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AN INSTABILITY PHENOMENON IN SPECTRAL METHODS*

LLOYD N. TREFETHENf AND MANFRED R. TRUMMER

Abstract. The eigenvalues ofChebyshev and Legendre spectral differentiation matrices, which determine
the allowable time step in an explicit time integration, are extraordinarily sensitive to rounding errors and
other perturbations. On a grid of N points per space dimension, machine rounding leads to errors in the
eigenvalues of size O(N2). This phenomenon may lead to inconsistency between predicted and observed
time step restrictions. One consequence of it is that spectral differentiation by interpolation in Legendre
points, which has a favorable O(N-) time step restriction for the model problem ut-Ux in theory, is
subject to an O(N-2) restriction in practice. The same effect occurs with Chebyshev points for the model
problem ut =-XUx. Another consequence is that a spectral calculation with a fixed time step may be stable
in double precision but unstable in single precision. We know ofno other examples in numerical computation
of this kind of precision-dependent stability.
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1. Introduction. Spectral methods have become popular in the last decade for the
numerical solution of partial differential equations 1 ], [8], 18]. The essential idea is
to approximate spatial derivatives by constructing a global interpolant through discrete
data points, and then differentiating the interpolant at each point. (Such a process is
more properly known as a "pseudospectral" method.) On a periodic domain, as arises
for example in global atmospheric circulation models, the data points are evenly spaced
and the interpolant is a trigonometric function. On a domain with boundaries, as arises
more often, the points are unevenly spaced, usually at the zeros or extrema ofChebyshev
or Legendre polynomials, and the interpolant is a polynomial.

The advantage of spectral methods is that in favorable circumstances they are
more accurate than finite differences or finite elements, so that fewer grid points are
needed. A principal disadvantage is that in problems with boundaries, they are often
subject to tight stability restrictions. On a grid of N points in one space dimension,
an explicit finite difference formula will typically exhibit a time step restriction of
At--O(N-1) for hyperbolic and At O(N-2) for parabolic problems. For spectral
methods the restrictions become At= O(N-2) and At 0(N-4), respectively. This
presents one with the choice of taking wastefully short time steps to maintain stability,
or of turning to implicit formulas. Since spectral differentiation matrices are dense,
the latter course leads to difficult linear or nonlinear algebraic problems whose efficient
solution---usually by preconditioned iterative or multigrid methodsis at present a
topic of active research [ 13].

The stability of spectral methods for initial boundary value problems is not well
understood. Certain model problems have been worked out in detail [4], [6], [15], but
no general theory is available that is as readily applicable as the "Kreiss-Osher" theory
for finite differences [9]. A recent contribution in this direction is by Gottlieb, Lustman
and Tadmor [7].
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In most of this paper we consider the first-order hyperbolic initial boundary value
problem

(1)

ut=ux, x (-1, 1),

u(x, O) =f(x), x (-1, 1),

u(1, t)=O, t>--O,

t>O,

which can be viewed as a model of a more general hyperbolic system of equations
with appropriately specified boundary conditions. Given N_-> 1, let xl > x2 >"" > xv
be a set of points in [-1, 1). The spectral differentiation matrix DN:CN -* Ct for.these
points is defined as the N x N matrix that eitects.the following mapping t -- w(a) Let v= {vj} C be a vector of data values at the points {xj};

(b) Let p(x) be the unique polynomial of degree at most N with p(x)=v and
p(1) =0;

(c) Set w p’(x), 1 <-j <- N.
Notice the key point that the boundary condition of (1) is incorporated in (b). The
explicit determination of the entries of D, given {xj}, is straightforward and described
in [15].

Two choices of {x} are considered here: the Chebyshev extreme points

(2) x cos-, I<-j<-N,

which are the extrema of the Chebyshev polynomial Tc(x), and the Legendre points,
defined as the zeros of the Legendre polynomial PN(x). (The latter can be computed
by the program GAUSSQ of Golub and Welsch [3].) Let D and D denote the
corresponding differentiation matrices. Explicit formulas for the entries of D are
given in 4 of [5]. For comparison we will also mention D, the N x N Fourier
spectral differentiation matrix on a periodic regular grid with no boundary conditions,
which is subject to none of the instability phenomena to be discussed here. See 11]
and 1 of [5].

Our concern is with the eigenvalues of DN. In a typical explicit spectral discretiz-
ation of (1), the spatial derivative is approximated by Dv and the time derivative by
an Adams-Bashforth or Runge-Kutta formula. For each time step At, such a formula
has a stability region in the complex plane, defined as the set of all A e C for which it
reduces to a stable recurrence relation when applied to the model problem ut Au
[12]. The spectral model of (1) has bounded solutions as t- 00, for fixed At, if and
only if all the eigenvalues of Dv lie in this stability region. (We ignore the borderline
possibility of defective eigenvalues on the boundary of the stability region, which do
not appear in the cases considered here.) The stability region expands in proportion
to At-1. Therefore if the eigenvalues of Dt are of size O(N), the result is a stability
restriction At=O(N-1), while if they are of size O(N2), the restriction becomes
At=O(N-2).

To be more precise, the eigenvalues of Dry determine the "time-stability" of a
spectral method (too, At fixed), but not its "Lax-Richtmyer stability" (At-0,
fixed). Thus there is much more to the stability analysis of spectral methods than is
mentioned in this paper; see [8]. But it appears that in a wide range of practical
applications, time-stability is a good indicator of whether or not a spectral computation
will be successful.
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2. Exact vs. computed eigenvalues. Figure 1 shows the eigenvalues of D,
andD in the complex plane for N 14 and N 28. The computations were performed
by EISPACK [14] routines in double precision on a Sun Workstation (16 digit
accuracy), and N 28 was chosen because it is the largest value for which all three
pictures are unaffected by rounding error. It is important to note the following: the
scale in plots (d)-(f) is half that of plots (a)-(c).
D is skew-symmetric, and its eigenvalues are pure imaginary and uniformly

spaced along the complex interval [-i,rN/2, i,rN/2]. This is well known and easy to
prove; the eigenvectors are complex exponentials [11]. When N is even, as in these
figures, the eigenvalue at zero has multiplicity 2.

D is not skew-symmetric, and its eigenvalues have negative real part (see [5,
6]). Most of them lie along a bow-shaped curve extending from -iN to iN. But there

are also a few outliers extending far beyond the bow, and these have size O(N2) as
N-> oo. (The corresponding eigenvectors are dominated by high wave number oscilla-
tions.) The number of these outlying eigenvalues is not fixed, but increases with N.
Their presence is what makes time-stepping for Chebyshev spectral methods difficult.
The exact eigenvalues of DC are not known, but it is reported that asymptotic
approximations have been derived by M. Dubiner [16].
D is also not skew-symmetric, and again its eigenvalues have negative real part.

In contrast to the Chebyshev case, all of them lie along an approximately circular
curve extending from -iN to iN, with no outliers. This discovery is due to Dubiner
and Tal-Ezer [ 15], who have obtained exact formulas which show that in this case the
eigenvalues are related to the zeros of a Hankel function [16]. Unfortunately, it appears
to be difficult to generalize this well-behaved eigenvalue distribution to problems other
than (1), and so Legendre points are not suitable at present as a general replacement
for Chebyshev points in spectral calculations. They also have the disadvantage that
interpolation in Legendre points cannot straightforwardly be carried out by a Fast
Fourier Transform.

In summary, on the basis of Fig. 1 and what theory is available to support it, one
would conclude that if a reasonable time-stepping formula is used, the Fourier,
Legendre and Chebyshev spectral methods for the model problem (1) will have time
step restrictions At O(N-1), O(N-) and O(N-2), respectively.

But the pictures change when N is increased. In Fig. 2, N has been raised to 56
(with the scale of the plots reduced somewhat more than proportionately). The O(N2)
outliers in the Chebyshev plot have become more dominant. But a more striking
qualitative change is that in both the Chebyshev and Legendre cases, the smooth curve
of smaller eigenvalues has split in two. This bifurcation is entirely caused by rounding
error. In exact arithmetic, the eigenvalues would continue to line up along a single
smooth curve.

To substantiate this claim, Figs. 3 (Chebyshev) and 4 (Legendre) hold N fixed
and vary the precision. They show eigenvalues for N 28 computed with approximately
16-, 8- and 4-digit accuracy (simulated by introduction of random perturbations in
the initial matrix). In both cases, the eigenvalues move dramatically as the precision
is reduced, lining up along an arc far from the origin and a vertical straight line near
the imaginary axis. Between Figs. 3(a) and (b), for example, perturbations of order
10- have moved the eigenvalues by distances greater than 10. The significance of the
dashed lines in the figures is explained in the next section.

Thus 28 is the most perfect number under the Sun.
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FIG. 1. Computed exact eigenvalues of the Fourier, Chebyshev and Legendre spectral differentiation
matrices with N 14, 28.
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(a) Fourier, N 56 (b) Chebyshev, N 56 (c) Legendre, N 56

FIG. 2. Computed eigenvalues of the Fourier, Chebyshev and Legendre spectral differentiation matrices
with N 56, machine precision e 10-16.

This phenomenon of great eigenvalue sensitivity is the central point of this paper.
Similar figures will be obtained on any computer if N is large enough.

Figures 2-4 suggest a revised stability conclusion for spectral computations in
floating-point arithmetic: Legendre as well as Chebyshev methods suffer a At O(N-2)
time step restriction, and in both cases the constant involved may be affected by the
machine precision.

3. A rough explanation. An explanation of these results can be found in the
eigenvectors of Dv. We do not know these eigenvectors exactly, and so the explanation
is not yet rigorous, but it correctly predicts at what value of N the instability
phenomenon first appears, for any machine precision e. In what follows we consider
the Chebyshev case D, whose properties are clearer.

The key observation is that if A is an exact eigenvalue of D, but not one of the
outliers, then the corresponding eigenvector is closely approximated by

(3) Vj VN eA(xj+l).
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(Recall from (2) that the Chebyshev points are numbered from right to left, so that
v corresponds to x =-1.) It is not exactly of this form; an exact analysis would
involve polynomials rather than exponentials. But it comes extremely close. The
intuitive reason is that if the differentiation were exact and there were no boundary
condition, (3) would be an exact eigenvector for any A. Such a function is e2 Re x times
smaller in magnitude at x 1 than at x 1. Therefore for Re A << 0, it is very small
at x 1, which means that the boundary condition is nearly satisfied. In practice we
observe that the exact eigenvectors of the discrete problem look like (3) plus a small
oscillatory term with magnitude on the order of eTM x.

Some eigenvectors for the case N- 28 are illustrated in Fig. 5. Figure 5(a) shows
the eigenvalues of D in the upper half plane, and the real parts and moduli (plus
and minus) of some corresponding eigenvectors. Each eigenvector is plotted as a
function of x on [-1, 1], i.e., v v(x), in a position just to the right of the imaginary
axis. One sees that v decays rapidly in x for each A except the outliers. Figure 5(b)
clarifies the situation by showing the same eigenvectors after subtracting ott the
exponential term (3), and rescaling by vN e2x"

(4) v vt ea<x+))/v e:x.
Since typically Re A 10 in this figure, the denominator e2 has magnitude around
10-9 Yet the figure shows that even after division by this quantity, (4) has the form
of an oscillatory signal of moderate amplitude. Thus the approximation (3) is accurate
to around nine orders of magnitude.

Here is the explanation of the instability phenomenon. An exact eigenvector of
D is approximately e2Rex times smaller at x 1 than at x -1" Ivy[ e-2ReXlVl[. On
the other hand when v is multiplied by D, the entry v contributes to the entry
w (DNv) in the product. If the multiplication is performed with rounding errors of
relative size e, then (Dv) will be degraded by a perturbation of order civil
e e-=lvI. All relative precision will be lost if

/ e-2Rex 1,

that is,

(5) Re A 1/2 loge e.

In other words, we cannot expect to obtain any eigenvectors numerically that are
shaped like decaying exponentials in x, except when Re A is greater than or equal to
approximately 1/2 loge e (a negative number).

The dashed lines in Figs. 3 and 4 of the last section represented the condition (5).
In confirmation of the argument above, the eigenvalues well to the right of the line in
those figures appear to be unaffected by rounding errors, while those to the left are
changed completely.

Figure 6 repeats Fig. 5, but with the matrix D modified by random perturbations
of magnitude 10-8, as in Fig. 3(b). Evidently the eigenvectors corresponding to eigen-
values on the vertical line still have the form (3), but with new values of A that satisfy
(5).

What about the spurious eigenvalues along the large curves in Figs. 2-4? Empiri-
cally, they have size O(N2) as N- c. The following argument explains why at least
some of the numerically computed eigenvalues must be very large. A sizable number
of the eigenvalues lie along the line (5), with magnitudes much less than they would
have had in exact arithmetic. On the other hand rounding errors have little ettect on
the product of all N eigenvaluesmthe determinant, which in these problems is a sum
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(a) (b)

FIG. 5. Exact computed eigenvectors of the Chebyshev differentiation matrix DC with N 28. Real
parts and moduli are shown. Plot (b) shows what remains after the dominant exponential term is removed (4).

Ca) (b)

FIG. 6. Same as Fig. 5, but computed in 8-digit precision.
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of products of matrix elements that is not subject to significant cancellation. Therefore
some of the other eigenvalues must compensate by becoming much larger.

There has been some concern that spectral methods based on Legendre points
may be unreliable for large N because of inaccuracy in computing these points.
However, our experiments indicate that artificially introduced perturbations in the
Legendre points generate a pattern of erroneous eigenvalues that is quite different
from the ones shown in Figs. 2-4. This suggests that at least for N < 100 or so, errors
in computing the Legendre points probably have less influence than errors in the
subsequent matrix calculations. Legendre spectral methods are indeed more unreliable
than Chebyshev, but only because they have no outlying eigenvalues to mask the effects
of rounding error that are present in both cases.

For second-order spectral differentiation, with zero boundary conditions at both
endpoints, the eigenvalues of the differentiation matrix are real and negative [6] and
have maximum magnitude O(N4) for both Chebyshev and Legendre points. Although
these differentiation matrices are not normal, experiments show that their eigenvalues
are less sensitive to perturbations than in the first-order case. Perhaps this is not
too surprising, since the eigenvalues in the second-order problem are approximations
to physically meaningful eigenvalues for the corresponding differential equation. The
first-order differentiation operator of (1), by contrast, has no eigenvalues, so the
eigenvalues of the corresponding differentiation matrix are wholly numerical in
origin.

4. A related problem. It is well known that the eigenvalues of a skew-symmetric
matrix are well conditioned as functions of the matrix elements, and therefore are
affected negligibly by rounding errors [19]. This is the situation for the Fourier
differentiation matrices of Figs. 1 and 2, and also for many finite difference differenti-
ation matrices. On the other hand Figs. 3 and 4 show that the eigenvalues of D and
Dr must be extremely ill conditioned. Neither of these matrices is skew-symmetric,
and in fact, both are very close to being defective.

To see why this is so, consider what would have happened if the boundary
condition p(1)= 0 had not been imposed in step (b) of 1. Specifically, let L3c be the
differentiation matrix of dimension N+ 1 that results from degree-N polynomial
interpolation of N+ 1 arbitrary data values vj at N+ 1 Chebyshev points (2), including
x0 1, with no boundary condition. If v is interpolated by a polynomial p(x) of degree

C C 2N, p (x) will pass through the points Dv, p through (D) v, and so on. After N+ 1
differentiations the result is zero. Therefore/ must be nilpotent, with (Dc)s/ 0.

^CAll of its eigenvalues are zero, but (1, 1,. , 1)r is the only eigenvector: D is similar
^Cto a single Jordan block of dimension N+I. This means that D is completely

defective, or "nonderogatory," with characteristic polynomial zv+. Therefore its
eigenvalues will move distances of order e/+ in response to a perturbation of the
matrix entries, hence of the lower-order coefficients of the characteristic polynomial,
of size e.

^CFigure 7 confirms this prediction. The eigenvalues of D with N 14 have been
computed in double precision with EISPACK. Instead of coinciding at the origin, they
lie approximately on a circle of radius 1.2. It would be an exact circle centered at the
origin if rounding errors affected only the degree-0 term in the characteristic polynomial.

This relatively familiar example illustrates how sensitive the eigenvalues of a
defective matrix may be to small perturbations. The eigenvalue behavior of Figs. 2-4
is a more complicated manifestation of the same phenomenon. DC is actually the
same matrix as /c, but with the first row and column deleted. Thus it is a rank 2
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(a) Exact (b) 16 digits

FIG. 7. Exact and computed eigenvalues of the Chebyshev differentiation matrix (,no boundary
conditions) with N 14.

modification of/v, and in this sense very close to defective. The same argument holds
for DN-

An objection may be: What do EISPACK’s errors in computing eigenvalues matter,
since a spectral method needs only matrix multiplications? The answer is an elegant
application of backward error analysis, as worked out by Wilkinson in the 1950s and
1960s [ 19.]. The eigenvalues computed by EISPACK are the exact eigenvalues of some
matrix D that differs from DC by order e. Suppose that instead of an eigenvalue
computation, we perform the various matrix-vector multiplications required by a
spectral method...Again the .result will be exact for some matrix D that differs from
DC by order e. D- DC may be five or ten times smaller than/- DC, but the dashed
barriers in Figs. 3 and 4 move relatively little if e is changed by a constant factor.
Therefore the eigenvalues of/ will still look approximately like those of/, as plotted
in the figures, and these eigenvalues determine stability.

Indeed, the effects of Figs. 2-4 are felt even in exact arithmetic, if the initial
differentiation matrix is rounded to machine precision just once.

As a simpler example of the same kind of reasoning, is the matrix/c of Fig. 7
power-bounded? Mathematically, yes, since it is nilpotent. Numerically, no--and this
is confirmed, by experiments.

5. Precision-dependent stability. For an indisputable demonstration that the
erroneous eigenvalues of Figs..2-4 should not be blamed on EISPACK, one can verify
experimentally that they determine the stability or instability of a spectral method.

We took N 28 and solved (1) by Legendre spectral differentiation in space and
the third-order Adams-Bashforth formula in time:

(6) v"+= v" +2D(23v" 16v"-a + 5v"-2).

The initial function was f(x)=cos2 (Trx/2), with exact solution values taken at the
three initial time steps. The time step was at=1/2N-l=.01786. Figure 8 shows the
computed eigenvalues of D in double and .single .precision, and superimposed on
them, the stability region of the Adams-Bashforth formula for this value of At. Figure
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(a) 16 digits (b) 8 digits

FIG. 8. Computed eigenvalues of the Legendre differentiation matrix D with N 28, and the stability
region for the third-order Adams-Bashforth formula with At =1/2N- .01786. For stability the eigenvalues
must lie within the stability region.

8(a) indicates that in theory, the time integration ought to be stable. Figure 8(b) suggests
that in 8-digit arithmetic, it will be unstable.

Here are the rather dramatic results at 1, x xN =-0.996442:

Exact: u(xN) 0.999969,

16-digit precision"

8-digit precision:

It is a familiar occurrence that problems of instability can be alleviated by switching
to higher precision, but the usual reason is that the instability gets excited less strongly
by rounding errors. The. present example represents a very different situation, for in
this case, higher precision makes the computation actually stable. We do not know of
any other examples in which the machine precision determines the stability of a
numerical calculation.

6. A variable-coefficient example involving Chebyshev points. After reading a pre-
print of this paper, Eli Turkel pointed out to us that he has encountered precision-
dependent results in solving the following problem"

(7) ut -xu,, 1 <= x <- 1

by ,a pseudospectral method based on Chebyshev points [17]. (The exact solution is
u(x, t) u(x e-’, 0).) The motivation for this problem is that both x 1 and x -1 are
outflow boundaries, so that no boundary conditions are mathematically required. Now
the spectral differentiation process consists of interpolating .N+ 1 data points at
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positions xj for 0---j =< N, differentiating the interpolant, and multiplying by -xj. The
exact eigenvectors are the monomials xn, 0 -< n <= N, sampled at the interpolation points,
with corresponding eigenvalues -n. Thus this is a problem involving Chebyshev points
that should nevertheless have a comfortable At O(N-1) stability restriction.

The eigenvalues may be real, but the matrix is by no means symmetric. If it were,
rounding errors would have little effect. In fact, Fig. 9 shows that for N 64 and 128,
all but a few of the eigenvalues computed by EISPACK lie far from the real axis. (In
both cases most of the eigenvalues lie in approximate pairs.) For larger N or lower
machine precision, the situation becomes even worse, and Turkel reports that he has
encountered instability even indouble precision on a Cray computer (128 bits). Thus
problem (7) provides another clear example of precision-dependent stability of spectral
methods.

To confirm that the eigenvalues computed by EISPACK have relevance to the
stability of time integrations, we again took initial data f(x)= cos2 (rx/2), and solved
(7) by the third-order Adams-Bashforth formula (6) with At =1/2N-1. Required addi-
tional starting values were taken from the exact solution. Table 1 shows some computed
results at x xN/4 1/x/, 1, where the exact value is 0.84212460. For the first
column of results each spatial discretization was performed by explicit matrix multipli-
cation, but the second is based on an FFT instead. At N 128 the erroneous eigenvalues
have once again had a catastrophic effect on stability. This happens eventually with
N 64, too, but only after a longer time integration.

The second column above shows that the use of the FFT does not eliminate the
stability problem in spectral differentiation. Now no matrix appears explicitly in the
numerical algorithm, and certainly no matrix eigenvalues, but the eigenvalues still have
their effect.

TABLE

Matrix FFT

N 32 0.84212530 0.84212530
N 64 0.84212470 0.84212470
N 128 1.6 x 1060 -7.2 x 1045

7. Eigenvalue estimates based on the characteristic polynomial. We have considered
three model problems: ut =Ux with Chebyshev points, u, =Ux with Legendre points,
and ut =-XUx with Chebyshev points. In all three cases the coefficients of the charac-
teristic polynomial of the differentiation matrix are known exactly. (See [5, 6] for
the first problem. The coefficients for the second can be determined by the same
method, and for the thirdthey are easily obtained since the eigenvalues are
0,-1,...,-N.) Funaro [2] has pointed out that lower and upper bounds for the
moduli of the matrix eigenvalues can be derived from these coefficients. But in several
cases these bounds miss the correct order of dependence by a factor of N. Analogously
disappointing results are obtained if one tries to estimate eigenvalues by means of
matrix norms. The instability phenomenon described in this paper can explain these
discrepancies.

zN+I for theLet the characteristic polynomial be Co+ + cz, or Co+ + cv+l
problem ut =-XUx, since the matrix there has dimension N+ 1. In each case the
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coefficients are all nonnegative; otherwise there would be eigenvalues in the right half
plane. Therefore by the Enestrfm-Kakeya Theorem [10], we have

(8) r<=]Ak[<=R
for all eigenvalues /k, where

(9) r =mink R maxk

Table 2 compares these bounds, as functions of N, with estimates of the actual
eigenvalues in both exact and floating-point arithmetic.

In four of the six cases listed in Table 2, the rigorous bound (8) is too conservative
by a factor O(N) for the exact eigenvalues, yet in every case it is on target for the
eigenvalues computed with rounding errors. This can be explained as follows. Rounding
errors are equivalent to the introduction of small perturbations in the entries of the
differentiation matrix, and these induce small relative perturbations in the coefficients
of the characteristic polynomial.2 Therefore, a bound such as (8) that is based solely
on the relative magnitude of these coefficients must also approximately hold for
eigenvalues computed with rounding errors. But we know that in the presence of
rounding errors, all three of these problems have minimum and maximum eigenvalue
moduli O(1) and O(N2), respectively, not O(N).

Thus eigenvalue estimates based on the characteristic polynomial, although far
from sharp for the exact problem, have the virtue that they remain valid even in inexact
arithmetic.

TABLE 2
Minimum and maximum moduli of eigenvalues of spectral differentiation matrices.

min IAI max I1

Exact Flt.-pt. r Exact Flt.-pt. R

_lN2+_Chebyshev, ut Ux .46N O( .089N O(N2)
N+I 3 6

Legendre, u, ux .66N O(1) N O(N2) _1 N2+-N
2 2

Chebyshev, ut -XUx 0 0 0 N O(N2) N2+-N
2 2

Note added in proof. A paper surveying what is known about the eigenvalues of
spectral differentiation matrices is in preparation [20].

Acknowledgments. We are grateful to David Gottlieb, Randy LeVeque, Hillel
Tal-Ezer, Eli Turkel and Andr6 Weideman for valuable comments. Weideman also
provided the coefficients of the characteristic polynomial for the Legendre problem of
Table. 2.

A characteristic polynomial is not always well conditioned as a function of the matrix elements, since
cancellation may occur, but numerical experiments confirm that for these matrices the characteristic
polynomial is well conditioned. For example, the dominant diagonal elements of D and DL are large
and negative, so no significant cancellation occurs in computing the trace, which is the coefficient of the
term of second highest degree.
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