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Fourier Analysis of the SOR Iteration
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The SOR iteration for solving linear systems of equations depends upon an
overrelaxation factor co. We show that, for the standard model problem of
Poisson's equation on a rectangle, the optimal co and corresponding convergence
rate can be obtained rigorously by Fourier analysis. The trick is to tilt the
space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also
gives new insight into the relationships between the Gauss-Seidel and Jacobi
iterations and between the lexicographic and red-black orderings, and into the
modified equation analysis of Garabedian.

1. Introduction

FOURIER analysis has been used for nearly fifty years to test the stability of
time-dependent finite-difference formulae—the 'von Neumann method'.9 More
recently, it has also become a standard tool for estimating the convergence rate of
multigrid iterations.3 But the analysis of the more classical iteration known as
successive overrelaxation—SOR—has been carried out by other means.561011

The reason is that the behaviour of SOR, unlike the other two problems, is
dominated by low-frequency modes that are controlled by boundary conditions.
The obvious application of Fourier analysis treats the boundary conditions
incorrectly, and leads to an incorrect prediction of the optimal convergence rate.

In this note we show that, if the computational grid is tilted by a certain angle
in space and time, then Fourier analysis becomes exact for the standard SOR
model problem: the five-point discretization of Poisson's equation on a rectangle
with Dirichlet boundary conditions, with the variables taken in the natural
(lexicographic) ordering.

The SOR model problem was first analysed by Frankel in 1950.6 Our approach
leads to no quantitative results that Frankel did not have, but makes it clear why
the eigenvectors of the SOR iteration have the form they do. This analysis is
restricted to the rectangular model problem, so it in no way supplants the much
more general theory of matrix iterations developed by Young in the early
1950s.1011

hi 1956, Garabedian proposed a new analysis of SOR, which today could be
described as an early application of the idea of 'modified equations'.7 He
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observed that the SOR iteration is a consistent finite-difference approximation of
a time-dependent partial differential equation, so that its rate of convergence
should approximate the rate of decay of solutions to that equation. To determine
this rate, he introduced a new timelike variable s = t + \x + \y which reduces the
differential equation to a canonical form that can be analysed by Fourier
methods. Our tilting of the grid corresponds exactly to Garabedian's introduction
of the variable s. Thus, for the SOR model problem, the consideration of a
partial differential equation is unnecessary, and indeed the analysis in the discrete
domain has the advantage that it is exact rather than approximate. Garabedian's
idea, however, provides additional insight. (Neither tilted grids nor modified
equations are sufficient to analyse all iteration formulae, such as the SOR
iteration for the nine-point Laplacian.2)

Approximate Fourier analysis of SOR (on the usual grid) has been discussed
previously by Kuo8 and Chan & Elman4 and probably others. Our tilted grid is
also equivalent to the 'data flow times' considered by Adams & Jordan for
reasons of parallelizability.1

2. Jacob! iteration

Consider the discrete Poisson problem

75 ("/-l.t+Wy+i.t+«/,*-i+ M/,t+i-4uA)=/yt (1=£/,A:=SJV-1),
n (1)

u,k = F* 0 = 0, N or k = Q,N),

on the square [0, n]2, with h = it/N. Let ujk denote the approximation to the
exact discrete solution u of (1) at the n th step of an iteration, with corresponding
error v"k = u"k - ujk. Define also Xj =jh and yk = kh for O^j.k^N.

The Jacobi iteration is an example in which Fourier analysis works
straightforwardly.10-11 The errors evolve according to

(I«M«JVI),
u£ = 0 (/ = 0, W or k = 0, N).

Let us consider what solutions of the form v"k = g(^, r])n&i^i+r>yk) this iteration
admits if we ignore the boundary conditions. We obtain immediately

t V) = i(e~** + eIJA + e"""1 + e""1) = i(cos §A + cos r//i). (3)

This is the amplification-factor function for the Jacobi iteration. The essential
property is that it is an even function of § and r/:

g(M, tl) = g(-t ri) = g(t -ij) =*(-§, -ij). (4)

If we take as initial data the linear combination
sin gxy sin r\yk = - ^ e ^ + i ^ ) - ^i-^^n) _ ei<e.,--i») + eK-e*/-i»))f (5)

where § and rj are integers in the range l « f , 7 / « N - l , then the homogeneous
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boundary conditions are satisfied at n = 0. By (4), it follows that

v?k = g{%,V)" sin £ey sin i]yk

satisfies both the interior formula and the boundary conditions for all n > 0, and
therefore

sin §r, sin r\yk

is an eigenvector of the Jacobi iteration with eigenvalue g(§, rj). Since there are
(N — I)2 of these functions, and they are linearly independent, they constitute a
basis for the set of all interior grid functions vjk. Therefore the asymptotic
convergence factor for the Jacobi iteration is exactly

pJ»«*i = max |i(cos §A + cos r\h)\.
l«f,TJ«JV-l

The maximum is attained with %,r\ = ±1 or £,77 = ±(N - 1):
pJacobi =

3. SOR and Gauss-Seidel iterations

K we attempt the same analysis for the SOR iteration, i.e.

t#+ 1 = (1 - m)v% + *<»W-11.* + v?+i.k + viX-x + <*+i)> (7)

the result is

that is,

Now, (4) no longer holds. Therefore g(^, 77) does not give us the eigenvalues of
the SOR iteration. If we find § and r; to maximize |g(£, r/)|, there is no reason to
expect the resulting number to describe the convergence of SOR. As it turns out,
this approach produces the correct optimal ft), to leading order in h, but a
convergence rate that is too pessimistic by a factor of four.4

Figure 1 shows how the situation can be rescued. Think of the SOR iteration as
inhabiting a regular grid in two space and one time dimensions (y, k, n). Its
stencil connects six points in an asymmetrical pattern, or four points in the
one-dimensional case portrayed in the figure. Because of this asymmetry, (4) does
not hold. But if we introduce the new 'time' index

v = 2n+j + k, (9)

the stencil becomes symmetrical. Let us look for solutions to (7) of the form

vJk = g(lriy^'+^-\ (10)

In the ;, k, v variables, (7) becomes

vjk
+2 = (1 - a>)vjk + }a>(W-i!* + v]?U + vj.i-i + <tii), (11)
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n v

FIG. 1. The SOR stencil superimposed on a space-time grid (one space dimension). Introduction of
the 'tilted' time index v makes the stencil symmetric, so that Fourier analysis can be applied. The
red-black labels are explained in Section 4.

and so a suitable value for g(£, rj) is either root of the quadratic equation

g{t r/)2 = (1 - (o) + }a>(cos S* + cos rih)g(t IJ). (12)

For each § and r\, we now have a pair of amplification factors g±(%, r/), and they
satisfy the symmetry condition (4). Therefore, for any integers f and r? in the
range 1 as 11) «s N - 1 , the functions

g(t r)Ysin %x, sin rjyk

are eigenmodes of the SOR iteration in the v direction. To speak in terms of
eigenvectors, we note that SOR is a two-step formula with respect to v, but it can
be recast as a one-step iteration

with eigenvectors

(sin g*y sin t]yk, g(t TJ) sin gry sin r\yk)

and eigenvalues g(£, r/)2.
It takes two steps in v to advance one step in n. We conclude that the

asymptotic convergence factor for SOR is exactly

p™*= max max |g±(£, n)\
2. (13)

I*J.I)«N-I +,-

In the original (/, k, n) coordinates, the eigenmodes become

and the corresponding eigenvectors are

g(tr,y+k sin §ry sin r,yk. (14)

This matches the results of Frankel and others derived by different means.
All that remains is algebra. For any !-,TI e {1,.. ., N — 1}, the solutions to

(12) are

g±(t V) = a ± [a2 - (co - 1)]*, a = Jo»(cos|A + cos rjh), (15)
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and the larger in magnitude of these two numbers has magnitude

i , f c M J W + I ^ - O B - I ) ] * if tf2^ t o - 1 ,max g±(§, IJ) = ' \ . . f , ' (16
+ ,- I ( W - 1 ) J if OT =£ £ 0 - 1 , '

since to 2= 1. For fixed to, this quantity can evidently be maximized with respect to
£ and TJ by taking £ = rj = 1 (among other values) and a- = £to cos h.

The Gauss-Seidel iteration corresponds to to = 1. In this case, (16) becomes
2 |ar| = cos h, so by (13) we have

pos = cos2h~l-h2. (17)

To find the optimal overrelaxation factor for SOR, we examine the dependence
of (16) on 0) with § = T] = 1. It is readily verified that to > 2 leads to p^,OR > 1, so
this is out of the running, and we can assume 1 ^ to ̂  2. In this range, the second
line of (16) obviously increases with to, and differentiation confirms that the first
line decreases with (o. Therefore the optimal a> is the crossover value to — 1 =
oc1 = {\o) cos h)2, which reduces after a little work to

(18)

By (13) and (16), the corresponding convergence rate is

P ^ R = ©opt - 1 = (1 - sin h)H\ + sin h)«1 - 2/i. (19)

4. Relating various methods

The change to tilted coordinates has the additional advantage of clarifying the
relationships between convergence rates of different iterative methods. For
example, it is well known that the Gauss-Seidel iteration is twice as fast as
Jacobi, as is confirmed by comparing (6) and (17). The tilted coordinates provide
a simple explanation of why this is so. Gauss-Seidel corresponds to the case
to = 1 of (11), and this is precisely the Jacobi iteration with respect to v. The
factor 2 arises because it takes two steps in v to advance one step in n.

As another example, consider the SOR iteration with the grid points taken in
the red-black or checkerboard ordering. This means that the v)k with j + k even
(red points) are processed before the vjk with j + k odd (black points), and the
iteration takes the form

v"k+l = (1 - ©K* + i©(w"-i.* + u;+i,* + v"k-i + «/Vi) for j + k even,
for; + k odd.

For each a>, this method has the same convergence rate as the iteration (7) in the
natural ordering. Young proved this algebraically by determining the eigenvalues
and eigenvectors of the associated iteration matrices.11 Again, the change to tilted
coordinates gives a more intuitive explanation, as illustrated in Fig. 1 for the
case of one space dimension. At step v, we are computing only the red points,
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and at step v + 1 only the black points. Recasting SOR as a one-step iteration

as in the last section, we obtain simply the red-black ordering. Thus Fig. 1 can be
viewed as depicting an SOR iteration either in (;, n) coordinates with the natural
ordering, or in (J, v) coordinates with the red-black ordering. Hence these two
orderings must have the same asymptotic convergence rate.

The conclusions above depend on the fact that the convergence rate is in-
dependent of the particular initial data used, depending only on the eigenvectors.
Note that we can switch back and forth between arbitrary data at fixed n or
at fixed v, by taking partial iterations over a triangular portion of the grid. In
fact, writing out these partial iterations algebraically gives a similarity transfor-
mation relating the iteration matrices.

In this paper, we have considered just the five-point Poisson model problem,
and presented an easy way to obtain classical results with, we hope, additional
insight. The tilted grid may also prove useful in obtaining new results. It has
already been applied to settle a conjecture of Adams & Jordan regarding the
equivalence of certain orderings for the nine-point Laplacian.1 These results are
reported in Ref. 2, although as mentioned above, the nine-point formula involves
additional complexities.
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