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A jet is a stream of one fluid entering another at high speed. In the simplest classical 
model of jet flow, the geometry is two-dimensional, gravity and viscosity are ignored, 
the moving fluid is a liquid, and the stationary fluid is a gas whose influence is 
assumed negligible. The description of this idealized flow can be reduced to a problem 
of complex analysis, but, except for very simple nozzle geometries, that problem 
cannot be solved analytically. This paper presents an efficient procedure for solving 
the jet problem numerically in the case of an arbitrary polygonal nozzle. 

1. Introduction 
The study of liquid jets issuing from containers is centuries old. One classical result 

is Borda's 1766 prediction of the contraction coefficient + for the case of a cylindrical 
orifice. In 1868, Helmholtz and Kirchhoff introduced the theory of free streamlines 
for such problems, together with the technique of solving them in two dimensions by 
complex analysis, and Helmholtz rederived the number 4 by this new approach 
(Helmholtz 1868). The following decades saw extensions of the complex analysis 
methods by Planck, Joukowsky, RQthy, Levi-Civita, Greenhill, and others, 
culminating in a notable survey by von Mises (1917). Some substantial post-war 
compendia of this material are those of Birkhoff 8z Zarantonello (1957), Gilbarg 
(1960), Gurevich (1965), and Monakhov (1983), all of whom emphasize the close 
relationship of the mathematics of jets to that of cavities and wakes. 

The classical theory of jets is elegant, but it has major limitations. Physically, it  
omits gravity, three-dimensionality, viscosity, and surface tension, and when such 
effects are introduced into the theory, the methods of complex analysis become 
harder to exploit. Mathematically, even in the idealized situation where complex 
analysis is fully applicable, only a few simple geometries can be treated in closed 
form. The reason is that the solution is related to a conformal map of Schwan- 
Christoffel type that is impossible to determine analytically unless the conbainer 
contains just two or three corners, or perhaps four or five if there is a line of 
symmetry. Consequently, few new geometries have been added to the collection of 
solved problems since von Mises. 

The purpose of this paper is to address this mathematical limitation by describing 
an efficient numerical procedure for computing two-dimensional ideal jets issuing 
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from arbitrary polygonal containers. This procedure has enabled us to reproduce 
most of the flows in the above works by entering an appropriate sequence of vertices 
into the computer, and to explore new geometries interactively by drawing the 
boundary polygon with a mouse. Our computations are based upon numerical 
techniques developed earlier for Schwarz-Christoffel mapping (Trefethen 1980, 
1983), but a modified Schwarz-Christoffel integral is required here because the free 
streamlines are not straight. In Elcrat & Trefethen (1986) a similar modified 
Schwarz-Christoffel procedure was described for wake and cavity flows. 

Our methods can handle a container bounded by ten or fifteen vertices routinely 
in a few seconds of computer time. High accuracy is cheap: the amount of work is 
roughly proportional to the number of digits desired. Of course, it is rare that a 14- 
digit solution will match experiments any better than a 2-digit solution. The point 
is that if the classical model can be treated as solved, then one can concentrate on the 
physics. 

With a certain amount of additional effort, Schwarz-Christoffel techniques can be 
adapted to include the effects of gravity. The first author has carried out such 
calculations for determining weir flows (Vanden-Broeck & Keller 1987), and will 
report this work in a later paper. 

The history of this project is that independently during 1986, both the first author 
(Dias 1986) and the second and third authors adapted the ideas of Elcrat & Trefethen 
(1986) to the jet problem, but our methods are too similar for it to be appropriate to 
write two papers. Consequently, we have two independent Fortran programs, which 
can be obtained by contacting Dias or Trefethen. Dias’s program is restricted to 
nozzles with parallel sides at infinity, as in Monakhov (1983). Those of our numerical 
results that satisfy this restriction have been checked by both programs. 

2. Formulation of the problem 
The geometry of our problem is shown in figure 1. An ideal incompressible fluid in 

the complex z-plane undergoes irrotational flow out of a reservoir bounded by two 
walls extending to infinity. The upper wall consists of a finite number of straight line 
segments delimited by finite vertices zl, . . . , zL--l and the infinite vertex zL = 00 ; the 
segment ( z k ,  ?++I) is denoted by r k .  Similarly, the lower wall is delimited by zL and 
by finite vertices z ~ + ~ ,  . . . , z,. The indices are ordered so that the flow region lies to the 
left as one traverses the boundary in the direction zl, ... , zL,  ... , z,. 

Let Y k  x denote the angle of r k  counterclockwise from the real axis, defined up to 
a multiple of 2x.  For k < L-  1 we think of rk as oriented in the direction (zk+*, zk) 
to define yk ,  while for k 2 L it is oriented in the direction ( z k ,  z ~ + ~ ) .  Let the external 
angle formed by rkPl and r k  a t  the point zk be denoted by Pk x = ( yk - yk-l ) x ,  plus 
a multiple of 2x if necessary to ensure that the following conditions hold. For each 
finite vertex, Bk lies in the range 

finite vertex: -1 < P k  < 1, k + L ;  (1) 

special cases of interest include a re-entrant slit ( Pk = - l), a re-entrant right-angle 
corner ( P k  = -i), a degenerate vertex at  which there is no corner ( P k  = 0) ,  and a 
salient right-angle corner ( P k  = 4). At the infinite vertex zL,  PL lies in the range 

vertex at  0 0 :  0 < PL < 2; (2) 

three special cases are a parallel channel at infinity ( P L  = 0) ,  a half-plane ( P L  = l),  
and the exterior of a parallel channel ( PL = 2). For non-integral values of PL in the 
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ZL = co 

FIGURE 1. Physical domain a,. 

range (2), as illustrated in the figure, PLlc is equal to the angle formed by extending 
the rays rL-l and rL to a finite intersection point. 

Mathematically, it  makes sense to permit arbitrary t?kE ( -  00, 1) for k * L and 
PL E (0, a). The resulting flows have physical meaning locally, but they cannot be 
imbedded in a plane, so their practical importance is limited. 

Here is our problem of fluid mechanics : determine a potential flow w(z) through the 
nozzle that continues to z = 00 as a jet bounded by two free streamlines r- and r+ 
on which the speed of flow is constant : 

I w ( x ) ~  = 1 for zcr,. (3) 
This condition comes from Bernoulli’s equation: a steady jet will have constant 
pressure p = pambient on its bounding streamlines, and in the absence of gravity, this 
implies that Iwl is constant there. The shapes of the free streamlines me unknown 
a priori, and must be determined as part of the solution. Two other physical 
quantities to be determined are 8, the angle of the jet at infinity, and q, the discharge 
rate. Because of the normalization (3), q is equal to the width of the jet at 
infinity. 

The flow problem can be reduced to a problem in complex analysis, as follows. Let 
G, denote the flow region bounded by the solid segments r k  and the free streamlines 
r*. Since the flow in G, is irrotational and incompressible, w(z) is the gradient of a real 
velocity potential #(z )  defined in (7, that satisfies V2# = 0. Let w(z) be thought of as 
a complex scalar, and let y be its complex conjugate, the hodograph variable, 

Then [ is the complex derivative of a complex velocity potential w(z) = $(z)  + i?b(z), 
g(z)  = a@). (4) 

where the stream function $ is the harmonic conjugate of #. The function w(z) is 
analytic in G,, and maps G, conformally onto an infinite strip G, of height q, as shown 
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FIGURE 2. Velocity-potential domain Gw. 

'? . . .  ...  

s1 = - 1 sp S L  s, = 1 

FIGURE 3. Computational domain G,. 

in figure 2. Without loss of generality we shall fix w, = 0, where wk denotes w(zk). The 
point w1 then lies at a location to be determined on the line Im w = q. 

It will be convenient to reduce G, to the upper half of the unit disk, with w1 and 
w, corresponding to the points -1 and 1, respectively. First, a map of G, onto the 
upper half-plane is given by 

u = effwlq(l --a,)+a,, w = 

with U, chosen so that a(wl)  = -1. (In Elcrat t Trefethen 1986 the half-plane was 
used for computations, but it is somewhat simpler to take one more step to the half- 
disk.) We then compose (6) with the mapping 

2s 
1 +s2' 

g=- 
1 - (1 - a2)i 

S =  
U 

(7) 

The result is the following mapping between the infinite strip and the half-disk: 

* (8) 
1 - ( 1 - (enwlq( 1 - U, + U, 12 14 

enw/q( 1 - U, ) + u, 
w = - q log (28/(1+s2)--2s,/(l+sl)) , s =  

7t 1-2~, / (1  +s;) 

Let a, denote the half-disk, with sk = s(wk) for 1 <j < n,  as shown in figure 3. The 
points sk lie in the interval [ - 1,1]. In the equations that follow we shall work with 
s or w interchangeably, according to convenience, since each is directly reducible to 
the other. 

The restatement of the jet problem as a problem of complex analysis goes aa 
follows. Our goal is to find a complex analytic function z(s) in Q, such that arg 
dz/dw takes prescribed piecewise-constant values for SE [ - 1,1], and Idz/dwl takes 
the value 1 for s on the upper-half unit circle. A formulation in terms of the absolute 
angles yn is ambiguous, since they are defined only up to multiples of 27t, but a precise 
formulation can be based on the angle differences Pk. We must find an analytic 
function z(s) in Q, that satisfies the following conditions : 

at 8 = s,, dz 
dw 

arg - = Y,,_~ x ( 9 4  
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FIGURE 4. The factor hk in the modified Schwarz4hristoffel integral. 

I z ( s ~ + ~ ) - z ( s ~ ) ~  = I Z , + ~ - Z ~ ~ ,  1 < k < L-2, L+1 < k < n-1, ( 9 4  

z(sl)-z(s,) = zl-z,. ( 9 4  

The classical approach to determining z(s) is to make use of the hodograph domain 
G,, which is the region in the c-plane corresponding to G,. G, is bounded by radial 
lines and circular arcs, which become horizontal and vertical lines under a complex 
logarithm. Therefore, a disk or a half-plane can be mapped onto log(G,) by a 
Schwarz-Christoffel transformation. However, except for the simplest nozzle 
geometries, log (G,) turns out to be not a planar polygon but a polygonal Riemann 
surface, with a boundary topology that is not fully determined a priori, and the 
required Schwarz-Christoffel map is of a generalized kind whose determination is not 
straightforward. We will circumvent all of these problems by working with the 
mapping from G, to G,. This also obviates the need for an additional numerical 
integration of (5). 

The Schwarz-Christoffel transformation maps a half-plane onto a polygon or, in 
other words, it provides an analytic function whose derivative has a prescribed 
piecewise-constant argument. Equations (9) represent a modification of this standard 
situation that can be solved by a modified Schwarz-Christoffel formula (Elcrat & 
Trefethen 1986). Let h,(s) be defined by 

s-sk -& 
h f ( 4  = (-) 1-s,s 9 

with the branch chosen so that h,(s) > 0 for SE ( S k ,  1). Then h, maps G, onto a pie slice 
(if Bk < 0) or the complement of a pie slice (if b k  > O ) ,  as illustrated in figure 4. For 
an explicit representation of the function dz/dw of (9), we can simply take a product 
of factors h,: 

(11) 
- dz = eb’m-in ;;;(-) 8 - 8 k  -Ik . 
dw k-2 1-8,s 

By construction, this formula satisfies the argument conditions (9a, b), and it 
satisfies the magnitude condition (9c) too since each factor satisfies (9c) individually. 
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Integration gives a modified Schwarz-Christoffel formula for the map from G, to 
Gz 7 

z(sb)-z(s,) = eiYn-l* 5' (-) s-sk -6% dw. 
wa k-2 l - s k s  

For this formula to be most useful we want to integrate with respect to s rather than 
w. By (8), dw can be replaced by 

dw q (1+&(1-s2)  
ds It ( ~ + s ~ ) ( s - ~ L ) ( ~ - s L S )  

ds, dw = - ds = - 

and (12) becomes 

Compare Monakhov (1983, p. 216). 
This completes the mathematical formulation of our jet problem. We are still left 

with the task of satisfying the geometric conditions (9d, e ) .  To accomplish this we will 
have to adjust q and s2,. . . , s,-~ appropriately, and that is a matter for numerical 
computation. 

3. Numerical procedure 
The function (13) depends upon n-1 real parameters: s2, ... ,sn-l and q. 

Correspondingly, it must satisfy n-3  real conditions (9d) and one complex condition 
(9e).  Thus the count is right for the problem to have a unique solution (we shall not 
attempt a proof). The points s2, . . . , are called accessory parameters or prevertices 
(since they are the preimages of the points z k ) ,  and the problem of finding their 
correct values is the modified Schwarz-Christoffel parameter problem. 

One of the unknowns can be eliminated by dividing each equation (9d)  by the same 
equation (9 d) with k = 1 .  To carry this out mechanically, for any choice of s2,. . . , s,-~, 
let q be arbitrary and compute Iz(s2)-z(s1)( by (13). (If L = 2, we first introduce a 
degenerate vertex z2 with /I2 = 0 and set L = 3.) Now adjust q so that the result 
becomes equal to Iz2 - z1 I. What remains is a system of n - 2 real nonlinear equations 
from (9d, e ) ,  

Iz(sk+l)-z(sk)l-Izk+l-zkI = 0, 2 < k < L-2 ,  L + 1  4 k < n-1, (14a) 

z(s1)-z(8,)-(Z1-zn) = 0, (14b) 

in n-2 real unknowns, 82, .**,sn-1, 

which must satisfy the constraints 

-1  = s1 < s2 < ... < s,-l < 8, = 1 .  (15) 

We are thus faced with the problem of computing a numerical solution to a 
constrained nonlinear system of equations of size n - 2. From this point the details 
are largely the same as in Elcrat & Trefethen (1986) concerning wakes and cavities. 
The essentials can be summarized as follows. 

Change of variables to eliminate constraints. The constraints (15) are eliminated by 
the substitution 

, 8k+1 = sk+(8k-sk-,) e-tk, 2 < k < n-1. (16) sk - sk - l  

' k + 1 -  'k 
tk = log 
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The computer program works with the unconstrained variables t k ,  converting from 
tk to s, whenever necessary. 

Solution of nonlinear system of equations. The second and third authors have used 
the packaged code NSOlA by Powell (1970) and the first author has used the 
packaged code ZXSSQ from the IMSL Library (IMSL 1986). Convergence is 
typically achieved with either program in on the order of 5(n - 2) evaluations of the 
set of functions (14). 

Numerical integration. The integral (13) must be evaluated numerically. A simple 
but effective approach used by the first author is to eliminate endpoint singularities 
with a change of variables, and then call an adaptive integrator such as DCADRE 
(IMSL 1986). A somewhat more efficient method (used by the second and third 
authors - 2 4  times faster) is compound Gauss-Jacobi quadrature, based on the 
subroutine GAUSSQ of Golub & Welsch (1969). ‘Compound ’ quadrature refers to an 
adaptive aspect of the algorithm that is indispensable for accuracy : each interval of 
integration is automatically subdivided so as to ensure that no interval on which a 
Gaussian rule is applied is ever longer than the distance to the nearest singularity 
other than one of its endpoints. The singularities in question are 8 = i and 8, for 
ii = 1, ..., n. 

Numerical integration near the separation points. The integrand of (13) is analytic 
at  s1 and s, and has zeros there. (The reason is that near s1 and s,, dw/dz maps one 
intersection of a straight line and a circle at right angles onto another such 
intersection; the proof can be completed by taking a logarithm and applying the 
reflection principle.) Therefore no special treatment of the integral near these points 
is required. The second and third authors have applied Gauss-Jacobi quadrature 
with linear weight functions to take advantage of the zeros of the integrand. 

Computation of q and 8.  The determination of a current estimate of the discharge 
rate q is the first step of each iteration, as described above; when the process 
converges, q will have the correct value. The angle 8 of the jet at infinity is found by 
ca.lculating the argument of (11) at s = i .  The result is 

n-1 
8 = Y,-~X- Z ,4,(3+2 tan-la,). 

k-8 

Plotting jhw lines. The streamlines and equipotential lines in 0, are the conformal 
images of a rectilinear grid in a,, and to plot them, we compute the images z(w) of 
a large number of points on the grid. Considerable time can be saved by making use 
of a subroutine to carry this out adaptively in such a way that the spacing between 
adjacent points w is inversely related to the local curvature. 

Evaluation of the inverse m p .  This is an easy job for Newton’s method, which can 
take advantage of the fact that dz/ds is equal to the integrand in (13). The inverse 
map is needed if one wants to determine the velocity at a specified point z, but not 
for computing q and 8 or plotting flow lines. 

We have implemented the techniques described above in Fortran packages called 
FSFLOW (first author) and JETl  (second and third authors). Exclusive of comment 
cards and library software, the length of each package is about 250 lines, plus 150 
more for driver commands and plotting. The amount of work involved in solving the 
parameter problem by JETl  can be very roughly estimated aa 

Work = 20D(n-2)9 complex logarithms, (18) 

where D is the number of digits of accuracy required; we control the accuracy by 
taking D quadrature points in each compound Gauss-Jacobi quadrature subinterval. 
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The time for FSFLOW is similar. The complex logarithm is a rather unusual work 
unit, but it is convenient for our problem because the exponentiation in ( l l ) ,  which 
is programmed by means of a complex logarithm, accounts for more than half of the 
total computation time. (This time can be cut in half by using real arithmetic in 
solving the parameter problem, since ( 1 4 4  involves only absolute values, but 
complex logarithms are still required for subsequent plotting of the flow net.) For 
simple geometries on a Sun 3 workstation, the parameter problem is solved to &digit 
accuracy in 5-10 s, and plotting flow lines takes 1-10 times as long. 

4. Computed examples 
We began by duplicating a number of the cases considered in the literature. In 

the following examples 8 is the angle of the jet at infinity, as in figure 1, and the 
aperture size Iz, - z1 I is equal to 1 except where otherwise indicated. This means that 
q can be interpreted as a contraction coefficient. Each plot shows streamlines 
separated by and equipotential lines separated by k. Notice that the spacing 
along the free streamlines in each plot is uniform, confirming that the constant-speed 
condition (3) has been satisfied. 

Symmetric funneE. The simplest nozzle geometry is the symmetric funnel of half- 
angle a( = in( pL - 1)). The contraction coefficient for general a, first determined by 
von Mises, is given by 

q-' = 1 + cotan i7tx sin ax dx 

1 
= 2 - - sin i7t [ $(i + :a) - $( $) - a-l] ,  

7t 

where $(x) = r ( z ) / r ( x )  is the logarithmic derivative of the gamma function 
(Gilbarg 1960, p. 342; Gurevich 1965, p. 46). For a = O', 45', 90°, 135', 180°, the 
contraction coefficients are q = 1 ,  0.7467, 0.6110, 0.5373, 0.5, respectively. (The 
number 0.7467 is usually reported incorrectly in the literature as 0.745 or 0.746.) 
Figures 5 and 6 show the textbook cases a= 180' (Borda, Helmholtz) and a = 90' 
(Kirchhoff, Rayleigh). 

Symmetric slot in pipe. Figure 7 shows another symmetric flow, first calculated by 
Michell and RBthy, in which an aperture appears at  the end of a channel of height h. 
The values h = 1 and 00 correspond to the symmetric funnel with a = Oo, 90'. For 
h = 1, 2 ,  5 ,  10, 00, the numbers are q = 1 ,  0.6444, 0.6158, 0.6122, 0.6110. 

Asymmetric slot in pipe. The flows become more interesting when we allow 
asymmetry. Figure 8 shows the same channel as before, but with the aperture 
adjacent to one boundary. For h = 1 ,  2, 5, 10, 00, the contraction coefficients are 
q = 1, 0.7092, 0.6796, 0.6757, 0.6744, and the angles at 00 are -8 = O', 19.02', 
20.83', 21.06", 21.13'. 

Slot in side of pipe. Analogously, figure 9 shows an aperture in the side of a pipe 
of height h = 2, located at a distance 1 from the end. For h = 1, 2, 5, 10, co the 
contraction coefficients are q = 0.5439, 0.5926, 0.6093, 0.6120, 0.6129, and the jet 
angles are -8 = 74.21', 81.28', 85.17O, 85.92', 86.18'. If the aperture on the side is 
at  the end of the pipe, these numbers become q = 0.5780, 0.6453, 0.6694, 0.6732, 
0.6744 and -8 = 63.65', 67.19', 68.58', 68.79', 68.87'. 

The 'teapot effect '. The jets shown in the last few figures do not represent the only 
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FIGURE 6. The Bode, mouthpiece (symmetric funnel with a = 180'). 

free-streamline flows issuing from pipes. In  a paper in 1957, J. B. Keller pointed out 
that additional solutions exist in which the fluid bends around the orifice to adhere 
to the outside of the pipe, and that solutions of this kind account for the tendency 
of some teapots to drip (Keller 1957). It would be a straightforward matter to modify 
the formulation described here to handle flows of this kind with a single free 
streamline, but instead, figure 10 shows the result of simulating such a geometry with 
our standard computer program based on a pair of free streamlines. The pipe has 
width 1, and the solid lower boundary actually bends back on itself for a distance 
a = 6 before giving way to a second free streamline (virtually straight), outside the 
range of the plot. In  the limit a+oo the jet has width q = 2 and angle 8 = - 180'. For 
finite values a = 1,2,4,6, the corresponding figures are q = 1.9913,1.9989,1.999964, 
1.9999985, and -6  = 159.931', 172.837', 178.702', 179.737'. 

Finite Borda mouthpiece with lip. Figure 11 shows the flow out of a finite-length 
Borda mouthpiece of width 1 and length d = 1. We have also added a divergent lip 
of length 4 at angle 30'. For d = 0, 1, 2, 5, 00, the values of q are 0.7874, 0.7619, 
0.7543, 0.7467, 0.7389, and the corresponding contraction coefficients are 0.5249, 
0.5080, 0.5028, 0.4978, 0.4926. Note that contraction coefficients smaller than t are 
possible. If the lip is removed, q and the contraction coefficient become equal and 
take values 0.6110, 0.5129, 0.5076, 0.5035, 0.5000. 

Flow that croat?es it8eZf Nothing in our formulation prevents the flow from crossing 
itself in a non-physical fashion, as figure 12 shows by a simple example. The finite 
boundary segments have length 1, and the aperture has width 2. The value of q (twice 

10 FLM 186 
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FIQIJRE 6. Slot in a plate (symmetric funnel with a = 90"). 

FIGURE 7. Symmetric pipe of height 2, aperture 1. 

FIGURE 8. Asymmetric pipe of height 2, aperture 1.  
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FIQURE 9. Aperture 'of length 1 in side of pipe of height 2. 

FIQURE 10. The 'teapot effect' -pouring flow out of a pipe of width 1. 

the contraction coefficient) is 0.5797, and the jet angle is 8 = 69.28'. To determine a 
flow for this geometry in which the jet did not pass through the solid boundary, one 
would have to modify the mathematical model. 

Mouthpiece with circular lip. Figure 13 shows a reservoir bounded by a horizontal 
boundary extending to z = -i and then curving upwards in a quarter-circular arc to 
z = 1. The upper boundary is a straight line at angle 22.5' that begins at z = - 1. Our 
Schwarz-christoffel formulation of the jet problem cannot treat curved boundaries 
explicitly, so in the figure the quarter-circle has been approximated by m = 16 line 
segments. For m = 1, 2, 4, 8, 16, the computed values of q (twice the contraction 
coefficient) are 0.7431, 0.7582, 0.7593, 0.7590, 0.7587, and the jet angles are 8 = 
41.24', 52.83', 56.38', 57.56', 57.97'. Evidently the convergence to limiting values as 
m + m  is slow. We do not recommend the approximation of curved boundaries by 
polygons as a general procedure for, as (19) indicates, such an approach is very 
expensive. Just as in numerical conformal mapping (Trefethen 1986), methods 
designed expressly for curved boundaries should be used instead. 

A complicated example. Finally, figure 14 shows a more whimsical nozzle with 
n = 16. The four longer segments near the aperture have horizontal displacement 1 

10-2 
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FIGURE 11. Finite Borda mouthpiece with divergent lip of length 4, angle 30'. 

FJQURE 12. Non-physical flow that crosses itself. 



Ideal jet j b w  in two dimensions 287 

FIQURE 13. Mouthpiece with quarter-circular lip approximated by 16 line segments. 

FIGURE 14. A more complicated example. 

and vertical displacement 0 or 0.5. The four shorter segments have vertical displace- 
ment 0.2 and horizontal displacement 0 or 0.2. The aperture has height 1. The 
equilateral triangle, which is delimited by vertices z6, z,, z8, and zs = z6, has sides of 
length 0.8 and is located at  a distance 1.5 from the corner to its right. The computed 
results for this problem are q = 0.80090 and 0 = 0.455'. If the triangular obstacle is 
removed, these figures change almost negligibly to q = 0.80092 and 0 = 0.363'. 

A. R. E. was supported by US Air Force Grant AFOSR-86-0274, and L. N. T. by US 
Air Force Grant AFOSR-87-0102 and an IBM Faculty Development Award. 
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