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Abstract

Chebyshev-Padé (CP) approximation is the approximation of a function F(z) on
[-1,1] by a rational function RP(z) of type (m,n) chosen to match the Chebyshev
expansion of F' as far as possible. We propose a new construction of R’ based on a
reduction of the CP problem to a problem of “stable Padé approximation of a Laurent
series.” This approach clarifies the troublesome issues of approximants with m<n and
of poles in the associated complex unit disk. To develop it we present in sequence, from
a novel point of view, the elements of Padé approximation, Padé approximation of a
Laurent series, formal CP approximation, stable Padé approximation, and finally true
CP approximation. Among other things, we prove that the following are equivalent: (a)
F-R? = O(Tp4p41-5), Where 6 is the “defect”; (b) R is unique; and (c) the associ-
ated Padé approximant has no poles in the disk. New results are also outlined concern-
ing the recursive computation of CP approximants and their convergence as m+n — oo.
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Notation

interval [-1,1]
circle |z| =1
disk [z] <1

set of formal power series
set of formal Laurent series
set of formal Chebyshev series

set of all rational functions of type (m,n)

set of rational functions of type (m,n), no poles at 0
subsets of R,,, of functions with no poleson D, |
analogous sets of “‘extended rational functions’

subset of R,f,, of functions with symmetric Laurent series

type of a rational function
exact type (u<m, v<n)
defect min{m-u, n-v}

Padé approximant (in Ron)

Padé approximant to a Laurent series (in R, )
stable Padé approximants (in R2, RP
symmetric stable Padé approximant (in 1?,,1,),,)
formal Chebyshev-Padé approximant (in Rpy)

Chebyshev-Padé approximant (in RL,)

all Laurent coeflicients of f of degree —0o < k < K are zero
all Laurent coefficients of f of degree ~-K < k <K are zero

f(2)=0(:F), #£0(:¥1)






0. INTRODUCTION

If F(z) is continuous on [ = [-1,1}], it has a Chebyshev expansion

1

ol F(o)T,(z
F(r) =25 ali@) o _ 1 FE)Te(x)

——dr,
™1 Vi1-z?

which converges uniformly if F is, say, Lipschitz continuous [5]. Here T, is the kth

(0.1)

Chebyshev polynomial of the first kind, and EI denotes a sum in which the term with
k =0 is multiplied by % Let R, be the set of rational functions of type (m,n) (precise
definitions begin in Section 1). A type (m,n) Chebyshev-Padé (CP) approzimant to F
on [ is any function R’ € R,,,, with no poles on 7, such that the Chebyshev expan-

sions of F' and R agree to as many terms as possible:
(F-R®Yz) = O(Tmu(2))- (02)

The motivation behind CP approximation is that it is a natural generalization to z € I
of Padé approximation at z=0. If f(z) is a formal power series, then a type (m,n)
Padé approrimant to f is a function rP€ R,,, that satisfies

(f-r")z) = O (z™). (0.3)

“To perfect the analogy we will actually take F' to be a formal Chebyshev series rather
than a function.

For example, Table 1 lists the L™ errors in type (2,2) rational approximation of
various kinds to the functions F'(z) =¢* and F(z) = |z|. Notice that in both cases
the CP approximant, unlike the Padé approximant, comes within a small factor of
optimal. This behavior is typical. The so-called Carathéodory-Fejér (CF) approximant
[20], based on the eigenvalue analysis of a Hankel matrix of Chebyshev coefficients, is
often far closer to best than R°?, especially when F is smooth. But for some purposes
the reduction in error from CP to CF will be unimportant, while the greater simplicity

of CP approximation is an attraction.

e’ |z
Padé 40.0 (-4) .
CP 1.45 (-4) 106
CF 0.8689911 (-4) 047
Best 0.8689910 (-4) 044

Table 1. L* errors for various type (2,2) approximants to ¢* and |z| on [ = [-1,1].



Despite the naturalness of the idea, Chebyshev-Padé approximation was introduced
only in the early 1970’s. (A related approximation method was devised by Maehly a
decade earlier and is described in [5].) First, Frankel and Gragg published a short note
in 1973 showing how to derive CP approximants by means of a transplantation to the
complex unit disk D:|z| <1, but only for m>n [9]. Independently, Clenshaw and Lord
in 1974 derived CP approximants for all m and n by a differerit method, and gave
many practical examples [6]. Gragg and Johnson then extended their method to m<n
in 1974 {12,13]. Both the Clenshaw-Lord and Gragg derivations, however, are conceptu-
ally somewhat unsatisfactory, for they make use of nonlinear algebraic calculations that
reduce rather inexplicably to a linear result in the end. We believe that the question of
how to treat m <n has been one of two main points of confusion in the CP approxima-
tion literature to date.

A new difficulty was pointed out in 1981 by Geddes in a paper on block structure
and related matters [10]. Both Clenshaw and Lord and Gragg assert that their construc-
tions are guaranteed to succeed except in cases where a pole appears on [, which
corresponds, as we will explain, to the circle S:|2| =1 in the complex plane. But
Geddes realized that in fact, the construction breaks down for a much larger set of cases
with poles in the disk D. In such a situation, he pointed out, the CP approximant
defined by (0.2) may fail to be unique. A similar problem has also been mentioned by
Ellacott in the context of Faber-Padé approximation on a more general domain than an
interval [7]. This question of poles in D and their relationship to nonuniqueness has

been the second main point of confusion in CP approximation.

We must also mention the recent work of Bultheel [3,4], who investigates formal
CP approzimation, which amounts to saying that he ignores the question of troublesome
poles. (Gragg does the same, implicitly.) Bultheel derives many results that are related
to ours and go well beyond them in certain directions. In particular, following Gragg, he
treats the generalization to Laurent-Padé approzimation, in which one approximates an
arbitrary Laurent series rather than the special Chebyshev case of a series real and sym-
metric. An intermediate case between Chebyshev-Padé and Laurent-Padé approxima-
tion is Fourier-Padé approzimation, in which the Laurent series is conjugate-symmetric
but not necessarily real {12,13], but it appears that the difference between Chebyshev-
Padé and Fourier-Padé approximation is not substantial.

In this paper we propose a new reduction of the CP problem on [ to a Padé prob-
lem on D. Ours is the first such reduction that is a complete equivalence, transplanting
the interval to the disk with no exceptional cases. We believe that this new reduction

settles the two difficulties mentioned above in a natural way.

We will proceed by developing five related approximation problems in sequence,

emphasizing their interconnections as far as possible. For each problem, the ideal is to
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set forth the essentials in the following order:
- definition of function spaces,
- definition of approximant r,
- method of construction of r,
- characterization of r
- block structure corollary,
- examples,

Here are the five problems, treated in Sections 1-5. The various block structure results

are summarized in Figures 1 and 2.

1. Padé approximation (r?). f is a power series, and the Padé table flls a
quarter-plane tiled by square blocks, except for one possible anomaly (Figure 1a). This
problem is standard, but our “equioscillation” characterization theorem may be unfami-

liar to many readers.

2. Padé approximation of a Laurent series ( 7?). Here we generalize standard
Padé approximation by permitting f to be a Laurent series, and the Padé table expands
to the half-plane m € Z, n >0, now tiled by square blocks with no anomalies (Figure
1b). If f(z) = f(z7"), the block pattern is symmetric about the line m =—% (Figure
Lc).

3. Formal CP approximation (R'®). This approximant is identical to the CP
approximants of Gragg and Bultheel, but we define it by a new algorithm based on
reduction to problem 2, which clarifies the case m <n. This is the only one of our five
approximants that is defined by an algorithm rather than an optimality condition, and
R is not always guaranteed to satisfy (0.2). The formal CP table occupies a quarter-
plane, with square blocks throughout except that the approximant R'P=0 may occupy
one or more hall-square blocks along the edge m =0 (Figure 2a).

4. Stable Padé approximation (r*%, v*?). Here problems 1 and 2 are modifed by
requiring an approximant whose denominator has no zeros in D . Uniqueness fails in
general, and the Padé table is tiled by square blocks containing unique entries inter-
spersed with arbitrary regions of nonuniqueness (Figure 2b).

5. CP approximation (R®?). R is defined by the optimality condition (0.2).
We show that in most cases, including all those with m Z-%-(n—l), R°® can be con-
structed from 7*? exactly as R was constructed from 7. But for a universally applica-
ble construction, one has to introduce a “symmetrized” version of 7* denoted by 7.
Like the stable Padé table, the CP table contains square blocks of unique entries sur-

rounded by arbitrary regions of nonuniqueness (Figure 2¢).
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(a) Padé approximation
(rP==f)

w N O

-3-2-1 01 2 3

(b) Padé approximation of a
Laurent series ( ¥? =~ f)

(c) Padé approximation of a

symmetric Laurent series

(P, [(2)=f(z"))

Figure 1. Examples of possible block structure patterns in Padé approxima-
tion of power series and Laurent series.



10 (a) Formal Chebyshev-Padé
approximation (R'P == F')

7/ (b) Stable Padé approximation of

a Laurent series ( 7*° =~ f)
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7/ (¢) Chebyshev-Padé approximation
(R®~F)
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Figure 2. Examples of possible block structure patterns in Chebyshev-Padé
and stable Padé approximation. Shaded regions indicate nonunique approxi-
mants, for which the usual characterization and block structure results fail
(see Theorems 4.1, 5.3).



-6 -

The reader will notice that in contrast with the usual practice in the literature of
Padé approximation, matrices and determinants rarely appear in this paper. Instead the
development is based mainly on optimality criteria and the equioscillation characteriza-
tion, Theorem 1.1. We believe that this is conceptually more straightforward than to
rely principally on linear algebra, and that it relates Padé approximation more naturally
to other areas of approximation theory. But of course linear algebra becomes the central
issue as soon as one turns to computational algorithms.

Our results suggest that true CP approximation, like stable Padé approximation,
has inherent difficulties that may be unavoidable. Indeed, we doubt whether any useful
characterization can be found for 7® and R? in the nonunique cases. In practice, it
appears that these cases do not occur very often. But for applications where they do
oceur it may be a good idea to abandon (0.2) and devise new classes of approximants
that are more tractable, such as the pole-deletion procedure of Foster [8]. Or one can
have recourse to CF approximation, which has the advantage that the approximants it

delivers are always unique and stable.

1. PADE APPROXIMATION

Let R,,, denote the set of formal rational functions
7 m n
re) = B = ot/ et b=, (1)
q(z) E=0 £=0

where p and ¢ are relatively prime. Given r € R, let pu<m and vr<n be the exact
degrees of p and ¢, with py=-oo if p=0. We say that r has ezact type (u,v)
Throughout this paper, for simplicity, all coefficients are real. The defect of r with
respect to R,,, is defined by

§ = min{m-p,n-v} > 0. (1.2)
Let P be the set of formal power series 313 4czf. Each r € R,,, will also be
associated with a series r € P by a Taylor expansion at z = 0.
Definition of r?. Given f € P and m ,n > 0, a type (m,n) Padé approzimant to
[ 1sany rP€ R, such that
(f-r)z) = 0(5), (1.3)
where K 2> 0 is as large as possible.

Construction of r?. It is well known that Padé approximants can be constructed
by solving a linear system of equations in Hankel form [1,11]. We will not give the
details.
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The following “equioscillation characterization” of P comes from (18]. The unique-
ness and “if” assertions follow easily from a zero-counting argument, but “only if" is

more complicated.

THEOREM 1.1 - CHARACTERIZATION OF r’. For any f€EP and
m,n 2> 0, there exists a unique type (m,n) Padé approrimant r® to f . A function
r € R,, with defect § is equal to r? if and only if

(f-r)(z) = O(zm*n*15), (1.4)

This characterization leads to the following standard result on square blocks in the
Padé table. By the Padé table, we mean the set of Padé approximants r.2 for all

m,n > 0 to a fixed function f, arranged in a quadrant in the (m,n) plane. From now
on, f(z)= O(2%) is an abbreviation for f(z) =0(K), ()£ 0K

COROLLARY 1.1 - SQUARE BLOCKS (see Figure la). The Padé table
breaks into precisely square blocks containing identical entries. (One of these is infinite
in extent f f € R, for large enough m and n.) There is one possible exception: if
f(z)= 0(z%) for some K > 0, then the approzimant rP==0 occupies the infinite rec-
tangular strip 0< m< K-1, 0< n< oo at the left edge of the table.

Proof. Suppose r % 0 is a rational function of exact type (#,v), p,v>0, with
(f-r)(z)= O(z#"*'*2) for some A€ Z. (If this is not true for any finite A, then
r = f, and we have the case of an infinite square block.) We now ask: for which (m,n)
with m > p, n > v is r the Padé approximant to f? By Theorem 1.1, the condition
for this is p+v+1+A > m+n+1-6, ie.

pt+v+A > m+4n-min{m-p,n-v}.
Expanding the minimum into its two cases reduces this to
m< pu+A  and n < v+A.

Thus if A> 0, r = rP precisely for (m,n) in the square block of size (A+1) X (A+1) with
upper-left corner (g,v).

If r =0, then by definition uy= o0 and §=n. If f(2)=0(z%) for some K > 0,
then condition (1.4) becomes m < K-1, as asserted. i

Example 1.1. For which (m,n), if any, is r(z) = 1/(1++27 the Padé approxi-
mant to f(z) =cosz=1-52%+ z2*- - -? Here p=0 and v=2, and since
V(l4+52%) = 1- 224224 - - (f-r)(z)=0(z*). For (m,n)=1(0,2) we have
6=0 and therefore m +n +1-6=3<4,s0 r = rP. For (m,n) =(0,3) or (1,2) we have
6=0 and m+n+1-6=4<4, so r=rP. For (m,n)=(1,3) we have =1 and
m+n+1-6=4< 4 again, so r = r? once more. All other choices m > y, n > v lead to
m+n+1-6>4, so r 3 rP. Thus r =r® precisely in the 2x2 block with upper-left
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corner (0,2). In fact the Padé table for cosz breaks into 2X2 blocks throughout. For
sinz it is the same, except that the blocks are shifted one position to the right and the

entire column m =0, n > 0 is a rectangular strip with r’=0.

2. PADE APPROXIMATION OF A LAURENT SERIES

Now let L be the set of formal Laurent series Z,:”:_oockzk, and let PLbe the sub-

set of ‘“‘coanalytic” formal series E[l:_oockz". For n > 0 and arbitrary m € Z, we
define

Rmn = z™" +1(P-L+ Rn -1,n )

(This definition is analogous to the definition of R, in (18], but not the same.) In other

words, R, is the set of formal expressions

P(e) = r(e) () = () + 2
q(2)

= mE—n dbzk + i ekzk/zn) bkzkr bo# 1’ (21)
k =-—00 k=m-n+1 k=0

where p and ¢ are relatively prime. Each r ER,,,,, will be associated with a series
7 € L by a Taylor expansion of z”™*""1r¥(z) at z =0. A statement f(z)= O ()
K e€Z, will now indicate that f has zero coefficients for all k¥ in the range
o< k< K. Again, f(z)=0(z%) is an abbreviation for f(z)= 0(z¥),
f(z)# 05,

Other equivalent definitions of R,,, are also possible. In particular, we might have

)

split the Laurent series one term earlier, setting R, = 2™ " (PL+R,,,), but this turns

out to be less convenient.

We need to be able to compare functions in different spaces R,... Let us say that
T,=ri+r{ € le,,l and ro=rg +ry € ngng are equal if they have the same for-
mal Laurent series. This can be tested in a finite number of steps, since evidently all the
coefficients in a representation (2.1) are determined once we choose the position m-n at
which the Laurent series is split. Set /;,=m;-n, and l3=m,~n, and assume
without loss of generality {, < [,. For 7, to be equal to r,, r{ must be equal to the
degree <!, part of r5, and the remainder of T, must be equivalent to the rational func-
tion r;*. This can be verified by cross-multiplying so that the terms

{+1 ‘ - .
dy 12t ..., d,z % of ry are brought into the numerator.

The denominator ¢ will be the same in any representation of r. Let v> 0 be its
exact degree, and let u be the minimal value m for which r € R, , or —oo if there is no

minimum. To determine g, start with any representation r =r"+p/q Ekm,,, and
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then cross-multiply to bring the term d,, 2™ into the numerator. If the resulting
numerator has a nonzero coefficient of degree m, then p=m , but otherwise ¥ € fi’m_,,u,
and one can decrement m and repeat the process.

We say that v has exact type (u,v). It is readily verified that ¥ € R,,,, if and only

if m > pand n > v. The defect § is again defined by (1.2).

One can also compute g in one step by cross-multiplying to bring r into the form

of an “extended rational function’:

e m n
T(z) — 2l _ Y, akzk/z bzt (2.2)
Now g, v are simply the exact degrees of p and ¢. The trouble with this representation
is that it is not possible to go backwards from (2.2) to (2.1) or to a Laurent series.

Example 2.1. The function 7 (2) = (- - + 23+ 22+ 27!) +2/(1-22) € Ry,
has exact type (~1,1). It can be rewritten as (- - + 27+ 27%) + z71/(1-22) € R,

but not as a function in R-z,x- 7,

Example 2.2. The function 7(z) = (- - +2%+2z24+21)+1/(1-2)€ Ry has
exact type (~0o,1), and can be represented in every space R, with n > 1. This exam-
ple shows that p=~o0o0 does not imply ¥ = O unless, as in standard Padé approximation,
J(z)=0(z¥) for some K > —co. Of course in a sense F is the zero function, having
been obtained by subtracting one representation of 1/(1-z) from another, and the
corresponding extended rational function (2.2) has numerator p = 0. But the formal
Laurent series of T is nonzero, and therefore ¥ is nonzero as a member of any space
Row. 4

Now we are ready for Padé approximation of a Laurent series.

Definition of ¥?. Given f€L and m € Z, n> 0, a type (m,n) Padé approxi-
mant to f is any ¥P€ R,,, such that

(f-7")z) = O (%), (2.3)
where K € Z is as large as possible.

Construction of 7°. It is an easy matter to construct * from a Padé approxi-
mant of the usual sort. Divide f into two pieces,

m-n [e.e]

f(z2) = [+ ") = % 2k + b 2k, (2.4)

k=-00 k=m-n+1

set r™= f~, and take r* equal to z™ " *lpP | (2""™-1f+) that is, z™"*! times the

type (n-1,n) Padé approximant of the usual sort to 2"l i), (If n =0, then

r*=0.) The justification of this construction comes directly from the definition of 7P

and a comparison of (2.1) and (2.4). It leads to the following characterization theorem, a
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translation of Theorem 1.1 to the present context:

THEOREM 2.1 - CHARACTERIZATION OF ”r?. For any f€L and
m € Z, n> 0, there exists a unique type (m,n) Padé approzimant ¥° to f. A function
7 € R, with defect & is equal to ¥° if and only if

(f-7)(e) = O(zm*"*12), (2.5)

Proof. The construction above establishes a one-to-one correspondence between
approximants r € R, 1, to z" ™ f*(z) and 7(z) = f(2)+ 2™ " e (2) € Rpy toO
f(z). Given r € R, ,, let its exact degrees and defect be pg+n-m-1, v (the same as
for 7), and 6. By Theorem L.1, 2" ™ 1f¥(z)-r(z) = 0(2:2"-5") is a necessary and
sufficient  condition for r=rpF, (z"""lf%) Equivalently, (f-7)}(z)=
@) (zm+"+l‘5°) is a necessary and sufficient condition for T =7, (f ). Therefore we are
done if we can show 6=25,. Suppose first =rn-v < (n-1)-(gg+n-m-1) = m-pu,.
Then cross-multiplication gives r € R,,,_,, tvw =Rpm s, 50 p< m-b, and this implies
6=26y. On the other hand suppose 8 ={(n-1)-(ug+n-m-1)=m-py< n-v. Then

cross-multiplication gives r € Rpo',,, ¢ R%_l'u, so in fact u= p,, and again §=24,. i

Since m is an arbitrary integer, the Padé table now inhabits a'half-plane instead of

a quarter-plane. Here is the corresponding block structure result.

COROLLARY 2.1 - SQUARE BLOCKS (see Figure 1b). The Padé table for a
Laurent series breaks into precisely square blocks containing identical entries. (One of
these is infinite in extent if f € Rmn for large enough m and n, and another if
f(2) =0(2%) for some K > ~.)

Proof. Essentially the same as for Corollary 1.1. 1

Note that in Corollary 2.1, the anomaly of an infinite rectangular strip of Corollary
1.1 has vanished. If f(z)= O(z%) for some K > -oo, the Padé table now has an
infinite square block occupying all the positions m < K -1, n > 0. The rectangular strip
was the intersection of this block with the quarter-plane m,n > 0.

Example 2.3. For f(z) = z7'41+2 and (m,n)=(-1,1), we get 7P = r +r*
= 0+271/(1-z). Since (f-7°)(z) = O(z?), Theorem 2.1 implies that ¥° must also be
the Padé approximant of types (0,1), (-1,2), and (0,2). If we construct the type (-1,2)
or (0,2) approximant directly from (2.4), we get 0+z7'/(1-z) again, but the (0,1)
approximant comes out as r? = r +r* = z714+1/(1-z), another representation of the

same function. /]

The following specialized result will be needed for applications to CP approxima-
tion (cf. (3,4]).
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THEOREM 2.2 - SYMMETRIC LAURENT SERIES (see Figure Ic). Let
[ € L satisfy f(z) = f(z7'). Then the block pattern of the Padé table for f is symmetric

with respect to the line m = —%.

Proof. 1t is well known that a Padé approximant has defect § > 0 if and only if the
associated Hankel matrix is singular [21,22]. If f(z)= f(z7!), then the Hankel matrices
associated with type (m,n) and type (~m,n) approximation are the same except for a
reflection in the anti-diagonal, so either both are nonsingular or both are singular.
Therefore the pattern of singular matrices in the Padé table is symmetric about m = 0.
Since 6> 0 occurs precisely in those positions of any square block that lie outside of its
top row and left column, this implies that the square block pattern is symmetric about
m—-i g

The elements of Padé approximation of power series can be recovered from the

results presented in this section for Laurent series by restricting attention to functions

whose coeflicients of negative degree are all zero.

3. FORMAL CHEBYSHEV-PADE APPROXIMATION

In any kind of Chebyshev-Padé approximation, the motivation is the condition
(0.2). However, insisting on precisely this condition leads to the problems of pole loca-
tion discovered by Geddes. Therefore we will first consider instead the formal
Chebyshev-Padé approzimant, R'P defined to be the function produced by a certain
algorithm, which will not always satisfy (0.2). Our R is the same as the approximant
investigated by Gragg and Bultheel, but we believe the present construction is more

transparent for m < n.

R will sometimes have poles on I, even at z =0. Let R}, be the subset of R,
of all rational functions of type (m,n) with no poles on /. On the other hand let
R, 2R, be the space of all rational functions of type (m,n), regardless of pole loca-
tion. We can represent these in the form (1.1), but with the normalization 4, =1

“instead of by =1.

Let T be the set of formal Chebyshev series 23} ;2 ¢ T, (z), and let the variables
r and z be related by

T = —;—(z +271), hence Ty(z) = -%—(zk +275). (3.1)
The circle z € S corresponds to the interval z € I (covered twice). If f€ L and FET
are defined by
[e.2]

F(z) = 2% ¢, Te(z), [(2) = ¥ ezt €k == Clg |, (3.2)

k=0 kb = 00



then F(z)= f(2).

Definition of R™. Given FE€ T and m n> 0, the type (m,n) formal
Chebyshev-Padé (CP) approximant to F is the function R® € R,%. produced by the fol-
lowing construction.

Construction of R™. Given F € T, define f€ L by (3.2), and let 7P € R, be
the type (m,n) Padé approximant to f . We simply set

R(z) = L) _ 1) = 32y 4 00 - £ (o). (3.3)
Q(z)
Despite appearances, this formula does not contain infinitely many terms, for the two
infinite tails of 7?(z) and 7?(z7!) are cancelled by those in f . In fact by (2.1), we have

r(z) = 22) o p(zT) o,
() = L5+ - ), (3.4)
where
u-§‘1 cxz® if m<an,
k=m-n+1
f(2) = (3.5)
- mif cxz® if m>n.
k=n-m
Cross-multiplication gives
(o) = 200G +p (N () - (e ()Y (39)
q(2)g(z7

and since both the numerator and the denominator are symmetric with respect to the
inversion z—z"}, they correspond under (3.1) to polynomials P (z) and Q(z).

Thus R? is a rational function, but it is not obvious from (3.6) that it has the
appropriate type. This is one of the matters settled by the following theorem. A func-
tion r or r is said to be stable if its denominator has no zeros in the closed disk D, and

R2 and R,f,, denote the corresponding subsets of R,,, and R,,, .

THEOREM 3.1 - PROPERTIES OF R™. For any FET and m,n >0, the
construction above yields a function R'P€ R,.. If ¥P has ezact type (u,v) with u> 0,
then R has ezact type (u,v) also, while if p<O, then RI® =0. If ¥P is stable with
(f-TP)(2) = O(2K), then R™ e RL, with (F-R"®)(z) = O (Tx(z)), and hence in this
case

(F-R**)z) = O(Tmins1-s(2))- (3.7)
If *? is stable with p< 0, then v=0.
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The Chebyshev series for R™ implicit on the left of (3.7) is the one obtained by the
standard integral (0.1).

Proof. Assume first that 7 has exact type (u,v) with p> 0, and let it be
represented as a function (2.1) in i?,,,,. From (3.3) and (3.6) we see that since by, b, 50
in ¢(z), @(z) has exact degree v. It will take the value 0 at z € I whenever ¢(z) takes
the value O at the corresponding point z € S.

To determine the degree of P, we multiply (3.3) by ¢(z)q(z71) to get
P(z) = r(2)q(2)q(z7") = [¥P(z™) + (7°(2) - S (z))]q(2)a(=7")
=p(zN)q(2) + [*7(2) - [ (2)]q(2)q (=7 (38)
in the notation of (2.2). The first term has exact order O(z7#), while since
(f-7%)(2z)= O(z****') by Theorem 2.1, the second has order O(z**!). Thus
r(z)q(z)q(z7") has exact order O(z7*), and by symmetry, it contains terms of degrees
- through p. Therefore P(z) has exact degree u, as claimed.

If p<0, on the other hand, the first term in (3.8) still has exact order
O(2#*)=0(z!#!), while by Theorems 2.1 and 2.2, the second has order at least
O(z!*!) also. Since |u|>1, symmetry implies that P (z) and hence R™P must be
identically zero.

Now, note that by (3.3),

(F-R™)(z) = (f-7")(2) + (/ -7?)(=7).

Therefore if (f-7°)(z) = O (z%), which will occur only with K > 1, it follows that
(F-R™)(z) = O(Tk(z)) always holds (regardless of stability of 7P) if the Chebyshev
series for R™ on the left is taken to be the formal Chebyshev series derived by (3.4)
from the formal Laurent series for p(z)/q(z) and p(271)/q(z7Y). If ¥° is stable, then
these latter series actually converge on S, so they coincide with the Laurent series
defined by Cauchy integrals on S. A transplantation to /I gives the integral (0.1) that
defines Chebyshev coefficients. Since K > m+n+1-8 by Theorem 2.1, this establishes
(3.7).

Finally, if 77 is stable and u<0, both arguments above apply and we have
R =0 and (F-R™P)(z)= O(Tpyns+1-5(z)), where & is the defect of ¥°. Therefore
F(z)= O(Thins1-86(2)), ie. ¢ =0 for |k| < m+n+1-6 (> p+v+6+1). If we con-
struct P via (2.4) with (m,n)=(u,v), then

zu—w—lj +(z) - zu—-u‘lO(zu+v+6+l) — O(z2u+6),
hence r* = z#¥*1r? | (2*#1f%) =0, ie. 7P= f~and v=0. i

Example 3.1. The function F(z) = a +22 = z"'4a +2, a €ER, has the type
(0,1) Padé approximant



™) =21+ ¢
a-z
and substituting this in (3.3) gives
2
RP(z) = (271 + )+ (2 + —= 1)-(z“«f-a +2)
a-z a -z
a’-a a’-a

(a’+1)-a(z+z7Y B (a®+1)-2az
If |a]>1, then 7P and R'® have exact type (0,1), ¥® is stable, R™*e R , and
(F-R™)(z) = O(T4(z)). If |a|<1, then ¥ and R™P have exact type (0,1) and
R'®e R!,, but 77 is unstable and (F-R™)(z) = O(T(z)). If a = +1, then 7P has
exact type (-1,1) and is unstable, R = 0, and (F-R"?)(z)=0 (T ¢(z)) again. //
The formal CP table occupies the quarter-plane m,n > 0. Here is the block struc-

ture result that follows from Theorem 3.1.

COROLLARY 3.1 - SQUARE BLOCKS (see Figure 2a). The formal CP table
for a Chebyshev series FF € T breaks into precisely square blocks containing identical
entries, except that the entry R = 0 appears not in a square block but in some number
(zero, finite, or infinite) of half-square blocks along the left edge of the table of the form
0<m<J, ng<n< nyg+2J+1 for some J > 0.

Proof. By Corollary 2.1, the Padé table for f is a half-plane divided into square
blocks. In any such block that lies entirely in the quarter-plane m,n > 0, ¥? is a func-
tion of exact type (u,v) for some p>0, and by Theorem 3.1, there will then be a
corresponding block in the formal CP table containing an entry R'P of exact type (n,v).
(Since different blocks of this sort contain functions of differing exact type, the functions
themselves are of course distinct.) On the other hand in the Padé table for f there may

be some blocks of even dimension that straddle the line of symmetry m =——;—, for which

one has p< 0, and by Theorem 3.1, all of these map to the entry R® = 0. 1

Example 3.1, continued. For the function F(z) = a+2z, the Padé table for f
and the formal CP table for F both contain an infinite square block m > 1, n > 0, so
the question is what happens for m << 1. We have already seen that for a = 1, the Padé
table for f contains a 2X2 block with upper-left corner (-1,1). By considering Hankel
determinants, one can show that the strip -1 < m < 0 in the Padé table for f is actually
tiled by an infinite sequence of a pair of 1X1 blocks (-1,3J), (0,3J) alternating with a
22 block with upper-left corner (~1,3J+1), for all J> 0. Therefore in this case the
formal CP table for ¥ has a nonzero entry in every third position along the left edge

m =0, but R =0 in each 2X 1 area in-between.
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For a =0, on the other hand, the Padé table for f is tiled by 2X?2 blocks
throughout the strip -1 <m <0, and in the formal CP table for F', these fuse into an

infinite rectangular strip m =0, n > 0 of entries R =0, //

Example 3.2. The function F(z)= [z| has the Chebyshev expansion 5, p. 132]

Fz) = 2+ 2 (3T5(2)- £Tul0)+ 5 Ts() - -+ - ),

s
which corresponds to

R Y 1 9 1 4,
f(z)m—;( T A D I b TR S B

To compute R for (m,n)=(0,2), we first compute the type (0,2) Padé approximant to

/.

and now (3.3) gives

chp(x)=—72;-[ 3+ 3-2-1}

322 3~z

_72;_ [ 10 - 3(282+z‘2) ) - ;(—‘fﬁ'

Since 77 is stable, |z|- R™P(z) = O(T;(z)) in this case, actually O (T ,(z)) since the
functions are even. The L™ error on [ is 1/w~ 318, as compared to .268 for the

optimal Chebyshev approximant.

In approximation to |z | of type (2,2), the results are

}p(z) = l{( SR %z'2+ 1) + _5_21.9__}’ chP(z) — _34_( 142022 ]

™ 1+2%/5 4+5z°

Now the L™ error is 1/37 =~ .106, as reported in Table 1. Again 7? is stable, and we
have |z|-R"(z)= O(T4(z)). ,

4. STABLE PADE APPROXIMATION

In stable Padé approximation, we are going to add the new condition that there are
no poles in the disk D. This condition will be troublesome, but it reflects the difficulty
inherent in CP approximation. Recall that ¥ € R, is stable if its denominator has no
zeros in D, and that R,f,, is the corresponding subset of R,,. The definitions and

theorems below treat approximation of Laurent series only, but the analogous
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developments for power series can be obtained by setting all Laurent coefficients of nega-
tive degree equal to zero. On the other hand for simplicity, the examples we give involve

power series rather than Laurent series.

Definition of 7. Given f€L and m€Z, n>0, a type (m,n) stable Padé
approzimant to f is any 7€ R 2 such that

(f-7")2) = O (%), : (4.1)
where K € Z is as large as possible.

If ¥ is stable, the definition implies that 7* =7?, and therefore #*° is unique. The

following example shows that uniqueness may be lost if 7P is unstable.

Example 4.1. For f(z)= 1+z/2+22/2,’ the first four entries in the Padé table

are

rd(2) =1, rh(z)=1+2/2, rfi(z)= _122/_2, rf(2) = 1;22.

The first three of these are stable, but rf is not, and since rf| is the only function in
Ry, with (f-r)(z)= 0(z%), it follows that any r € Rf with (f-r)(z)= O (2%) will
suffice for rif . In particular, r{f =rdf; and rf =rf are suitable candidates, and
thus rif is nonunique.

We generalize these observations in the following theorem:

THEOREM 4.1 - PROPERTIES OF 7**. For any f€EL and m€Z, n> 0,
there ezists a type (m,n) stable Padé approzimant 7 to f. If a function¥ € R2, with
defect & satisfies (f-7)(2)= O(2™*"*17%) thent =7, but the converse does not hold
except when r = 0. The following conditions are equivalent:

(i) (f-7F)(z)=O(z™*"*1F);

(i) T =7P;

(iii) TP is stable;

(iv) 7% is unique.

Proof. Theorem 2.1 and the definitions of 7P and 7* imply the first two claims

and the equivalence of (i), (ii), and (iii), and also that these conditions imply (iv). To

complete the proof, it will suffice to show that (iv) implies (i).

Suppose that 7 Ei?,f,),, is a type (m,n) stable Padé approximant to f and that
(f-T)2) 5% O(2™"*1=0). Set (mg,ng)=(u,n) if u=m=-6, otherwise (mg,nq)=(m,v)
(in which case v=n-§). Then r Gk,f,)o,,o, the corresponding defect is §,=0, and
m+n+1-8 = my+no+1. Now of course, v is the type (mg,ngy) ordinary Padé approxi-
mant to the Laurent series that represents itself — call it f.. Moreover, since 6 =0, the

coeflicients of this Padé approximant depend continuously on the Laurent coeflicients of
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[+ if these are perturbed slightly {21,22]. Consider a new Laurent series f}, in which the
coefficient of degree mg+n, has been changed by a sufficiently small amount. Its

(mo,np) Padé approximant will be a new function ¥ € kmo“o with coefficients close to
those of ¥ and satisfying (f-r' -t Yz) = O(zm°+n°+l)= O (gmntl-6y

We claim that 7’ is a new type (m,n) stable Padé approximant to f, which estab-
lishes nonuniqueness. For by construction, (7-7/)(z) = O(z™""%) = O (™).
Since (f -7 )(z) 4 O (2™*"*!7?), this means that 7' matches the Laurent series [ as far
as t does. At the same time, if the perturbation was sufficiently small, 7' must also be
stable, for the coefficients of its denominator are close to those of the denominator of T,
which means that the two denominators have nearly equal zeros on the Riemann sphere
CU{co}.

We have actually shown not only that 7°° is nonunique, but that there is a contin-

uum of such functions. |

What can be said about 7°® in the case where #? is unstable? We are afraid that
the answer may be: very little. For example, given f and (m,n), one might hope that as
in Example 4.1, 7°7 could always be taken equal to the entry 7? in some position (m',n')
with m’<m, n"<n. Or one might hope that if *P is unstable in a square block, then
although 7°° £ 7? there, at least one could find a single choice of 7°° valid throughout
that block. But the following example shows that neither hope is justified.

Example 4.2. If f(z)=1+2z+2% then rf, =r = 1/(1~z), which is unstable, so
(f-rof J(z)= O(z). But for (m,n)=(0,2), we can do better by taking for example
rof (z)=1/(1-z+2%/4). Thus r§l is necessarily different from rof, and cannot be
found anywhere in the Padé table. //

The following corollary to Theorem 4.1 summarizes the situation.

COROLLARY 4.1 - SQUARE BLOCKS (see Figure 2b). In the stable Padé
table for a Laurent series, the portion of the table in which T is unique breaks into pre-
cisely square blocks containing identical entries. (One of these will be infinite in extent if
f €RD, for large enough m and n, and another if f(z) = O (z%) for some K > ~c0.)

The remainder of the table does not in general break into square blocks.

5. CHEBYSHEV-PADE APPROXIMATION

At last, we are ready to solve the true CP approximation problem by reducing it to
a stable Padé approximation problem. The essential idea is that this can be very nearly
achieved by the same formula (3.3) that was used to define R™? if #? is replaced by r*°.

However, this prescription fails in exceptional cases where m < %(n—l) and (f-7°7)(2)
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# O (z""™), and we will have to modify it slightly to get an exact reduction.

Recall that R, is the subset of R, of all rational functions with no poles on [.
Any R € R%, will be associated with a series in T by means of an integral analogous to
(0.1).

Definition of R?. Given FE€ T and m,n >0, a type (m,n) Chebyshev-Padé
approzimant to F is any R°* € RL, such that

(F-R®)z)= O(Tk(z)), (5.1)
where K > 0 is as large as possible.

Throughout this section, we continue to make the identifications (3.1), (3.2)
between €/ and z€S and between F(z) and f(z). Similarly, a rational function
R(z)=2%","0 A T} (z)/?E',,LO BiT(z)€ERL, with the Chebyshev series
257 20 diTe(z) will be identified with the rational function r(z) =
S Az /S Biz*, which is pole-free on S and has Laurent series Ef‘;_o;dkzk
there (Ay = Ay, By = By, dp = dig))-

We now introduce our final space of functions. Let R,f,’,,gk,f,, be the set of all
functions in R2, whose formal Laurent series are symmetric: F(z)=#(z1). Thisis a
strong assumption: stability implies that the positive-degree part of the formal Laurent
series r converges on S, and if 7 is symmetric, then this conclusion holds also for the
whole series. The basis of our treatment of CP approximation is that B2, and RL. are
equivalent. That is, the Laurent series induces a one-to-one correspondence between
functions F(Z)GR,,?,, and R(z)€R[,. The following two paragraphs explain this
correspondence, and Figure 3 summarizes what is going on.

R2 — RI . Suppose F2) =08 wdizf € R2. has exact type (p,v), u>0. Let

it be written in the form (2.1) as

e 33

(2) = #7(2) + fH(2) = % dpz* + Z“: ezt ki—:okak' (5.2)

k=-0 k=p-v+1

and in analogy to (3.5), define
vepp-

1
3 odzt i op<y,
k=p-v+1

ey
- % di2t i u>v
k ==-p
From this definition and the symmetry of 7 (z), it follows that if # and 7 are viewed as
formal Laurent series in the usual way, then we have the following identity of formal

Laurent series, analogous to (3.4):
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0
-K
_____ r_(z) _ | o £t (z) R
p-v i
A -1 A -1
. rlz ) L] r (z_7)__
(a) usv : i -#%(z) = -£0
..... b —
=y
€ [,
Iv_u
t { 20(2)
b — £9%z)
(b) u<v

F(z) = F(x)
£5P(2)

fs‘p(z-l)

f(z)

5P (2)

Asp(z-l)

Figure 3. Decomposition of the Laurent series in CP approximation.
Solid and dashed lines emphasize the splitting between 7~ and #*.

Fz) = #¥(2) + 7727 —'ro(z).

(5.4)

(See Figure 3.) We claim that this same series 7(z) is the Laurent series on z € S
corresponding to a function R (z)€ R}, of exact type (u,v). For since #*(2) is stable,
its formal Laurent series converges in 0<|z| < 1 and is the same as the Laurent series
one gets by computing integrals on S. Since #7(z) has exactly v poles in 0< 2| < oo,
all outside 5, it follows from (5.4) that 7(2) is the Laurent series on S of a symmetric
rational function r(z) in z and 27! with exactly v poles in 1< |z|< oo and v poles
symmetrically located in 0< 2| < 1. All that remains is to verify that r(z) has exact
order O (2#™) as z—o00. This follows from the representation (5.2) and the assumption

that it has exact type (u,v) as a member of B2, which implies that the terms d, 2"

= RP(x)
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and € ,2#7/b , in (5.2) do not cancel.

RLI — R,f,,. Conversely, suppose R € R}, has exact type (u,v) with > 0, and
as usual write R (z)=r(2) = 52 dez¥ on S. We claim that r(z) is the formal
Laurent series corresponding to a function in é,f,, of exact type (u,v). To see this,

define #¥(z) to be the formal Laurent series

kb == p-v+1

(see Figure 3). Since R has exact type (u,v), the function z“#r(z) has exactly v poles
in 1< |z| < oo and is bounded at z = o00. On the other hand since the rightmost term
in
u-v
2P HE(2) = 2P (2) -2 Y dy 2t
bk =-x

is analytic in 1<<|z| < oo, 2" ##¥(2) must also have exactly v poles in 1< | 2| < oo and
must be bounded at z =oco. Since z“*#*(z) is also analytic in D, it follows that it

belongs to R2, . This implies that ¥

is a fraction of the form given in (5.2), which
proves r(z) € Rf‘)‘,. And since r(z) has exact order 2#™ as z —o0, it must again have

exact type (u,v).

The constructions we have just described amount to a generalization of the “split-
ting lemmas’’ given as Lemma 1.1 and Theorem 2.3 in [14]. We record these conclusions

in the following lemma:

LEMMA 5.1 - SPLITTING OF R®. Given any 7 (z) € R2, of ezact type (u,v),
U > ~0o, there 1s a unique R(z)ER,{m such that the Laurent series on S of the
corresponding function r (z) is the same as the formal Laurent series of 7(z), and R has
exact type (u,v). Conversely, given any R (z)E RL, of ezxact type (#,v), p> ~oco, with
corresponding function r(z) on S, there is a unique 7 (2) € R2 whose formal Laurent

sertes is the same as the Laurent series on S of r(z), and 7 has ezact type (u,v).

Proof. We have already proved everything except uniqueness and the splitting in
the case < 0. The former is immediate, for in both B2, and R}, two functions with
the same Laurent series are identical. As for the latter, it is readily seen that if # € B2,
has exact type (u,v) with £ <0, then the construction above leads to the zero function in
R!.. By uniqueness, this implies that ~co < p < 0 (as in Examples 2.1, 2.2) is impossi-
ble in R,fn except in the case y=-o0, f =0. So f=0 corresponds to R =0, with
gt = —o0, and all other functions in B2, and RL, have > 0. i

Now we want to apply the B2 «—R. correspondence to construct R%®. To make

this possible, let O be a “big-oh” symbol to indicate that a Laurent series has zero

coefficients in a symmetric pattern about degree 0: for f(z)= Y1 . ci2* € L and



f(2)=0(z%) = ¢, =0, -K<k<K

This definition implies that for any F(z)€ T and corresponding f (z)€ L

F(z) = 0(Tk(z)) = [(z)=0(F). (5.5)
As usual, f(z)= O(z%) is an abbreviation for f(z)=0(%), oK+,
The following approximant is of little intrinsic interest, but is the intermediate tool
we need.
Definition of 7**. Given f€& L with f(Z)=f(z") and meZ, n > 0, a type
(m,n) symmetric stable Padé approzimant to S isany F**€ R2 such that

(f-7P)(z) = O(zX), (5.6)
where K > 0 is as large as possible.
Here is the construction of R?. Again, refer to Figure 3 for clarification.

THEOREM 5.1 - CONSTRUCTION OF R®P. Let m,n>0and F(z)€T be
given, and let f(z)E L be the corresponding function on S. Then the equivalence
described in Lemma 5.1 provides a one-to-one correspondence between type (m,n) CP

4 approzimants R to F' and type (m,n) symmetric stable Padé approzimants 7 to f,
which preserves both the exact type (u,v) and the exact order of agreement K .

Proof. The candidates for R’ &~ F and #*® &~ f come from R}, and R2, | respec-
tively, and by Lemma 5.1, these spaces are the same. This is half of the proof. The
remainder consists of pointing out that by (5.5), any candidate R matches F in the
O(Tk(z)) sense to the same order as the corresponding # matches f in the O(z¥)

sense. i1

Construction of R when (f-7%)(z)= 0(z"™). Having presented the con-
struction of R in the general case, we can now describe the simpler construction that is
applicable almost all of the time. The key assumption is that (f-7%)2) = O (%) with
K > n-m. Assuming this, consider the following one-to-one correspondence between
stable Padé approximants r*® to f and symmetric stable Padé approximants #°°, which
by Theorem 5.1 are equivalent to CP approximants R°(z). See Figure 4. Given
r(2) =% odez* € RP,, we obtain 7% by replacing dp by d; for k < -K. Since

/ has a symmetric Laurent series, so does the function #*® obtained in this way, and
D

since ~-K < m-n, #** belongs to R2,. Conversely, given FP(z)=Y° d:teR?
with (f=#?)(z) = O (zX) for some K > n-m, we obtain 7* by replacing d; by ¢, (the
corresponding Laurent coefficient of f) for k < -K. Again since -K< m-n, 7%
belongs to i?,f,,. And since the order of agreement K is obviously preserved in both

directions by this correspondence, stable Padé approximants map into symmetric stable



Padé approximants and vice versa.

0
-K m-n ~S
} { } 4 - > P
/\Sp
€--=-==-- ' $ } {-=-=-==- >

Figure 4. Laurent series for 7°* and 7°* in the case (f-7°F)(z)
=0(z%), K> m-n. Solid lines indicate Laurent coefficients that coin-
cide with those of f.

Let f9 be defined by (3.5), and #° by (5.3) with (u,v) replaced by (m,n). Since
(f-7")(z)=0(z"™), fO=7° If +*° is written 7~ ++* as a function in R2,, then we

have in fact

R®(z) = #P(z) = +*(2) + 7Yz ) - f%2) (5.72)
=7H2) + 77 -7%2) (5.7b)
= 7P(2) + () - f(2). (5.7¢)

The following theorem confirms that R’ can be constructed from these formulas, just as

R was constructed from the analogous formulas (3.3) and (3.4).

THEOREM 5.2 - CONSTRUCTION OF R® WHEN (f-r*)(z)=0(z""™).
Given m, n, F, f as in Theorem 5.1, suppose that the type (m,n) stable Padé approzi-
mants to f satisfy (f-7°P)z) = 0(z%) with K> n-m; this will always hold if
m > %(n—-l) or if T =7P. Then equations (5.7) provide a one-to-one correspondence
between type (m,n) CP approzimants R? to F' and type (m,n) stable Padé approzimants
T°P to f, which preserves the exzact order of agreement K. The exact type (u,v) ts also

preserved whenever 7°F or #°® has ezact type (u,v) with K > v+1-p

Proof. Theorem 5.1 established the equivalence between R and r°%, and we have
just shown that if (f-7*P)(z)= O(z"™), the latter is equivalent to 7**. The claim
regarding (u,v) follows directly from the construction above if 7°F or 7°? is represented
as a function in R;’f‘,. It remains to prove the assertion following the semicolon. If
m> -é-(n~1), ie. m > n-m-1, then since the type (m,0) Padé approximant is trivially
stable, we have K> m +1> n-m . If ¥ =7P? then by (1.2) and Theorem 2.1, we have
K > m+n+1-6 > n once again. g
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Our first example has 7" =7P, so Theorem 5.2 applies.

Example 5.1. If F(z)=2+2z and (m,n)=(0,1), we have f(z)=2"42+4: and
(2} =71P(2) =271 4+-2/(1 - 2/2). By (5.7b), this implies

3
2 2 P 6

R¥(z) = #*%(z) = — + . -2 = : = .
. _ L, 5_1 -1 5-4

-5z 1-3z Tl +z7h) z

Since ¥** =7P?, this is the same as the formal CP approximant R computed in Exam-

ple 3.1. //

Our second example has 7*P £ 7 but m > %(n-l), so Theorem 5.2 applies again.

Example 5.2. If F(z)=1+2z and (m,n)=(0,1), then f(z)=2z"'+1+2, and 7P
is unstable. (This is essentially the same function f as in Example 4.2.) Therefore any
r €RE with (f-7)(z)=0 (z) will serve as a stable Padé approximant. One such func-
tion is ¥**(z) = z'+1, and from (5.7b) we compute

R¥(z) =7®(z) =14+1-1=1.

The general stable Padé approximant in this case is ¥**(z)=z"! + 1/(1-az), |a|<1,
and now (5.7b) gives

R 1 1 1-a?
FP(z2) = & -1 = ,
(2) l-az " 1-a/z 1+a’-a(z+:z7Y
and therefore
1-a?
RP(z) = —
() 1+a?%-2az /1

Our third example is one to which Theorem 5.2 does not apply.

Example 5.3. Suppose F(z)=1+2z, fv(z)=z'1+1+z again, but (m, n)=
(0,2). Since a stable Padé approximant ¥*P to f will satisfy at least (f-7)2)= O(2),
any such function can be written in the form

-1
~ sp —_ ~ 4 —_ Z + l“b —-C
() = 7() (1-bz (1-c7 )
for some |bf,|c| < 1. If (f-T**)(z)= O(2?), then the terms of degree 1 in the
Laurent expansion of this fraction must add up to 1, ie. (b%+c24+be) +
(b+c)(1-b-c)=1, or (1-c)(b-1)=0, a condition that cannot be satisfied. Therefore
(f~7*)(z) = O(2), and any |b|,|c| <1 will suffic. For example, we might take
b=1/V2, ¢ =-1/V2, ()= (z"+1)/(1-2%/2). But now (5.7b) leads to
R?(z) = (3+22)/(9-82?), which does not have the required type (0,2).
To construct R°? properly in this example, we must revert to Theorem 5.1 and

replace ¥** by a symmetric stable Padé approximant #**. The general form for such a
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function with error O(z) is 7 = 7™+ 7* with

c+¢y _ az"l 4 1-ab-ac
(2) = (1-bz )}(1-cz)

for some |b},|c| <1, and a =(b+c)/(1+bc). An error O(z?) would require a =1,
which is impossible, as shown above. Taking b = 1/v2 and ¢ =-1/V?2 again, we get
a =0, and now (5.4) leads to R?(z) = 3/(9-8z2). //

Here is the theorem mentioned in the Abstract (compare Theorem 4.1).

THEOREM 5.3 - PROPERTIES OF R, For any FET and m,n > 0, there
ezists a type (m,n) Chebyshev-Padé approzimant R to F. If a function R € RL, with
defect & satisfies (F-R)(z) = O(Tpins+1-5(2)), then R = R, but the converse does

not hold except when R = 0. The following three conditions are equivalent:

(i) (F-R®)(z)= O (Tpin+1-8(z));

(ii) the associated Padé approzimant 7?(z) to f(z)= F (z) is stable (or R°? =0,
which i3 equivalent to F(z)= O(T,, .1(z)) );

(15} R°P is unique.

If these conditions hold and R°? 3£ 0, then

(iv)] R? = Rfer.

Proof. The existence of R°? follows from its definition. Examples 5.2 and 5.3 show
that (F-R)}z)= O(Tpin+1-5(z)) does not necessarily hold for R = R, but if
R =R®=0, then T\, p+1-5(z) = T, ;1(z) and so it does hold, since otherwise there
would be a nonzero polynomial that approximated F better than R . To show that this
condition is sufficient for R = R°?, we can argue directly from the definition of R°P,

ignoring the developments of the past few pages. For if R°? were an equally good or

better approximation to F' than R, we would have
(R - B¥)(z)= O (Tmin+1-5(2)),

or in other words, R-R would be orthogonal to all polynomials of degree at most
m +n -6 with respect to the Chebyshev weight. But this implies that R -R? has at
least m+n +1- § zeros in I, which can only occur if R = R°P.

To show that (i)-(iii) are equivalent, we will now prove that (i) is equivalent to (iii)
and then (ii). The last argument also establishes (ii) => (iv).

(i) => (41). The argument just given shows also that R°P is unique.

(iti) => (i). See the proof of Theorem 4.1. Suppose (F-R°P)(z)
# O (T pin +1-5(2)), and consider the equivalent function 7*P provided by Theorem 5.1,
with exact type (u,v). Define my and n, as before, and perturb the coeflicient of 7°° of

degree mg+ny by a sufficiently small amount. If the resulting perturbed Padé
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approximant is extended symmetrically to coefficients of degree <p-v, it becomes a new
symmetric stable Padé approximant #** to /. hence a new CP approximant R to R .

(1) => {it). I R°® =0 there is nothing to prove, so assume R°? # 0, which implies
that R°? and #* have exact type (u,v) for some g > 0. Since (f-7F)(z) = O(z"*'), the
correspondence described in Theorem 5.2, cf. Figure 4, leads to a function 7°° of the
same exact type with (f-¥*)(z)= 0 (2™*"*1-¢) By Theorem 2.1, this must be the
Padé approximant 7?, which is accordingly stable.

(1)) = (i), (iv). If ¥® is stable and has exact type (u#,v) with p>0, then by
Theorem 3.1, R™ has exact type (4, v) also and satisfies (F-R™)(z) = O(Tpipo1-s(2)).
Therefore R = R°P by the sufficient condition above, and so (i) holds. If 7P is stable
but with p< 0, then by Theorem 3.1, R =0 and (F-R*"=0(T, +1{z)), so
RIP — R°P and (i) holds again. Finally, if R =0, we have already established (1)
above. In this case (iv) does not always hold, whence the condition R°? # 0 in the state-

ment of the theorem; as an example one can consider type (0,2) approximation of
Tl(.'l') '+‘T2($). l

Note that the last sentence of Theorem 5.3 asserts that whenever the CP approxi-
mant is nonzero and unique, the formal CP procedure is guaranteed to get the right
answer. We do not know whether the converse also holds, that is, whether (iv) implies
(1)-(iii).

Note also one of the implications of condition (ii) — that the approximant R’ =0

can appear in the CP table only when it is the unique CP approximant and satisfies (1).

Regarding block structure in the CP table, we know nothing more than the analog
of Corollary 4.1, which is essentially the same as Theorem 5.1 of Geddes [10], although

the derivation here has been completely different from his.

COROLLARY 5.1 - SQUARE BLOCKS (see Figure 2c). In the Cheybshev-
Padé table for a formal Chebyshev series, the portion of the table in which R’ is unique
breaks into precisely square blocks containing identical entries. (One of these is tnfinite
in extent if F € R,,l,,, for large enough m and n .) The remainder of the table does not in
general break into square blocks. There is one possible exception: if F(z)= O (T (z))
Jor some K>0, then the approzimant R =0 occupies the infinite rectangular strip
0<m< K-1, 0<n< oo at the left edge of the table. This is the only situation in which
R? = 0 can appear.
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6. REMARKS ON RECURSIVE COMPUTATION AND CONVERGENCE

In this paper we have reduced formal CP approximation to Padé approximation,
even for m < n, and the reduction carries over to true CP approximation whenever 7? is
stable. Here is the schematic:

r? gy 7P ey RIP 5 RCP (6.1)
Sect. 2 Sect. 3 Sects. 4,5

Before closing, we will mention the relevance of these developments to two further topics

in Padé and CP approximation.

The first is the derivation of recursive formulas to compute approximants. This is
an old idea that has been worked out quite fully for Padé approximation; see [2,11]. Our
approach to formal CP approximation, based on (3.3), makes it an easy matter to extend
any recursive procedure for computing 7? to a corresponding procedure for computing
Rfe?, regardless of m and n. To complete the link with the Padé literature, we must
relate recursions for r? to recursions for 7?. This is straightforward too, if one modifies
the construction of Section 2 in one respect. Rather than splitting the Laurent series
always at degree m -n, as in (2.1) and (2.4), let the whole derivation be based on a split-

ting at some lower degree [ <m -n,

F) = D16 = 8t s §oat (62)

k=i+1

If 1 € Z 1s fixed, this same splitting can now be applied to construct all approximants 7°
in the sector m >n+1[ of the Padé table. All of the recursion formulas for Padé
approximation then carry over to CP approximation, so long as { is taken low enough

that they remain in the sector.

Various recursion formulas for R™ have appeared in the literature (3,6,13,16].
Although we have not worked out the details, we believe that these and others can be
derived and understood in a uniform way by the method just outlined.

The second topic is the question of convergence as m+n —co. In Padé approxima-
tion, the classical result is the de Montessus theorem for convergence as m —oo with
fixed n[1]. This theorem has the great advantage of asserting that for large enough m,
there are no spurious poles, so that stability can be guaranteed. As a result all three
reductions in (6.1) can be carried out successfully, and we get the following theorem,
which is due in various forms to Suetin [17] and Bultheel [3]. Here E denotes the open

region bounded by the ellipse with foci +1 and principal semiaxis —},-(p%—l/p) for some
p>1.

THEOREM 6.1 - CONVERGENCE ALONG ROWS OF THE CP
TABLE. Let F(z) be analytic on [ and meromorphic in E , with exactly n poles in E .



.27 .

counted with multiplicity. Then for all sufficiently large m, the CP approzimant R® of

type (m,n) to F' is unique, and as m — oo it converges uniformly to F on [ with
lim-sup || F-R®|| Ym < L.
m—oo p
There are also many more specialized results in Padé approximation on convergence
as m+n — oo with variable n, due to GonZ¥ar, Nuttall, Pommerenke, Stahl, Wallin, and
others [1]. Most of these assert convergence in capacity, under restrictive assumptions,
for limits along diagonals with m/n — const. If there were no problem of stability, the
reductions of the present paper would convert these to corresponding convergence results
for CP approximation, even for m< n. Unfortunately, stability cannot be guaranteed,
and we are able to say very little. Some convergence results related to CP approxima-
tion have been described by Gragg [12] and by Lubinsky and Sidi (15], but their validity
is based on an explicit assumption that the Chebyshev series is matched to an appropri-

ate degree, i.e., that 7P is stable.
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