constraints 
The parameter problem as written is constrained by the prevertex ordering conditions (18). If 

these constraints are ignored, meaningless iterates will be generated and the correct solution will 
generally not be found. However, it is a simple matter to eliminate the constraints by adapting 
the change of variables introduced in SCPACK and also proposed by Reppe [12]. Define 

Yk = 1% 
xk - xk-l , l<k<n-1. 
xk+l - xk 

Then there is a one-to-one correspondence between sets of unconstrained parameters { yk } E [w ‘-I 
and sets of constrained parameters { xk } satisfying (18). To work in these variables, one can 
simply write the function evaluation subroutine called by NSOlA so that it takes as input { yk } 
instead of ( xk}. The effect of this is that in our experience so far, KIRCHl has converged to the 
correct solution for every obstacle r attempted. 
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Compound Gauss-Jacobi integration 
Obviously (16) must be evaluated numerically except in the most trivial cases. Like the 

standard Schwarz-Christoffel integrand of (10). the integrand in (16) has the form h( x)( x - 
x~)-~I for some analytic function h near each prevertex x~., 1 < k < n - 1, and the numerical 
integration procedure must take this singularity into account or it will be hopelessly inefficient. 
In KIRCHl we apply the appropriate Gauss-Jacobi quadrature formula, whose nodes and 
weights are determined by calling the program GAUSSQ by Golub and Welsch [6]. a version of 
which is also available in the NAG Subroutine Library. However, in the development of 
SCPACK it was observed that Gauss-Jacobi quadrature alone is not enough to ensure accurate 
integrals, because the exponentially large crowding factors common in conformal mapping often 
lead to one prevertex xj being so near another one xx that the associated singularity strongly 
affects intervals of integration ending at xk (see also [12]). The solution devised there was to 
divide the interval into subintervals on which Gauss-Jacobi or pure Gauss (-Legendre) rules are 
applied, with the length of these subintervals chosen dynamically in such a way that none is ever 
longer than the distance to the nearest singularity [15]. This is what is meant by compound 
Gauss-Jacobi quadrature. We recommend the same procedure for Kirchhoff flow computations. 
It has proved highly effective in KIRCHl, where we consistently obtain integrals accurate to 
around d digits when 2d is taken as the standard number of quadrature points per interval. 

Numerical integration near the separation points 

At the separation points x,, and x,, the integrand of (16) has a singularity that is not simply of 
Gauss-Jacobi type, for although the boundary of G, does not turn a corner at these points. it 
changes abruptly from a straight segment to a smooth curve. Again the singularity must be 
treated properly if the integration if to be efficient. To determine its form, note that at x0. say. 
the boundary of the log-hodograph domain G, defined by (5) consists of an intersection of a 
vertical and a horizontal straight line segment. Therefore a(x) has the form fi( x) = a( x0) 
+h(x)/_ near x,, with h analytic. If follows that the integrand of (16), say H(x), has a 

singularity of the same type as e’tX) at x,,, i.e. H(x) = h(\ilX-Xo) for some new analytic 

function h. To integrate this, introduce a new variable y = Jx’_. Then the integral becomes 

/IH( x’)dx = i-2& y2 + x,,)d y, 
10 

(21) 

and the integrand on the right is analytic at y = 0, so it can be treated by Gauss-Legendre 
quadrature. We apply this rule in the usual compound way. 

Evaluation of the inverse map 
Equation (16) gives z as a function of x, which is what is needed for solving the parameter 

problem or producing plots of streamlines and equipotential lines as in the next section. To 
determine the potential or velocity at a given point in space, however, one needs to evaluate the 
inverse map x(z). The obvious approach to this is to solve the equation z(x) = z iteratively for x 
by Newton’s method. Since dz/dx is known exactly as the integrand of (16), this iteration can be 
carried out very efficiently. In practice any reasonable initial guess for x typically leads to 
convergence in 3 or 4 iterations. 
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Computation of drag and lift 
By Bernoulli’s equation. the pressure at a point z E r acts in the normal direction pointing 

into the fluid and is equal to to i 1 u( :) 1’ = iis, if we assume the fluid has density 1 and take the 
pressure for u = 0 as zero. Therefore the total force on a segment of r bounded by :U and :b is 

F’;” = ; / “I{ dz = ;/:‘t( w) dw 

-I, WC, 

= FJ”‘(x -x,)c(x)dx = FJ”(x - x&(x)dx. 
.‘,, ,‘,a 

(22) 

Now as pointed out in sightly different formulations by Levi-Civita and by Schiffman (see [5, p. 
370 and p. 350]), this result has a remarkable interpretation. Since l(x) maps ( - co, - 1) onto an 
arc of the unit circle, it can be analytically continued by reflection to a function i in the lower 
half x-plane defined by the formula s(x) = l/i(X) for Imx < 0. Thus (22) is equivalent to 

By (16), if l were 1, this would be a formula for ii( z,, - zU). In other words to determine I;I,“zw, 
we have reflected r across the free streamline r_ into a new obstacle p, and each force along r 
corresponds to a distance along f: 

F fl0w = i( 2, - 2,). 
u.h (24) 

This interpretation of the forces on r suggest immediately how to compute them numerically: 
one calculates the dimensions of r by the usual compound Gauss-Jacobi quadrature procedure, 
making use of the branch f instead of 5 and of Gauss-Jacobi formulas based on exponents 
pk = -pk. 

-In the wake, the pressure has the constant value correponding to 
given by 

-Vl- (x -x*) 
dw= yj-<, s(x) dx= 

] uoo ] = 1, so the forces are 

(25) 

where we have assumed that the wake lies to the left as r is traversed from z, to zh. From 
(23)-(25) it follows that the total force on the obstacle from both sides is 

F = Fo’$” + Fny;ke = (26) 

since z0 = i,. It is customary to resolve this number into its components, 

F = Fdrag + i F,ift = (CD + CL) L, (27) 

where the drag and lift coefficients C, and C, are defined in terms of some reference dimension 
L of r, such as its total height or length. 

Together, 5 and 5 define a single-valued analytic function 5 on C\[ - l,l], and the force can 
equivalently be obtained by integrating (25) clockwise around any contour enclosing [ - l,l] in 
this domain: 

(28) 
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Clearly this numer is equal to 2Ti times an appropriate residue at x, but in practice it is just as 
convenient to obtain F from (26) by computing integrals for f, and :,,. 

4. Computed results 

To test the accuracy of KIRCHl, we have compared lift and drag coefficients computed by it 
with various values that are given in the literature. First we considered three geometries whose 
exact solutions are known: the flat plate due to Kirchhoff in 1869 [5, p. 3291, the inclined plate 
due to Rayleigh in 1876 [5, p. 3301, and the symmetric wedge due to Bobyleff in 1881 [9, p. 1041. 
In these cases KIRCHl reproduces the exact values C, and C, to many digits. Then vve 
considered certain geometries for which numerical solutions have been published: an inclined 
plate with separation from the back face studied by Chaplygin and Lavrentiev in 1933 and by 
Sekerzh-Zenkovich in 1934 [7], an asymmetrical wedge studied by J.D. Lin in 1961 [20]. a 
symmetrical 4-piece wedge studied by Wu and Wang in 1964 [20], and a plate with spoiler 
studied previously by the first author [3]. (The values tabulated under the heading ‘LS’ in [3] are 
in error, and were replaced for this comparison by Elcrat’s previously announced corrections.) 
We also considered a circular arc of half-angle 55’, studied by Brodetsky in 1923 and Schmieden 
in 1929 [13], which we approximated by inscribed polygons. In all of these cases KIRCHl 
reproduces the published values C, and C, up to small discrepancies which we attribute to the 
published sources, except that the numbers of Sekerzh-Zenkovich reported in [7] appear to be 
wrong. 

On the basis of these tests and other evidence, we believe that KIRCHl can reliably compute 
flows to arbitrary accuracy over arbitrary polygonal obstacles with up to one or two dozen 
vertices. The number of correct digits obtained increases roughly linearly with the number of 
Gauss-Jacobi quadrature points per interval, and therefore the accuracy can be doubled by 
roughly doubling the computation time. 

We will now present some new Kirchhoff flow calculations of our own, summarized in Figures 
4-9. Our purpose in presenting these examples is first, to demonstrate visually that the ideas 
described above really work, and second, to record some further numbers for comparison with 
future experiments. Examples of more direct physical interest will be considered in later papers. 

Each figure shows the obstacle r together with a system of streamlines at inven-als A$ = 0.1 
and equipotential lines at intervals A+ = 0.2. These curves are obtained by mapping a rectilinear 
grid in G, conformally into G,. The first thing to notice in looking at the figures is that evidently 
the Kirchhoff flow problem has indeed been solved-for along the free streamlines, the 
equipotential lines are in each case evenly spaced, signifying constant flow speed. Moreover, since 
the successive lines are separated by distances of 0.2, the speed has the correct value 1. By 
contrast, note that in the examples with large drags especially, the separation between adjacent 
streamlines or equipotential lines in the inflow end of the plots is visibly greater. 

The additional shape shown inside each wake (in Figs. 6 and 8, below the wake) is the reflected 
boundary r described in the last section. Long sides in f correspond to high flow speeds. The - 
segments of r that come out especially small are those along which the fluid is nearly stagnant. 

Each figure lists the computed drag and lift coefficients and parameter W. all of them 
probably accurate to the six digits given. The number of steps in the iterative solution of the 
parameter problem by NSOlA is also listed. The total amount of work for solving the parameter 
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Fig. 4. n = 1; number of steps: 1; number of logs: 1000/9000; C, = 0.879802; C, = 0; W = 0.280050. 

problem scales roughly as .* times this number of steps, and for drawing the plot, as .* times a 
large constant [15]. A convenient and machine-independent way to measure the computer times 
for these tasks is to count the total number of complex logarithms calculated in all products (17) 
during the computation, for these calculations turn out to dominate the total computer time. In 
each figure the first logarithm count listed corresponds to the solution of the parameter problem, 
and the second to the construction of the plot. The counts are approximate. 

It remains to state the dimensions and reference length L of the various obstacles, and to 
make a few comments on each. 

Flat plate (Fig. 4). This is the problem treated by Kirchhoff, whose solution can be found in 
several of our references, e.g. [5]. The plate has length L = 1. The exact values for C, and W are 
2n/(4 + T) and 2/(4 + IT), respectively. 

Wedge (Fig. 5). Here the plate still has length L = 1 but has been bent at the middle, with the 
lower half inclined at an angle 45” and the upper half at 30”. The computed stagnation point lies 
on the lower face at a distance 0.017348 from the vertex. Even simple wedge problems of this 
kind cannot be solved analytically. 

Plate with separation from rear face (Fig. 6). This obstacle, motivated by the model proposed 
by Chaplygin and Lavrentiev mentioned above [7], consists of a plate of length L = 1 inclined at 
angle 30” that bends back 180” at the leading edge into another plate of length $. In other words, 
it is an inclined plate with separation prescribed at the middle of the back face. Note that the 
sharp edge in r maps to a broad channel extending to cc in f. The stagnation point lies at a 
distance 0.193308 from the leading edge. 

Plate with spoiler (Fig. 7). Here a spoiler of length 0.2 at angle 45” has been added to the last 
obstacle, forming the geometry considered previously by the first author [3] and also by Bassanini 
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Fig. 5. n = 2; number of steps: 6; number of logs: 1200/20000: C D = 0.337030: C, = 0.073976; PY = 0.636634. 

Fig. 6. n = 2; number of steps: 9; number of logs: 1100/18000; C ,, - 0.000575: C, = 2.266279: W = 1.459669. 
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Fig. 7. n = 3; mmber of sfeps: 17; number of logs: 2600/36000: C r, = 0.162420, C, = 0.635514: W = 1.141775. 
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Fig. 8. n = 3; number of steps: 13; number of logs: 1500/29000; C, = 0.386738; C, = 0; W = 2.150311. 

[l]. The stagnation point moves up to a distance 0.090124 from the leading edge, and the 
singularity there weakens considerably. . 

Equilateral triangle (Fig. 8). This obstacle is a symmetrical equilateral triangle with side length 
L = t, having four vertices all told since the two separation points are mathematically distinct. 
The flow crosses over itself, hence is nonphysical. We give this example to emphasize that 
nothing in our formulation requires that the Kirchhoff flow, or even the obstacle itself, be 
embeddable in the plane. We have also computed some extremely nonphysical flows over various 
more exotic obstacles, but there is no space to present them here. 

Charm bracelet (Fig. 9). Finally, we include this 13-gon, whose aerodynamic importance is 
limited, to emphasize that the methods described in this paper work for arbitrary polygons. The 
three straight legs, inclined at angles 45’, 90°, and 30”, each have length i, and they meet each 
other at distances 0.15 and 0.1 above the square and the triangle, respectively, both of which have 

Fig. 9. n = 13; number of steps: 96; number of logs: 319000/265 000; CD = 0.428060; CL = - 0.044866; W = 1.159328. 
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side lengths 0.15. The reference length is L = 1. Note that the sections 2, - 2, and 2, - i,, of i- 
are so small, since the fluid is nearly stagnant there, that they are scarcely visible in the plot. 
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