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THE EIGENVALUES OF SECOND-ORDER SPECTRAL
DIFFERENTIATION MATRICES*

J. A. C. WEIDEMAN? AND L. N. TREFETHEN$

Abstract. The eigenvalues of the pseudospectral second derivative matrix with homogeneous Dirichlet
boundary conditions are important in many applications of spectral methods. This paper investigates some
of their properties. Numerical results show that a certain fraction of the eigenvalues approximate the
eigenvalues of the continuous operator very accurately, but the errors in the remaining ones are large. It is
demonstrated that the inaccurate eigenvalues correspond to those eigenfunctions of the continuous operator
that cannot be resolved by polynomial interpolation in the spectral grid. In particular, it is proved that 7r

points on average per wavelength are sufficient for successful interpolation of the eigenfunctions of the
continuous operator in a Chebyshev distribution of nodes, and six points per wavelength for a uniform
distribution. These results are in agreement with the observed fractions of accurate eigenvalues. By using
the characteristic polynomial, a bound on the spectral radius of the differentiation matrix is derived that is
accurate to 2% or better. The effect of filtering on the eigenvalues is studied numerically.
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1. Introduction. The second-order (pseudo-) spectral differentiation process can
be described as follows:

(1) Interpolate the data at prescribed grid points x,..., xN-1 by a global poly-
nomial p(x), which may be additionally constrained to satisfy certain boundary
conditions at x0 and XN;

(2) Differentiate the interpolant twice to obtain estimates p"(x) of the second
derivative of the data at each grid point.

This simple idea is the basis of spectral collocation methods for the numerical
solution of partial differential equations, which have become prominent in the past
decade ([8], [10]). Since the differentiation process is linear it can be described by an
(N-1) (N-1) matrix Dsp. This matrix is typically neither sparse nor symmetric,
in contrast to the situation with finite differences, where the differentiation matrix on
a uniform grid with spacing h is given by

-2 1 0

1 1 -2 1
(1) Oo -5 ...

o 1 -2

For reasons discussed below it is of interest to know the eigenvalues of these
differentiation matrices. The eigenvalues of D2FO can be obtained analytically, but not
those of Dsp. The purpose of this paper is to investigate the eigenvalues of D2sp both
experimentally and theoretically.
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The principal reason why the eigenvalues of D2sp matter is that they affect numerical
stability. To solve the equation vt V,x, even if only a steady-state solution is the
ultimate goal, the space derivative may be approximated by spectral differentiation
and the time derivative by a linear multistep or Runge-Kutta formula. This combination
can be stable for a fixed time step At only if the eigenvalues of D2sp lie in the stability
region in the complex plane for the given time-integration formula with the given
timestep. The important quantity here is the spectral radius p(D2sp), defined as the
maximum of the moduli of the eigenvalues of D2sp. For finite differences or finite
elements the spectral radius of the differentiation matrix is typically of size O(N2),
but for spectral methods on nonperiodic domains this figure becomes O(N’). The
result is that explicit time integration formulas are subject to painfully restrictive
stability conditions of the form At O(N-’). It is desirable to be able to determine
accurately what these restrictions are, and what can possibly be done to get around them.

Tight stability restrictions can be avoided by the use of implicit time-integration
formulas, and this brings us to a second application of eigenvalue analysis. To
implement an implicit formula, a direct inversion of a dense matrix is very expensive,
and one alternative, proposed by Orszag [17], is a solution by an iteration based on
a finite difference preconditioner. The efficiency of such an iteration depends on how
the preconditioner affects the eigenvalues of Dp. Haldenwang et al. have shown that
in certain problems it reduces the range of magnitudes of the eigenvalues from O(N4)
to O(1), making a Richardson iteration extremely fast [13].

A third and more obvious reason to study the eigenvalues of D2sp is that if some
of them lie in the right half-plane (with increasing real parts as N-oo), then the
spectral approximation to the partial differential equation will be ill-posed regardless
of the formula for time integration. Although this does not occur with the spectral
grids in general use, we show below that it does happen if one tries to use equidistant
points in a nonperiodic problem.

Eigenvalues of first-order spectral differentiation matrices have been studied by
various authors. Dubiner has obtained asymptotic eigenvalue estimates [4]; Solomonoff
and Turkel have proved that under certain circumstances all eigenvalues lie in the left
half-plane [18]; Dubiner and Tal-Ezer have studied the difference between Chebyshev
and Legendre grid points [4]; and various further results and experiments have been
provided by Trefethen and Trummer [20] and Funaro [6], [7]. Here, again, spectral
methods face the problem that outlying eigenvalues of size O(N2) lead to stability
restrictions At O(N-2) where we would get O(N-) for finite differences or finite
elements. The first-order case is problematic, .because the continuous problem has no
eigenvalues at all and the matrices involved are nearly defective, with the result that
time-stability bounds based on eigenvalues and stability regions may give highly
unrealistic indicationS of true ("Lax"-) stability [20].

Eigenvalues of second-order differentiation matrices, the subject of this paper,
have received less attention. The most important result, due to Gottlieb and Lustman
[9], is that the eigenvalues are real and negative and distinct for second-order differenti-
ation in Chebyshev extreme points, or in any other set of points for which the
pseudospectral approximation to the corresponding first-order hyperbolic model prob-
lem is stable. The second-order case is better behaved than the first-order one: the
corresponding continuous problem does have eigenvalues, which match those of the
spectral approximation to some degree, and the eigenvalues appear to be much less
sensitive to rounding error. As a result we expect that the time-stability bounds that
follow from this paper also correspond closely to Lax-stability bounds, and hence are
directly applicable to stability questions for practical spectral computations.
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It is worth noting why eigenvalue analysis is appropriate for analyzing spectral
methods, since it is usually unnecessary for finite differences or finite elements. The
reason is that finite difference and finite element formulas, being translation invariant
or nearly so, have eigenvectors that are Fourier modes or close to them, so that stability
questions largely reduce to the study of amplification factors (von Neumann analysis)
and wave reflection at boundaries (GKS analysis). But for spectral calculations the
eigenvectors are by no means known a priori, and until a more general theory is
devised, we have to study them explicitly.

Spectral methods are commonly applied on several kinds of grids. For periodic
problems, the points are equally spaced and the interpolant is a trigonometric poly-
nomial, but as this case offers no mysteries we will not consider it. For nonperiodic
problems, we will take [-1, 1] as our standard space interval, with Xo =-1 and x 1
and boundary conditions

(2) p(xo) p(x)=0.

This means that the polynomial p(x) described in the first paragraph is constrained
to satisfy the conditions (2). We will consider four sets of collocation points
Xl, XN--1

Chebyshev extreme points:

Chebyshev points:

Legendre points:

Equispaced points:

xj -cos (j’rr/ N),

x2 -cos ((2j. 1)Tr/2(N- 1)),

xj =jth zero of PN-1,

xs -l + 2j/ N,

where PN-1 is the Legendre polynomial of degree N-1. The Chebyshev points can
also be described as the zeros of the Chebyshev polynomial TN-I, and the Chebyshev
extreme points are the extrema of T. The first three of these sets of points are all
used in various applications; they all have nonuniform distributions in [-1, 1] with
density proportional to l/v/1 x2 as N- oo. Equispaced points are not used in practice,
for good reasons: interpolants based on these points diverge rapidly as N- ---even
for arbitrarily smooth data, if rounding errors are present. We include equispaced
points in the investigation because they give valuable perspective on the other cases.

Once the boundary conditions (2) and collocation points x are fixed, the differenti-
ation matrix D2sp is implicitly determined, but there are various methods of applying
Dsp computationally. For Chebyshev points, a fast implementation can be based on
the FFT (see 5). For other point distributions it is necessary to form the matrix
explicitly and then multiply. To derive the matrix entries, note that the polynomial
p(x) of degree N that interpolates the values 0, u, , uv_, 0 at Xo, , x can be
written as

where

N-1

p(x)= 2 ufl(x),
j=l

(x- x.)
6(x)= H

,=o (x x,)"

Differentiating p twice at x xi gives

(3) (Dp)q =/j’(x,), i,j 1,..., N- 1.
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More computationally practical methods for deriving these entries can be found in
[8], [19], and [11], where explicit formulas are given.

An outline of the paper is as follows. First, 2 presents numerical experiments
to summarize the properties of the eigenvalues and eigenvectors of DZsp. We find that
a proportion 2/7r of the eigenvalues are accurate approximations to those of the
continuous problem, or 1/3 in the case of equispaced points. The figure 2/7r results
from the fact that only this proportion of the eigenfunctions of the continuous prob-
lemmsine and cosine functions of various wave numbers--can be resolved by poly-
nomial interpolation, i.e., have at least two points per wavelength in the center of the
Chebyshev or Legendre grid. The larger O(N4) outliers lie far off the scale in our
eigenvalue plots, which emphasizes what tight stability restrictions they give rise to.

Section 3 is devoted to obtaining estimates for the largest outlying eigenvalues by
means of the characteristic polynomial, which for cases of practical interest is known
exactly. A simple root bound theorem of Newton provides surprisingly tight upper
bounds that come within 2% of the exact (computed) values (Fig. 4 and Theorem 1).
These bounds can readily be applied to derive timestep conditions for explicit time
integrators that will guarantee time stability, a derivation that users of spectral methods
have usually carried out empirically.

Section 4 shows that the ratios 2/7r and 1/3 that appeared in the numerical
experiments have a theoretical basis. The question considered is, how many points per
average wavelength must a grid possess in order to interpolate a sine or cosine
successfully, in the limit N-oo? The answers turn out to be 7r and 6 for Cheby-
shev/Legendre and equispaced grids, respectively (Theorem 2). (A different proof of
the latter result is implicit in a paper by Budd [1].) Since the eigenfunctions of the
continuous second-order differentiation operator are sines and cosines, this result leads
to an explanation of the numbers 2/7r and 1/3.

Finally, 5 considers the possibility of modifying spectral methods by low-pass
filters designed to alleviate stability problems. By plotting the eigenvalues of a filtered
differentiation matrix, we can get a quick indication of whether the filtering is likely
to be successful. Our experiments suggest that none of the filters proposed so far
achieve the desired end without an unacceptable loss of accuracy.

2. Numerical observations. The eigenvalues of the continuous second derivative
operator, with zero boundary conditions at x +1, are defined by

(4) DZu(x) Au(x), -1 <-x =< 1,

u(+l) =0.

This problem is easily solved; the eigenvalues are

k2,TT2
(5) Ak =-, k=1,2,3,...

4

with the corresponding normalized eigenfunctions

cos (1/2krx), k odd,
(6) u(x) =(sin (1/2krx), k even.

The finite-difference discretization of (4) on an N-grid is

(7) Dou=hu,
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where D2vo is the order N-1 matrix defined in (1). The eigenvalues of this problem
are equally easy to obtain; see, e.g., [16, p. 50]. They are given by

(8) hk -N2 sine (2-) k=l,...,N-1,

with the corresponding eigenvectors

f cos (1/2kzrxi),(9) u
k odd,
k even.

Notice that these eigenvectors are exact discretizations of the eigenfunctions (6) for
the continuous problem, but that only the eigenvalues smallest in magnitude are
approximated accurately. The error in A1 is O(h2), whereas ,N-I is too small by the
factor 4/7r in the limit Nc. Nevertheless, the spectral radius satisfies p(Do)=
O(N) as N. Therefore the time-stability restriction for a typical explicit time
integration scheme is At<--O(N-2). In Fig. l(a) the eigenvalues (8) of the finite-
difference method are compared graphically with the eigenvalues (5) of the continuous
problem.

Turning to spectral methods, we consider the matrix D2sp defined in (3). The
numerically computed eigenvalues of Dsp for collocation at Chebyshev extrema are
shown in Fig. l(b). All of them are real, distinct, and negative, as has been proven by
Gottlieb and Lustman [9]. Observe that the eigenvalues that are small in magnitude
are spectrally accurate approximations to those of the continuous problem. (The
spectral accuracy can be proved by the techniques of Calogero [2].) We refer to these
eigenvalues as "inliers," in contrast with the remaining "outliers," the eigenvalues
which do not approximate those of the continuous problem to any degree. The largest
outliers grow explosively as O(N4), lying far off-scale in our plot (roughly 24 times
the scale ofthe vertical axis !), and this restricts the timestep in typical explicit integration
schemes to At =< O(N-a).

The eigenvalues of Fig. l(b) appear in approximate pairs. The reason for this is
that the corresponding eigenfunctions occur in pairs of odd and even functions, as
will be made clearer in equations (13), (15), and (17) of the next section.

Numerical calculations of this kind show that the proportion of eigenvalues that
are inliers approaches 2/7r as N ; the dashed line in Fig. 1 (b) represents the value
k (2/Tr)N. (Haldenwang et al. have pointed out previously that the proportion of
inliers appeared to be close to 2/3 [13].) The intuitive explanation of this critical value
is simple. For k > (2/7r)N, the sines and cosines that would be eigenfunctions for the
continuous problem have fewer than two points per wavelength in the center of the
Chebyshev mesh, i.e., they cannot be resolved by polynomial interpolation. The
nonresolution of the higher eigenfunctions can be observed in Fig. 2, where selected
eigenvectors of Dp, based on Chebyshev extrema, are plotted. The eigenvectors
corresponding to inliers are sines and cosines to a good approximation, but the
eigenvectors corresponding to outliers are dominated by large oscillations near the
boundary.

A more rigorous explanation of the critical value k (2/7r)N is due to Gottlieb
and Orszag [10, p. 35]. They consider the Chebyshev expansion of sin (1/2kx), rather
than interpolation, and show that the error decreases exponentially only if the degree
of the expansion is larger than kTr. In 4 we show that k -< (2/Tr)N is indeed a
sufficient condition to resolve sin (1/2kTrx) or cos (1/2krx) by polynomial interpolation of
degree N on Chebyshev or Legendre grids. Numerical evidence of this result has been
presented by Solomonoff and Turkel [18].
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FIG. 1. Eigenvalues of three second-order differentiation matrices with N 50 compared with eigenvalues
of the continuous problem (4) (located on the solid line). Crosses denote moduli of complex eigenvalues.
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FIG. 2. Selected eigenvectors of Ds,, based on Chebyshev extrema, for N 50. The continuous line

represents the polynomial interpolant. The corresponding eigenvalues are marked in Fig. l(b)

A naive way to get rid of the outliers is to replace the Chebyshev or Legendre
meshes by a uniform mesh; there are then at least two points per wavelength for all
the eigenfunctions to be approximated. Although this change indeed reduces the
spectral radius to O(N2), the outliers turn out to be complex, as indicated in Fig. 1 (c).
Moreover, for N sufficiently large, some of the eigenvalues are located in the right
half-plane, rendering the semidiscretization unstable. Figure 3 shows the eigenvalue
locations in the case N 50. Only one third of the eigenvalues are inliers (see Fig.
l(c)), suggesting that six points per wavelength are needed to resolve sines and cosines
on equidistant points. We return to this observation in 4.

6000i

-6000 6000

-6000i

FG. 3. Eigenvalues in the complex plane of Ds, based on equidistant points. N 50.
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The discussion of this section was for the most part based on results for Chebyshev
extrema, but the qualitative results concerning inlying and outlying eigenvalues remain
the same for collocation in Chebyshev or Legendre zeros. The constant factors in the
spectral radius do change, however, and we will now estimate them by considering the
characteristic polynomial of Osp.

3. Estimates based on the characteristic polynomial. A curious feature of spectral
differentiation matrices is that although their eigenvalues are for the most part unknown,
the coefficients of the associated characteristic polynomials can be determined exactly.
In this section we make use of these coefficients to derive bounds on the largest and
smallest eigenvalues of D2sp that are accurate to within a few percent. We simplify the
notation by assuming that N is an even number.

To derive the characteristic polynomial for D2sp, we follow the ideas of Gottlieb
and Lustman [9]. Let the components of each eigenvector be viewed as the nodal
values of some polynomial UN(X) that satisfies the boundary conditions. The eigen-
values are then determined by

D2uN(xj) AUN(Xj), j= 1,’’’, N- 1,
(10) uN(+/-l) =0,
where D2 is the continuous second derivative operator. This equation holds at the
gridpoints, but we can interpret it as valid for all x [-1, 1 if we add a suitably chosen
polynomial of degree N that is zero at x,..., xu_"

(11) D2uu(x) Auu(x) + (A + Bx)fN_i(x), --1 <= x <= 1.

The appropriate choices are

T’u(x) (collocation at Chebyshev extrema),
Tu_l(X) (collocation at Chebyshev zeros),

(12) fN_l(X)--
Pu_l(x) (collocation at Legendre zeros),

H2 (x + 1-2j/N) (collocation at equidistant points),

with A and B to be determined by the boundary conditions.
Since the solution to the homogeneous problem associated with (11) is not a

polynomial in x, the general solution to (11) is given formally by

u(x) (D2- A )-I(A + Bx)fr_,(x)
(13)

-AA-IL(fN_)- BA-IL(xfN_I),
where L is the linear operator defined by

N/2

(14) L= A-kD2k.
k=0

(We have assumed that all eigenvalues are nonzero, which follows from (11) since
polynomials of exact degrees <_-N-2 and ->_N-1 cannot be equal.) Enforcing the
boundary conditions UN(+/-I)---0 in (13) yields

(15) AL(f_,)+ BL(xfN_,)=0
For A and B to be nontrivial we must have

at x=+l.

(16) L(f-,)lx=,L(xf-l)l=-, L(f_l)[x=_iL(xf_,)[x=, O.

Under the assumption that N is even, fN_ is odd and xfN_ is even, which implies
that L(fu_) is odd and L(xfu_) is even. Therefore (16) reduces to

(17) L(fN-)[x= L(XfN_l)lx= O,



EIGENVALUES OF SPECTRAL DIFFERENTIATION MATRICES 1287

that is,
N/2-1 N/2

(18) 2 aN_2k_2Ak=o or 2 bN-2kA k=O,
k=o k =o

where

(19) a := D(fN_l)lx=, b := D(xfiv_l)lx=l a + kay_,.

The characteristic equations (18) provide the N-1 eigenvalues of D2sp.
Gottlieb and Lustman proceed to prove that for Chebyshev extreme points the

eigenvalues are real, distinct, and negative, in accordance with the numerical observa-
tions reported in 2. The proof is based on the theory of Hurwitz polynomials and
relies on the fact that the eigenvalues of the corresponding first-order differentiation
matrix lie in the left half-plane. Their theorem can be extended to cover the case of
Legendre zeros, since the eigenvalues of the corresponding first-order differentiation
matrix are all located in the left half-plane (see [8]). The theorem presumably applies
to Chebyshev zeros too, as was confirmed numerically. However, it does not apply to
equidistant points; numerical evidence of complex eigenvalues is presented in Fig. 3.

Having obtained the characteristic polynomials (18), we can derive bounds on
the moduli of the eigenvalues by a number of methods. Two well-known possibilities
are the Gershgorin circle theorem (applied to the companion matrices of (18)) and
the Enestr6m-Kakeya theorem. (Funaro [7] and Trefethen and Trummer [20] have
applied estimates of this kind to first-order differentiation matrices.) However, neither
of these theorems provides particularly sharp bounds in the present problem. Instead,
we utilize the a priori knowledge that all eigenvalues are real to employ the root bound
theorem of Newton, which states that the roots of the polynomial A + clA m-1 +... +
c,, 0 satisfy the following, provided that all of them are real"

2(20) I&l <x/c,-2c2.
Proof If Amnt-clAm-l" "+Cm=(A-A1) (A-A,,), then A21-1--o ._]_Am=2

2(A1 +’’" + Am)2-2(AIA2+ "+ Am-lAin)= C1-2c2. This lesser-known bound possesses
a much better overestimation factor than the other methods quoted, as shown by van
der Sluis [21 ].

To apply (20) to (18), explicit expressions for ak and bk are required. In the cases
of Chebyshev or Legendre points, these can be obtained by differentiation of the
Chebyshev or Legendre differential equations, as has been demonstrated by Funaro
[7]. It is harder to derive expressions for ak and bk in the case of equidistant points,
since no corresponding differential equation exists. However, even if the ak and bk
could be computed explicitly, the fact that complex eigenvalues are present precludes
the use of (20), and a less accurate root bound formula would have to be used. For
these reasons equidistant points are excluded from the remainder of this section.

We can now derive upper bounds on the eigenvalues of Dsp by applying (20) to
(18), and lower bounds by the same method after setting/x A -. This yields

(21) (a2
2 2a4 1/2

=<Ak=< _(av-4 2aN-6-1/2,ao ao! a_2 arv-2 /

(b22 264 1/2 (b2N-2 2bN-4-1/2(22)
bo2 ] -<a_<--

bv brv ]

Equation (21) applies to roughly half of the eigenvalues (corresponding to the first
equation in (18)), and (22) to the other half. The entire spectrum of Dsp is therefore
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located between the minimum of the left-hand sides of (21) and (22) and the maximum
of the right-hand sides.

As an example, consider the case of collocation in Chebyshev extrema. From 10,
p. 159], we have

k- N2_ 12
(23) Dk( TN)x=I

1=o 21+l
and so by (12), (19) becomes

k N2_ 12
(24) ak 11o 21+ 1

(25) bk 2k + 1 t=o 21+ 1

Inserting these expressions into (21) and (22) yields the bounds

(26) -( l l N8 + 90N6- 2037N4+ 7360N2- 5424)
[720N 2880N2 + 3600N 1440\ 1/2

Ak -- -5+40N_61 )
[ 11 N8+ 150N6+ 2583N4-10700N2+ 7956 1/2

(27) )4725

1k<=_( 48NS_192N4+240N3_96N2 )1/28NS_32Nn+40N3_19N2+24N_24

Analogous estimates for collocation in Chebyshev and Legendre zeros are derived in
the Appendix.

These expressions provide surprisingly tight bounds on the spectrum of D2sp. For
example, a bound on the spectral radius is given by the largest of the absolute values
of the left-hand sides of (26) and (27), which in this case is (27), and in Fig. 4 this
bound is compared with the actual (computed) spectral radius for 4<= N<=40. For
most of the values shown the discrepancy is less than 2 percent. The sharpness of these
bounds provides indirect evidence that in contrast to the situation for first-order
problems discussed in [20], the spectral radius here is probably not highly sensitive
to rounding errors, so that time stability may be a good approximation to Lax stability.
The reason is that a computation with rounding errors will be equivalent to an exact
computation involving a slightly perturbed matrix, and if the characteristic polynomial
of that matrix has only slightly perturbed coefficients, then its eigenvalues must satisfy
essentially the same bounds. For more direct evidence that time stability and Lax
stability bounds are comparable, computations show that the 2-norm of D2sp typically
exceeds the spectral radius by only 1 or 2 percent.

If we consider the left-hand sides of (26) and (27) in the limit N- oo, as well as
the corresponding bounds for Chebyshev and Lengendre zeros given in the Appendix,
we obtain the following theorem.

THEOREM 1.

fx/45 0.0482

(28) lim sup p(DZsp)<= x/35 0.3034
N-, N4

(40.1021

Chebyshev extrema),

Chebyshev zeros),

Legendre zeros).
We emphasize again that the result for Chebyshev zeros is based on the assumption

that the eigenvalues are real and negative (see the remarks below (19)).
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P (Dsp)/N

0.1

Chebyshev

Legendre

Chebyshev extrema

N

4 16 28 40

FIG. 4. Spectral radius of D2sp as a function of N, scaled by the factor N (dots), compared with the
theoretical bounds provided by the maximum absolute value of the left-hand sides of (21 and (22) (solid lines).

The numerical results show that equality in (28) does not hold. However, they
indicate that the bounds of Theorem 1 are accurate to within 2 percent, as indicated
by the asymptotes in Fig. 4.

Equations such as (26), (27) provide accurate estimates not only of the moduli
of the largest eigenvalues, but also of the smallest two eigenvalues. As N--> the
actual eigenvalue ,l is a spectrally accurate approximation to the eigenvalue -(r/2)2

-2.4674 of the continuous problem, while the right-hand side of (27) yields Am -<- -x/
-2.4495. The discrepancy in these figures is less than 1 percent. Equation (26) yields
an analogous bound A2 _<- -v/fr0 -9.45 for the second eigenvalue for sufficiently large
N, and since A2 approaches --qT2 -9.87 as N c, the discrepancy is about 4 percent.
The inequalities listed in the Appendix show that Chebyshev and Legendre zeros lead
to the same bounds -v/- and -v/ri0 as in the case of Chebyshev extrema.

4. The resolution of the eigenfunctions by polynomial interpolation. In 2 we
observed that the appearance of outlying eigenvalues can be attributed to the nonreso-
lution of the higher eigenfunctions of the continuous problem by polynomial interpola-
tion (Figs. l(b) and l(c)). In this section we investigate this phenomenon further by
considering the behavior of the error in interpolation of cos (1/2k’rrx) or sin (1/2k.a’x),
k 1,. ., N-1, as N--> . Specifically, let a be a real parameter and define

(29) frv(x)= e

for x [-1, 1]. Let pN(X) denote the polynomial of degree N that interpolates fN(x)
at the points

(3O) -1 Xo<X <. "<XN_ <XN 1.

We shall prove the following theorem.
THEOREM 2. A sufficient condition for convergence in the sense of

(31) max IfN(x)--pu(x)IO as N-c
--l____x<_
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is lal < 1 for Chebyshev extreme points, Chebyshev zeros, or Legendre zeros (i.e., > r
points on average per wavelength), and Icel < r/6 for equidistant points (i.e., >6 points
per wavelength).

The result for equispaced points is valid for exact arithmetic only; as mentioned
in the Introduction, rounding errors cause rapid divergence as N- oo.

Although we will not prove it here, the bounds in Theorem 2 appear to be sharp.
They give a natural explanation of why the eigenvalues of D2sp diverge from those of
the continuous problem to the right of the dashed lines in Fig. 1.

Our analysis parallels the usual convergence proof of interpolation schemes (see,
e.g., Krylov [14, p. 246], Davis [3, p. 80], or Warner [22]), except that the function to
be interpolated depends on the degree of the interpolating polynomial. The starting
point is the well-known Hermite formula for the error in polynomial interpolation on
the grid (30):

(32) fu(x)-pu(x) wux) fu(z)
2i wu+(-x) dz,

where C is any closed contour in the complex plane that encloses [-1, 1], and
N

(33) +(z):= H (z-x).
j=O

Taking absolute values yields

1 fc If(z)l
N max [w+(x)l(34) l/(x)

Our aim is to determine for which values of a the right-hand side converges to zero
as N.

Consider the logarithmic potential of the point distribution (30) in the limit N
namely

(35) u(z) In
iz tl

d(t),

where (t) is the limiting distribution of the nodes as N ; in particular,

(x)=
1

(1 t2) -/2 dt (Chebyshev distribution)

1
(x)= (x + 1) (uniform distribution)

(see Krylov [14, pp. 252, 248]). Although we refer to the first of these as the Chebyshev
distribution, it is appropriate for Chebyshev extrema, Chebyshev zeros, and Legendre
zeros (and more generally for extrema or zeros of arbitrary Jacobi polynomials).

The curves u(z)= c, with c constant, are isopotential contours; smaller values of
c correspond to bigger contours. The reason for introducing these contours is that if
we integrate in (34) along one of them, the function I+(z)l assumes a value
independent of z in the limit N , thereby simplifying the integration. Specifically,
Krylov 14, p. 246] shows that

(36) IW+l(Z)[exp(-(N+l)c) as N

uniformly for all z on the curve

(37) C {z: u(z)= c}.
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(a) Chebyshev

!/z iy

(b) Equidistant

FIG. 5. Equipotential curves in the complex plane for two distributions of nodes of interpolation.

Note that the constant c can be thought of as determined by the value y, where
z iy is the intersection of C with the positive imaginary axis (see Fig. 5). From now
on we will emphasize this by writing c c(y), since we will ultimately adjust y to get
the sharpest estimate possible. With any such choice of C (34) yields

L
(38) [f(x)-p(x)l<=S -<-x<-max [WN+I(X)ImaXIfN(z)Iexp((N+I)c(y))zC
in the limit N- oo, where L is the length of C and S is the distance from C to [-1, 1 ].

It remains to estimate the two terms (a) max___<)c_<_lwu+(x) and (b)
maxzc [fu(z)[. Both of these depend exponentially on N, and this dependence deter-
mines whether the right-hand side of (38) converges to zero as N c.

(a) Upper bounds for max_=<<__ [wu+(x) are readily obtained in the form

(39) max Iwu+(x)l-<- b(N) exp (-Nd).
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For example, in the case of Chebyshev extrema we have

wN+l(x)=
N

(x).-1)T’(x)

and therefore

21-N
Io+,(x)l--

N
Ix)-- 111 r,(x)l 2 l-N,

since T(x)l-< N/x/1-x2 by Bernstein’s inequality. This implies (39) with 4,(N)= 2
and

(40) d =ln2.

For interpolation in Chebyshev zeros and Legendre zeros the inequality (39) is
again valid. The function (N) is different in each case, but its dependence on N is
only algebraic and therefore unimpoant. The crucial factor is the exponential
exp (-Nd), which is the same for all three cases. That is, (39) holds with d In 2 for
Chebyshev extrema, Chebyshev zeros, and Legendre zeros.

For equidistant points, however, the exponential dependence on N is different,
namely

(41) d= 1-1n2

in the limit N m. To prove this, let x =-1 + 2j/N and consider any e [-1, 1]. If
is such that x N X N x+, then

N

I+,(x) H (x-x) H (x-x)
j=0 j=/+l

N

H (X,+l- x) H (x x,)
j=0 j=/+l

(l+l)(N-1)

An application of Stirling’s formula shows that (39) is valid in the limitN with
(N)=(8/N and d= 1 -ln2.

(b) To determine the contribution to (38) of the term maxc I/(z)l, we require
explicit expressions for the equipotential curves in the limit N m. These are given by

(42) u(z) n (2/Iz +(z- 1),
(43) u(z) = Re {2+ (z-1)In (z-1)-(z + 1)In (z + 1)}

for Chebyshev and equidistant distributions, respectively (see Krylov [14, pp. 253,
248]). In the Chebyshev case the curves u(z)= c are confocal ellipses with foci at
z 1. For equidistant points they are ovals of a thicker shape. (These curves are
depicted in Fig. 5. See also Krylov [14, p. 249] and Warner [22] for illustrations.) In
either of these cases we have

(44) max [fu(z)] eIluy,
zC

where z iy is again the point of intersection of C with the positive imaginary axis.
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We are now in a position to estimate the right-hand side of (38). Substitution of
(39) and (44) into (38) shows that the convergence of the interpolation process is
determined by the behavior of exp (N(laly+ c(y)-d)) as N-->, and convergence is
guaranteed if the argument of this exponential is negative. That is, a sufficient condition
for convergence is

(45)
d-c(y)

To determine the maximum range of values of a over which (45) is valid, we define

(46) g(y)
d-c(y)

and look for the maximum value of this function. In other words, the idea is to vary
the contour of integration (determined by y) so as to get the best estimate.

For Chebyshev points we have from (40) and (42) that

In (y +/y2+ 1)
(47) g(y)

Y

with maximum value g(y)= 1 if y--> 0. Hence (45) becomes

(48) 11<1,

Similarly, for equidistant points (41) and (43) show that

(49) g(y)
ln/1 +y+1/2y(Tr-2 tan- y)-ln 2

The maximum value of this function is g(x/)= 7r/6, and accordingly (45) yields

(50)
6

This completes the proof of Theorem 2. [3

5. The effect of filtering on the eigenvalues. In the previous sections we have
explored the fact that the spectral radius of the Chebyshev second derivative operator
is of magnitude O(N4), with the result that explicit time integration methods typically
must satisfy an extremely restrictive timestep restriction At=< O(N-4). It has been
suggested by Gottlieb and Turkel [12], and others, that judicious filtering of the high
modes might alleviate this problem.

In order to explain the filtering process, it is necessary to describe an algorithm
based on the FFT by which spectral differentiation is commonly performed on the
Chebyshev extreme points (see [8] or [11]). The polynomial us(x) is expanded as

N

(51) uu(x)= E aT(x),
/=0

where

(52)
2 1 u,,, x; , x;al
giN j=o c
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and

Differentiation of (51) yields

(53)

{2 l=O,N,
el=

1 otherwise.

N-2

DzuN(x) Z b,T(x),
i=0

with

(54)
N

bl _1 Z n( n 2 12)a,,
Cl =/+2

+

and

2 =0,
cl=

1 otherwise

(see [10, p. 160]).
The second derivative is computed by the following three steps. (a) Given the

data UN(Xi), compute the coefficients al by an FFT from (52). (b) Compute the
coefficients bl using (54). (c) Compute the derivative D2uN(x) at the gridpoints via
another FFT from (53).

Although the use of the FFT obviates the need to calculate the entries of D2se
explicitly in a computer program, for studying the effects of filtering it is convenient
to use (51)-(53) to obtain them. To do this, we substitute (52) into (54), and substitute
the result into (53). If the resulting expression is evaluated at the gridpoints xi, we
find that the entries of the differentiation matrix are given by

2 N-2 N 1
(55) (DZsP)O N o n(n2_/2) T/(xi) T,,(x;).

=/+2 CICn
+

The filtering idea is to smooth the interpolant before differentiation, i.e., to
replace (51) by

N

(56) UN(X)= Z lalTt(x),
!=0

where the filter function fll satisfies 0 -< 1 1 for all 0, , N, ! 1 for << N, and
[fill << 1 for N. The effect of this function is to leave the low modes approximately
intact, but to reduce the energy content of the higher modes.

To explain why this type of filtering reduces the spectral radius, we rewrite (54)
in matrix form as

(57) b=Aa,

where b {bo, , bN-2}T and a {a2, aN}T. The differentiation operator in
transform space is then represented by the matrix A. It is easy to check that the
maximum column sum ofA is attained in the final column, and this gives Ilalll O(N4).
Filtering of the high modes amounts to replacing A by ,, where the/th column of
is fll times the /th column of A. Since/31 << 1 for N, a reduced maximum column
sum can be expected and therefore also a reduced spectral radius.

Some possible filter functions were suggested by Gottlieb and Turkel [12] and
Majda et al. [15]. (In the latter paper the purpose of filtering was to reduce the
oscillations associated with discontinuous initial data, rather than to improve the time
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stability of the method. However, the filter introduced there may also be used for our
purpose, since it satisfies the properties described below (56).) As an example we will
consider the following filter function, suggested in [15]:

l-lo 4(58) fl exp -,/
N-lo]

lo<l<-N,

where lo and T are positive parameters. Note that it is easy to set up the filtered matrix
D,a factor of is simply included in (55).

Figure 6 shows and the corresponding eigenvalues of D, for N 16, lo 10,
and ,/= 0, 2, 5. Notice that the spectral radius is indeed decreased by the filtering, but

0 2 4 6 8 lo 10 12

(a) =0

14 16

3000

2000

1000

(b)

o V=0
x 7=2
[] "/=5

[]

k=l k=N-1

FIG. 6" (a) Thefilterfunction (58) with N 16, 10 10, and 3’ O, 2, 5. (b) F.igenvalues ofthe corresponding
differentiation matrices.
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at the cost of the loss of spectral accuracy in the lower eigenvalues. Different values
of lo do not improve the situation significantly. These discouraging results are not
peculiar to the filter function (58), since the filters suggested in [12] also lead to the
same conclusion: small amounts of filtering do not improve the spectral radius sig-
nificantly; moderate amounts destroy the spectral accuracy in the low eigenvalues.

Similar observations were reported by Fulton and Taylor [5] in a study of filtering
for the first-order Chebyshev differencing operator. Their assessment of filters was
based on the computation of the spectral radius of the growth matrix of a Runge-Kutta
time integrator applied to the semidiscrete system, and on computations ofthe solutions
to the first-order wave equation. We believe that the examination of the eigenvalues
of the differentiation matrix is a more straightforward method for analyzing such
questions.

Another possible strategy for the removal of the outliers has been suggested to
us. First, compute the eigenvalue decomposition of D2sp in the form D2sp SAS-l:
Then replace the outlying eigenvalues (hk, k > 2N/7r) by some innocuous values (we
tried the corresponding eigenvalues of the continuous problem) to form a new diagonal
matrix , and assemble a modified "differentiation" matrix /p---SS-1. Although
/p now has eigenvalues almost identical to that of the continuous problem, applying
it to various test functions shows that it does not differentiate properly. That is, the
error [(2spy)-y"(x)l does not in general converge to zero as N-oo, even for smooth
functions y(x).

We are unaware of any filtering strategy that eliminates the outliers without
sacrificing a great deal of accuracy.

Appendix. In this Appendix we derive bounds on the eigenvalues of the spectral
differentiation matrices Dsp based on Chebyshev and Legendre zeros, analogous to
the bounds (26) and (27) for Chebyshev extreme points.

Chebyshev zeros. Let fN-1 TN_I. By (19) and (23) we obtain

krl (N 1)2-12
(59) ak 11

t=o 21+

(60) bk ( (N-1)2-(k-1)22k- +k) 21+ 1

Inserting these expressions into (21) and (22) yields the bounds

_(29NS_232N7 +826N6_1708NS+1981N4_868N3_316N2+288N)1/2315

720N 5040N2 + 11520N- 8640\ 1/2

_{29NS-232N7-t 1078N6-3220N5-1-7441g4-12628g3nt- 12872N2 -6600Nnt- 1260 1/2

/315

ik < ( 48N4_ 240N3 + 288N2 )1/28Na-40N3+48N2-3N+ 18

Legendre zeros. The Legendre polynomial of degree N satisfies the differential
equation

(61) (1-x2)p%(x)-2xP’(x)+ N(N+ 1)PN(X)=O,
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and differentiating k times yields

(62) (1-x2)p+2)(x)-2(k+ 1)xP+’)(x)+(N(N+ 1)- k(k+ 1))P)(x) O.

If this equation is evaluated at x 1, we obtain the recurrence relation

(63) P+’)(1) =N(N+l)-k(k+l) P)(1), PN(1) 1,
2(k+l)

and therefore

(64) D/c(PN)x=,__k N(N+ l)-l(l+ l)
/=0 2(1+1)

If we now let fN-1-- PN-1, (19) becomes

(65)
k-1 N(N-1)-l(l+ 1)

a/c-- I-I
t=0 2(1+ 1)

(66) b/c ( N(N -1) k(k +k) N(N-1)-1(1+ 1)
/=0 2(1+ 1)

The corresponding bounds on the eigenvalues are

-( N8 -4N7+ lON6-16NS-35N4+92N3+24N2-72N)96 1/2

360N 1980N2 + 3510_N.- 2025] 1/2

<--Ak <-- 4N3_22N2+39N_45 /
and

_(N -4N7+ 18N6-40NS+ 165N4-268N3+8N2+ 120N)1/296

<_Ak <= _( 24NS-132N4+234N3-135N2 ) 1/2.41--N4+39N3_24N2+12N_l5
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Notes added in proof. 1. The eigenvalue bounds of Theorem 1 closely match the
empirical results reported on p. 100 of the new book by Canuto et al. [23]. We have
also been informed that theoretical results along these lines have been obtained by
Herv6 Vandeven of the University of Paris, VI, and will be published shortly.

2. Details related to the "6 points per wavelength" statement of Theorem 2 and
other aspects of equispaced interpolation have been worked out in [24].
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