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A MODIFIED SCHWARZ-CHRISTOFFEL TRANSFORMATION FOR
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Abstract. The numerical computation of a conformal map from a disk or a half plane onto an elongated
region is frequently difficult, or impossible, because of the so-called crowding phenomenon. This paper
shows that this problem can often be avoided by using another elongated region, an infinite strip, as the
standard domain. A transformation similar to the Schwarz-Christoffel formula maps this strip onto an
arbitrary polygonal channel, and a slightly modified transformation maps an elongated rectangle onto an
arbitrary closed polygon. By using robust and efficient software for numerical integration and solution of
the parameter problem, high-accuracy maps of distorted regions with aspect ratios as high as thousands to
one are constructed. The modified mapping method has natural applications in fluid mechanics and electrical
engineering.
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1. Introduction. The Schwarz-Christoffel transformation

Z n

(1.1) f(z)=AJ 1l ('-2)" dz'+ B

provides an explicit representation of any conformal map of the unit disk or the upper
half plane onto any simply connected polygonal region, with or without corners at
infinity. There are two well-known computational problems associated with the use of
this formula for computing such maps numerically. First, the integral cannot be
evaluated analytically except in special cases, and must be approximated by some
numerical procedure. Second, while the parameters y; are determined by the angles
at the vertices w; of the polygon, the corresponding “prevertices” z; = f ~!(w;) cannot
be determined, in general, a priori and must be obtained iteratively via the solution
of a system of nonlinear equations. SCPACK, a robust Fortran package for solving
these problems, was provided a few years ago by Trefethen [28], [29] and has been
widely used for a variety of applications." Other successful implementations of the
Schwarz-Christoffel formula include those of Reppe [26], Davis [3], Floryan [10],
Hoekstra [19], and Dias [5].

Standard Schwarz-Christoffel programs fail, however, on some seemingly very
simple polygons. They cannot, for example, map a rectangle with an aspect ratio of
only 20 to 1, or most other regions with a similar degree of elongation. The reason for
this is an intrinsic property of conformal maps that sometimes goes by the name of
the “crowding phenomenon” in the literature of numerical conformal mapping (see
[7], [14], [18], [21], [31]). Whenever a disk or half plane is mapped to an elongated
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region, some of the prevertices are located exponentially close together. For aspect
ratios beyond 10 or 20 some groups of prevertices are likely to merge together in finite
precision arithmetic, making the evaluation of (1.1) effectively impossible.
Fortunately, many of the distorted regions that come up in applications are highly
elongated in only one direction. Indeed, the goal in such problems is often to map the
region onto a channel or rectangle for purposes of grid generation or to obtain an
exact or simplified solution; a disk or half plane is introduced only as an intermediate
step. The purpose of this paper is to show that in such cases, the problem of crowding
can be largely eliminated by dispensing with the intermediate domain and mapping
directly from an infinite strip, which can be easily transformed to a rectangle if desired.
In the language of numerical analysis, constructing the conformal map from a strip
to an elongated polygon is often a well-conditioned problem, but conventional
algorithms for it are unstable because they depend upon the solution of an ill-
conditioned subproblem. Our algorithm is stable because it avoids the subproblem.
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F1G. 1. (a) Polygons that can be mapped by the standard Schwarz- Christoffel transformation; (b) polygons
that can be mapped by the strip transformation; and (c) polygons that cannot be mapped by either method.
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The capabilities described in this paper are summarized in Fig. 1(a)-1(c). Many
polygons, those without extreme elongation in any direction, can be mapped by the
standard Schwarz-Christoffel methods embodied in SCPACK (Fig. 1(a)). Polygons
that are highly elongated in one direction (as well as those that are not elongated) can
be mapped by the modified Schwarz-Christoffel methods described here (Fig. 1(b)).
For polygons elongated in several directions, different methods will be required
(Fig. 1(c)).

The basis of our algorithm is a formula similar to (1.1) for mapping an infinite
strip onto an arbitrary polygonal channel (§ 3), and a variation of this formula for
mapping a rectangle onto a closed polygon (§ 6). These formulas are not essentially
new; the first one dates back at least to Woods [33] and has been used previously by
Davis [3], Sridhar and Davis [27], and Floryan [9], [10] for generating computational
grids for internal flow problems. The present work differs, however, in emphasizing
the crowding phenomenon and in considering the mapping of rectangles to closed
polygons as well as other variations. Although it is impossible to be certain in the
absence of a direct comparison of computer programs, we believe that our solution
method is robust enough to permit the mapping of more complicated regions than
those attempted previously. Possible applications of this work include the solution of
two-dimensional potential flow problems, the construction of computational grids, the
calculation of circuit properties in integrated circuit design [30], and the application
of boundary conditions in vortex-method simulations of high Reynolds number flow
[15]. For the last example, boundary conditions in vortex calculations, it would be
natural to combine the conformal map to an infinite strip discussed here with
L. Greengard’s recent algorithm for fast calculation of vortex interactions in such a
strip [17].

A general method for deriving certain types of Schwarz-Christoffel variations,
including the strip formula used here, is presented in [11]. An informal survey of such
variations and of applications of Schwarz-Christoffel maps can be found in [32].

Although this paper considers only Schwarz-Christoffel maps, similar ideas might
prove useful for more general conformal mapping problems. For example, it would
be natural to investigate variants of the Theodorsen, Wegmann, or Hiibner methods
for mapping an infinite strip onto an elongated region with a curved boundary (see

[18], [31]).

2. The crowding problem. The phenomenon of crowding began to be widely
recognized as an obstacle to successful numerical conformal mapping around 1980;
the term “crowding” itself is due to Menikoff and Zemach [21]. To illustrate this
phenomenon, we will examine a simple example that can be treated analytically. The
Jacobian elliptic function sn (z| m) maps the rectangle with corners —K, K, K + iK',
and —K + iK'’ to the upper half plane, with the images of the corners being +1 and
+m~"? (Fig. 2). The constants K and K’ are complete elliptic integrals with parameters
m and m, =1—m, respectively, so only one of K, K’, and m can be specified indepen-
dently. A summary of the properties of elliptic functions and elliptic integrals, including
all of the material used in this paper, can be found in [1].

The conformal modulus w of the rectangle is K'/2K, and m'/? can be used as a
measure of the crowding effect since it is the ratio of the smallest to the largest length
scales in the upper half plane. When n is large the following asymptotic relationships
hold:

(2.1) K~';—T, K'~7u, m'?~4 "™,
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- K + iK' K +iK'

r=K'/2K

sn(z|m)

- K K —m—l2 -1 1 m—1/2

F1G. 2. Conformal map from a rectangle to the upper half plane.

Thus for a modulus of only u =10, for instance, the important length scales in the
upper half plane vary by factors on the order of 10",

It might seem that these difficulties are surmountable, since in this example all of
the crowding occurs near the origin. In floating-point arithmetic the four numbers +1
and £m~"/? can all be represented to full accuracy, even though the first two may be
many orders of magnitude smaller than the last two. There are several reasons, though,
why this is an unsatisfactory approach. First, many computers have a range of permis-
sible exponents too restricted to deal with conformal moduli greater than 25 or 50.
Second, such a highly distorted mapping would be useless in many applications.
Finally, the direct numerical evaluation of the integral (1.1) in such a situation would
require a highly specialized quadrature algorithm. A natural first step in such an
algorithm would be to change the variable of integration to log (z'), which is in fact
equivalent to using the strip transformation.

Figure 3 shows the crowding effect in the conformal map from the unit disk to a
mildly elongated region. The four rectangles have moduli 1, 2, 3, and 4, and the internal
lines shown are the images of radii to the four prevertices and of equally spaced
concentric circles in the unit disk. Due to the conformal nature of each mapping, the
innermost circle in each plot is nearly similar to the original disk, so in effect these
figures show both the domain and range of each transformation. In particular, we can
see the relative positions of the prevertices, and their angular separations are listed in
the figure. In the bottom plot, with a conformal modulus of only 4, each of the two
pairs of prevertices appears to the eye as a single point. For moduli three or four times
larger than this the pairs fuse together in floating-point arithmetic, and the computation
by standard methods becomes impossible.

It should be emphasized that crowding occurs when any portion of a domain is
elongated. If the rectangles in Fig. 3, for instance, were all extensions of a larger region
to the left, then each one would still experience a crowding effect like that shown in
the figure. A strongly acute outward-pointing corner can cause a similar problem (for
a mild example, see the barb on the arrow in Fig. 10(a)). The methods considered in
this paper do not eliminate these secondary crowding effects, which degrade the local
accuracy of the mapping and may in extreme cases cause the solution method to fail.
In many cases, however, high accuracy can still be obtained in the remainder of the
domain.
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Af = 1.5708

Af = 0.3449

A8 ~ 0.0719

Af ~ 0.0149

F1G. 3. Conformal maps of the unit disk onto four rectangles.

3. The strip transformation. In this section we derive a formula for the conformal
map of an infinite strip onto a polygon (3.5); essentially the same formula has been
derived earlier (in different ways) by Davis [3] and by Floryan and Zemach [11]. We
shall not provide a proof that any conformal map of an infinite strip to a polygon can
be represented in this way, but it is true, and a proof can be readily obtained from
the standard Schwarz-Christoffel theorem by means of the transformation e™ from a
strip to a half plane [3].

Figure 4(a)-4(c) defines the geometry of our strip mapping problem: We want to
find a conformal map f* from an infinite strip of width 1 to an infinite polygonal
channel P*. Our notation is that z¥ and w¥ = f*(z¥) denote prevertices and vertices
for this desired conformal map, while z; and w; = f(z;) correspond to the conformal
map onto a polygon P = P* obtained during the course of the numerical solution. The
prevertices z; lie in counterclockwise order around the strip, starting with z; on the
lower left, proceeding through z,, on the lower right, and ending with zx on the upper
left. The corresponding vertices of the image polygon are denoted by w;, and the
turning angle at w; is —ary;.

Here is the fundamental idea behind the Schwarz-Christoffel map (1.1): the
derivative f'(z) has piecewise constant argument on the real axis, which jumps at each
prevertex z; by —my;. To devise a transformation that maps an infinite strip onto an
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FIG. 4. (a) Prevertices on the strip: solid dots show the correct values z¥ , and open circles show an incorrect
set of values z;; (b) target polygon P* defined by vertices w¥; (c) polygon P defined by incorrect vertices w;.

arbitrary polygon, we can utilize the same idea. Specifically, let us derive a function
of the form

(3.1) f(z)=AJ’Z 11 4(z) d='+ B,

where each factor f; maps the strip as shown in Fig. 5. The effect of each of these
factors is to introduce a corner into one side of the strip while leaving the other side
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FIG. 5. A single factor f;, shown for v;> 0.

a straight line. The product of several such factors will introduce all of the necessary
corners.

The appropriate factors f; that meet these specifications are very similar to those
used in the usual Schwarz-Christoffel formula: For z; on the lower side of the strip,

Y
3.2) ];(z)={—isinh [g(z—zj):l} s 1Sj=M,
and for z; on the upper side,
4]
3.3) j;(z)={—isinh [—zz-r(z—zj)]} R M+1=j=N.

In each of these factors the effect of the sinh function is to fold the opposite side of
the strip from z; onto part of the imaginary axis, while the side containing z; is sent
to the real axis. Each section of the boundary is therefore mapped to a line of constant
argument, and these remain lines of constant argument after the function is raised to
the power v;. This property is necessary if the sides of the target domain are to be
straight lines. The factors of —i in these equations are mathematically unnecessary,
since they can be absorbed into the complex constant A. We have included them,
however, to direct the branch cuts of the f; away from the strip. (Conventionally, and
in Fortran, these branch cuts are located on the negative real axis.)

The functions f; of (3.2) and (3.3) introduce the required angles at the vertices
on both sides of the channel, but they always produce equal divergence angles at +00.
If we let 6_ and 6. be the desired divergence angles at —c0 and +00, respectively, then
the additional factor

(3.4) fo(z) =exp[3(6. — 0-)z]

provides the necessary adjustment. The full strip transformation is thus given by
(3.5) f(z)=A j 1 fi(z') dz’'+ B,
j=0

where the individual functions f; are defined by (3.1)-(3.4).

4. Solving the parameter problem. How can the prevertices z} be efficiently deter-
mined? If prevertices z; are placed on the correct sides of the strip and in the proper
order, but otherwise distributed at random, then the image polygon will in general
have the correct angles but incorrect side lengths (Fig. 4). Some kind of iteration must
be carried out to find the values z; so that the side lengths come out correct.
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As usual in conformal mapping, three real parameters must be specified in order
to make f unique. In mapping an infinite strip to an infinite channel, it is natural that
the ends of the strip should map to the ends of the channel, so two of these are
determined immediately. We have specified the third parameter by fixing z¥ at the
origin; the remaining N —1 prevertices z3, -, z% are now the unknowns to be
determined iteratively. If the constants A and B in (3.5) are used to fix the positions
of w, and wy, then there are correspondingly N —1 real geometric conditions—N —2

side lengths and one angle—needed to completely specify the shape of the channel.

4.1. Solution via side-length iteration. One popular method for determining the
prevertex positions is a simple iterative scheme used by Davis [3] for the standard
Schwarz-Christoffel formula. The idea is to make an initial guess for the z; and then
improve it by assuming that the length of each side of the image polygon is roughly
proportional to the length of the corresponding interval on the real axis. Thus each
interval between prevertices is adjusted according to the formula

k%
(4.1) (1= ) new= (51— 7) - LI 2T,
W1 = wj]
By iterating this procedure it is hoped that the correct solution can be obtained to the
desired accuracy. This method has also been used by Floryan [9], [10] and Sridhar
and Davis [27], and is quite dependable for many problems. We believe it is not the
best choice for a general algorithm, however, for the following reasons:
® When used with the strip transformation, the method gives no information about
the position of z%, the leftmost prevertex on the top side of the strip. Sridhar
avoids this problem by restricting attention to channels where symmetry implies
z¥ =i Floryan uses a double iteration for the asymmetric case—a one-
dimensional secant iteration determines a value for zy at each step of the global
iteration (4.1).

® The proportionality assumption can be violated by difficult problems in at least
two different ways. First, it assumes that only the preimages at the endpoints
of an interval have a major effect on the length of the corresponding side, and
this condition is violated when crowding occurs. Second, if the two singularities
at the endpoints are strong, i.e., the interior angles are acute, then the length
of the side may actually decrease as the prevertex separation increases. Even
with the standard Schwarz-Christoffel formula there are geometries for which
(4.1) fails to converge, and with the strip transformation we have the added
problem that singularities on the opposite side of the strip may also strongly
influence an interval.

Despite these difficulties, the iteration (4.1) often converges within at most

a few tens of iterations, particularly on relatively straightforward problems like
those shown in Figs. 4 and 6. On a region like that shown in Fig. 8, however,
it diverges even when started very near the solution. (Figure 8 actually shows
an example of a map from a rectangle to a closed polygon. The same geometry
can be treated as a channel, though, if the right angles at the ends are replaced
by straight angles. The prevertex zy is so far “upstream” in this case that it
does not cause significant problems; the main area of difficulty for (4.1) is at
the other end of the figure. On this example we have used the high-accuracy
adaptive quadrature methods described in § 5—though somewhat inefficient,
these routines give quite reliable error bounds, so the failure cannot simply be
caused by an inaccurate quadrature algorithm.)
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F1G. 6. Two channels with large N.

Further examples supporting these claims will be presented in a future

paper.

® The convergence is only linear, which may be a disadvantage for high-accuracy
computations.

® Many Schwarz-Christoffel problems that arise in applications come with addi-
tional conditions to be satisfied. For example, the conformal modulus u might
be specified in advance and one of the side lengths left unspecified. In such
situations one has a “generalized parameter problem” to solve [30], which may
not be an easy matter if one is using an iteration like (4.1) that is dependent
on geometric insight.

4.2. Solution via secant iteration. In our own calculations we have instead viewed
the parameter problem as a general system of nonlinear equations F(x*)=0 to be
solved numerically; this is an old idea. The normalization described above fixes z,, so
an obvious choice for the N —1 independent variables might be Re (z,), - - -, Re (zn).
This choice leads to a constrainted system, however, since the prevertices on each side
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of the strip must appear in the proper order. To remove the constraints, we have used
a change of variables similar to the one in SCPACK:
Re (zy), j=1,
(4.2) x;=41log (z—z_,), 2=j=M,
log (z; — zj+1), M+1=j=N-1.
As for the dependent variables, we first compute the positions of w,, -+, wy by

integrating (3.5) and using the constants A and B to fix w, and wy at their correct
positions. The N —1 functions to be set to zero are then given by

( -
Wr—w,; .
1 Era— =1
=

(4.3) F={Re [log (—w%)] 2=j=M,
Wj —wj—l

[ — W,
LRe log<~v—vfk_—’$—>], M+1=j=N-1.
Wi — Wiy

F| is an angle, and each of the other F; involves the logarithm of a side length. The
use of logarithms improves the scaling of the problem when some sides are much
longer than others, as often occurs with elongated regions.

We have experimented with three nonlinear equations packages for solving this
problem: Powell’s subroutine NSO01A [25], the Minpack routine HYBRD [22], and an
implementation of Schnabel’s pseudocode from Dennis and Schnabel [4]. All three
are based on a hybrid (dogleg) quasi-Newton algorithm with secant updates. On
average we obtained slightly better results with HYBRD, and in addition one of our
test problems caused Powell’s code to fail. (This difficulty was apparently due to an
overly strict stopping criterion rather than a fundamental failure of the algorithm.)
Some of our test problems were quite difficult, involving extremely distorted polygons
like those shown later in the paper; such problems sometimes required several hundred
evaluations of the functions (4.3). The only cases where either HYBRD or Schnabel’s
code failed eventually to find a solution involved severe crowding in regions that were
elongated in more than one direction, as in Fig. 1(¢c). Though for individual problems
there were sometimes wide variations in the number of iterations required by the
different routines, all three gave fairly similar performance when averaged over a
number of different cases.

Dias [5] and Bjgrstad and Grosse [2] have used other nonlinear equations packages
for Schwarz-Christoffel problems, with similar results.

In the context of this section, Davis’ algorithm (4.1) can be thought of as an
approximate Newton iteration in which an approximate Jacobian is estimated from
geometrical considerations; our second observation in § 4.1 above amounts to the
statement that sometimes this approximation may fail to yield a descent direction.

The secant algorithms converge superlinearly once they are near the solution (see
[4]), but for difficult problems they may take a long time to get near it. Convergence
times seem to be nearly independent of the starting point, a clear indication that we
do not have a good algorithm for picking starting points. To examine the typical
convergence rate as a function of N, at least two different types of problems should
be considered, as shown in Fig. 6. In the first example the geometry becomes progres-
sively more complicated as N increases, while in the second the geometry is roughly
constant, and increasing N merely improves the resolution of the curved part of the
boundary. (There are better ways to approximate curved boundaries; see [9] and [27].)
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In practice, we find that for problems of the first kind the number of iterations required
is roughly O(N), whereas for problems of the second kind it is closer to O(1). Since
each evaluation of (4.3) requires O(N?) operations, and the evaluation of the initial
Jacobian matrix by finite differences requires N evaluations, the total work required
to solve the parameter problem is at least O(N?) in both cases.” For N less than about
50 the Jacobian evaluation is not the dominant factor in the calculation, however, so
problems with simple geometries typically display behavior closer to O(N?).

5. Evaluating Schwarz—Christoffel integrals. The second numerical problem is the
evaluation of (3.5). This cannot be done analytically, and is somewhat difficult numeri-
cally because of the singularity in the integrand at each prevertex z;. A robust integration
scheme must be able to deal efficiently not only with the endpoint singularities that
occur when one of the limits of integration is a prevertex, but also with the nearly
singular situation where a prevertex is very close to the interval of integration. The
latter case is important when there is significant crowding, and also when a nearby
singularity lies on the opposite side of the strip from the interval of interest. Removing
every possible singularity analytically would not be worth the trouble, but neither
would refining the mesh over the entire interval just to deal with a few difficult segments.
In SCPACK, Trefethen [28] used a compound Gauss-Jacobi quadrature algorithm
with considerable success. This method outperforms every alternative we have tried,
but since it lacks an internal error check, we have sometimes found it helpful to
supplement it with more general adaptive quadrature schemes. The first use of general
adaptive quadrature routines for Schwarz-Christoffel integrals appears to be that of
Dias [5] as late as 1986.

Singularities at the endpoints themselves are more of a nuisance than a problem
since they can be directly accounted for by the quadrature algorithm. The first question
is whether we have to integrate them at all. In their program for solving the Schwarzian
differential equation for circular arc polygons, Bjgrstad and Grosse [2] avoid sin-
gularities by integrating to the midpoint of each interval instead of to each prevertex.
Corner positions are then found by calculating where sides intersect. However, this
approach can run into trouble for difficult regions, particularly when the program is
far from a solution to the parameter problem. We have seen examples where the initial
guess for the prevertices yielded an image polygon with some side lengths incorrect
by factors exceeding 10'°. In such examples, adjacent corners may become indistin-
guishable even in double precision. By contrast, integrating (3.5) directly from one
corner to the next permits each side length to be determined individually without
cancellation problems.

5.1. Adaptive quadrature. Given that we choose to integrate up to singularities,
there are a number of methods to choose from. We can either use a quadrature rule
that explicitly takes the singularity into account, such as a Gauss-Jacobi or Clenshaw-
Curtis formula, or we can attempt to remove the singularity analytically so that a
standard quadrature rule can be used. QUADPACK [24] includes routines that take
the explicit approach. The most effective of these for our Schwarz-Christoffel problem
is QAWS, an adaptive quadrature subroutine that uses a Gauss-Kronrod formula in
the interior and a Clenshaw-Curtis formula near the singularities. All of the adaptive
QUADPACK routines, however, seem to be written with the assumption that typical
integrals will be very difficult. They use very high-order rules and require a large

2 The linear algebra required by the secant algorithm can be held to O(N?) per iteration by using secant
updates (see [4]), and is typically negligible compared with the cost of evaluation (4.3).
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number of integrand evaluations—50 for QAWS—even when no adaptive refinement
is necessary. Since many of the integrals involved in any Schwarz-Christoffel problem
are not at all difficult, this expense makes QUADPACK less competitive unless high
accuracy is required.

When only moderate accuracy (fewer than eight decimal places) is required in
the evaluation of (3.5), we have obtained better performance by using singularity
removal along with QUANCS, a simple adaptive routine described in [13]. QUANCS,
based on the 8-panel Newton-Cotes formula, is more efficient than the routines in
QUADPACK when many of the integrals are well behaved. For solving the parameter
problem the 8-panel rule seems to be a good compromise between accuracy and speed,
although modified versions of QUANCS based on lower-order formulas are better for
applications involving shorter intervals of integration, e.g., graphics. The key point is
that for efficiency an integrator must solve simple problems quickly, whereas for
robustness it must include an internal error check and must be able to adaptively refine
its mesh if necessary.

5.2. Compound Gauss-Jacobi quadrature. The problem with the adaptive
integrators described above is that they do not use all of the available information.
Their algorithmic decisions are based solely on the observed behavior of the integrand,
whereas in Schwarz-Christoffel problems we know the precise position and strength
of every singularity before integration begins. Compound Gauss-Jacobi quadrature is
a compromise between fixed-rule algorithms, which are unsatisfactory due to nearby
singularities, and fully adaptive algorithms, which are extremely dependable but
relatively slow. The idea is to use a Gauss-Jacobi formula on each interval that ends
at a singularity and an ordinary Gauss formula on all other intervals, with the rather
arbitrary requirement that no outside singularity may lie closer to any interval than
half the length of that interval [28]. In our program we implement this by splitting
any interval that is too close to a singularity in half recursively, repeating as necessary
until every interval of integration is short enough to be acceptable. The nodes and
weights for the Gauss-Jacobi quadrature rules are calculated using the routine
GAUSSQ by Golub and Welsch [16]; we have found experimentally that the number
of accurate decimal places in the solution is approximately the same as the number
of nodes used on each interval. The primary drawback of the method is that this is
entirely an empirical bound.

In our computations the compound Gauss-Jacobi method has outperformed
adaptive rules by a factor of at least 2. There are several ways in which it could be
improved—for example, by taking the strengths as well as the positions of outside
singularities into account. Perhaps theorems could be developed to establish that a
suitably defined compound Gauss-Jacobi algorithm is guaranteed to be successful; in
the meantime, a virtually foolproof error bound can be obtained if desired by switching
to a high-accuracy adaptive integrator at the end of the solution of the parameter
problem. On the other hand, since graphics do not require high accuracy, we have
also found it efficient to switch to a low-accuracy adaptive method, based on Simpson’s
rule, for plotting the final map. Other low-accuracy integration formulas suitable for
Schwarz-Christoffel mapping are described in a recent paper by Floryan and Zemach
[12].

5.3. Singularity removal. When using a quadrature package that does not explicitly
take singularities into account, it is necessary to remove endpoint singularities from
the integrand analytically. There are two main methods for removing singularities, and
we have found it difficult to pick one as a favorite. If for simplicity we place the
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singularity at 0, the problem is to integrate a function f(x) = x”g(x), where g is analytic
at 0 and y> —1, on an interval (0, X). Expanding f(x) in a power series about 0, we
obtain

(5.1) f(x)=x"g(0)+x""g'(0)+3x”"?g"(0) + O(x"™).

The first method for removing the singularity is simply to subtract off the leading terms
of (5.1), which can be integrated analytically, and to use a numerical integrator only
on the relatively well-behaved remainder. With just the first term removed the remainder
may have an infinite slope at 0, which is still enough to cause serious trouble for
integrators that assume polynomial behavior. With the first and second terms removed,
though, most polynomial integrators perform quite well near the singularity. The use
of this two-term subtraction for Schwarz-Christoffel problems dates back at least to
Kantorovich and Krylov [20].

The second standard method is to find a change of variables x = ¢t* such that the
integrand is well behaved when expressed in terms of t. In general, we want to choose
@ so that for t~0, fx(t)] d[x(t)] will behave like t* dt for some small nonnegative
integer B. A little algebra gives a=(B+1)/(y+1). The new integrand is then
at®*”'f(t*), which indeed has the expected leading-order behavior near x = 0. Dias [5]
used this method with 8 =0, which works quite well for —1 <y =0. However, we have
found that polynomial integrators still have trouble with the transformed integrand
when y>0. To see why this happens, let us expand f again and look at what the
change of variables does to the higher-order terms:

(5.2) f(x)=x"(go+ g1x + g2x7+ O(x?)),
f(t(BH)/(yH)) = g0t7(3+1)/(v+l) +glt(v+l)(l3+1)/(v+l)

(5.3)
+ gy tFDBED/ D | OB/ (D)

t(B—7)/(7+1)f(t(B+1)/(7+1)) — gotﬁ +g (BT B/ (y+1)

(5:4) + g P H2ABTN/ (D L o(¢BFIBHD/ (D)

Note that the g, term can have an infinite-slope singularity when 8 =0 and y> 0. The
obvious solution to the problem is to use a larger B, but there is a trade-off involved
since the resulting large value of o makes the integrand evaluation points cluster near
the singularity, so that the adaptive integrator must work harder at the other end of
the interval. We have found empirically that using 8 =0 for y <—0.35, B8 = 1 otherwise,
tends to give the best results, which are slightly better than those obtained using the
method of Kantorovich and Krylov.

6. Mapping rectangles to closed polygons. When the target domain is a closed
polygon rather than an infinite channel, it is often appropriate to take an elongated
rectangle as the standard region rather than an infinite strip.® The aspect ratio of the
rectangle will be equal to the conformal modulus (=electrical resistance) of the original
polygon with its four distinguished vertices. We calculate this conformal map by
mapping first from the rectangle to the strip by means of an elliptic function, then
from the strip to the polygon by the strip transformation.

The function s(z) =(1/) logsn (z| m) maps a rectangle onto a strip of width 1,
sending the corners —K, K, K +iK’, and —K + iK' of the rectangle to the points i, 0,
L, and L+, respectively, where K, K', and L are all functions of m (Fig. 7). It seems
reasonable to require each corner of the rectangle to map to a vertex of the polygon,

3 For other approaches to conformal mapping onto rectangles, see [14] and [23].
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- K +iK' K +iK'

1
;logsn(z|m)
— p=K'/2K

L+

- K K 0 L

F1G. 7. Conformal map from a rectangle to a strip.

and in many applications this is called for since the conformal modulus is required.
However, the formulation of the parameter problem that we used in § 4 would not
permit this since, in general, no two prevertices have the same real part. We can avoid
this difficulty, though, since for a closed polygon we no longer need to specify the
images of the ends of the strip. The two extra degrees of freedom thus obtained can
be used instead to fix z¥ at i and require that the two rightmost prevertices have the
same real part. Solving the parameter problem with these restrictions thus gives us an
appropriate value for L, from which m, K, and K’ can be calculated using the known
properties of elliptic functions.

In formulating the parameter problem for this version of the strip transformation,
we again use the constants A and B in (3.5) to send w, and wy to their correct positions.
A suitable set of unconstrained independent variables, corresponding to the new
normalization is

log (z+1—2), 1=sj=M-2,
(6.1) Xj = %[108 (zm — zm-1) F10g (Zpr1 — 2m+2) ], J=M-1,
log (Zj+2—zj+3)a M=j=N-3.

Note that there are only N —3 independent variables, corresponding to the fact that
now only N —3 side length conditions are required to determine the shape of the
closed polygon:

log Lv’i% R 1=sj=k-2,
Wit1— Wj
(6.2) F= " i W{ﬂ
log |=2—2L—=|, k—-1=j=N-3.
g W;k+2_Wj<+3 J

Here w; is the “omitted corner”—if N —1 corners of the polygon and all of the angles
are known, then the position of the remaining corner is determined and cannot be
specified separately. The side between w, and wy, is fixed by the constants A and B,
and the two sides that intersect at w, do not enter into the parameter problem, so
exactly N —3 side lengths are sufficient to determine the shape of the polygon.

The best choice of w, is problem-dependent, and an improper choice can make
the system of nonlinear equations much more difficult to solve. In Fig. 8, for example,
w; and wg would both be poor choices for wy. Since the two sides that intersect at w,
are collinear, it is not possible to determine the position of the corner by finding the
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-
Wys

FiG. 8. Conformal map of a rectangle onto a distorted polygon (u = 41.812465).

intersection of the sides. To see why wy is bad, picture a slight distortion of this polygon
in which the distance between w;, and w,, is increased and the horizontal tube is
correspondingly narrowed. This narrowing increases the aspect ratio of the tube
dramatically, so zg and zo would be far to the right of their correct positions. This will
only affect the dependent variables to a small degree, though, if the distance between
wg and w, is not included in (6.2). The system of nonlinear equations will therefore
be poorly scaled, and the algorithm will probably take much longer to converge. A
much better choice in this case would be w,,, which does not introduce any scaling
problems. Several other choices would be equally good, and in fact it is sometimes
helpful to change w, in the middle of the solution process if the nonlinear equations
algorithm is making slower progress.*

At present, our code leaves the choice of w, up to the user, but we may be able
to automate this in the future. Figure 9(a)-(b) shows two examples of regions for
which no choice of wy is very good: the only way to make these problems well scaled
would be to devise a radically different set of dependent variables.” Note that the
self-intersecting nature of the first domain does not cause any difficulties; the problem
results from the fact that changing almost any side length slightly can greatly alter the
conformal modulus of the polygon.

7. Variations. The two problem formulations described in §§ 4 and 6 illustrate
some of the choices that can be made with the strip transformation, but by no means
do they exhaust the possibilities. With the channel mapping, for instance, it is not

“#The system of equations for the channel map can be altered in a similar manner, but the presence of
the angle in (4.3) raises complications. One must be careful not to create a set of nonlinear equations with
more than one solution.

51t is still possible to calculate accurate conformal moduli for these polygons, however, even though
the parameter problems are slow to converge. So that others may reproduce these examples if they wish,
in the star the width of the strip is 1/20 of the radius of the circumscribing circle, and in the spiral the
width of the strip is exactly half the width of the complementary white space. The regions shown in Figs.
8 and 10(b) have corners exactly: {(—.2887,0.), (.1,.6732), (0.,.4999), (0.,0.), (1.,0.), (1.,.2999), (.3,.3),
(1.5, .3), (1.5,.35), (.3,.35), (1.,.3501), (1.,1.), (0., 1.), (0.,.6001), (.1,.7732), (-.3320,.025)} and {(0.,8.),
(1.8,8.), (1.8,0.), (13.,0.), (14.,0.), (14.,,1.), (2., 1.), (2., 10.), (0., 10.)}, respectively.
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FiG. 9. (a) Conformal map of a rectangle onto a star (u = 163.28151). Note that both ends of the polygon
meet at the lower-left corner. (b) Conformal map of a rectangle onto a finite spiral (u =132.70454).
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necessary for either of the divergence angles 6_ and 6. to be positive; the channel
may be bounded. Figure 10(a) shows an example where both are negative; physically
this could represent an electromagnetic problem with point charges or currents, or a
fluids problem with a source and a sink. (This region has significant secondary crowding
effects near the point of the barb, due to the extremely acute angle there. It is impossible
to plot streamlines much closer to the point than those shown using the integration
methods we have described. The other angles are wide enough to avoid this difficulty,
though there is always some degradation of accuracy near an outward-pointing corner.)

With the rectangle mapping there is no reason why each end of the rectangle must
map onto a single side of the polygon, and there are many possible ways to modify

(b)

(c)

F1G. 10. (a) A channel map with converging ends; (b) enlargement of the barb in Fig. 10(a); (c) a rectangle
map onto a polygonal conductor (pu =49.436547).



ELONGATED SCHWARZ-CHRISTOFFEL MAPS 945

the given formulation to deal with unusual cases. In Fig. 10(c), for example, we have
fixed w¥ _, at i instead of w¥, and introduced an additional vertex w, with a turning
angle of 0. Problems like this one could arise in integrated circuit design.

Other straightforward variations of the method described in this paper include
vertices at infinity, the exterior map for a polygon, the map from a semi-infinite strip
to a channel bounded at one end, and various generalized parameter problems as those
described in [30] and [8].

Figure 11 shows a more extreme variation, an infinite logarithmic spiral. To permit
our program to run to completion in a finite time, we truncated the infinite product
in (3.5) by ignoring corners more than three turns away from the point of interest.
This approach yields accurate results since the effect of each singularity decays
exponentially along the strip. The parameter problem for this example is also quite
simple, since the domain is self-similar; we omit the details. A similar formulation was
used by Floryan [10] to map periodic channel configurations. The ideas involved in
this example might possibly be extended to permit the mapping of more complicated
fractal domains, which would have applications, for example, in the study of diffusion-
limited aggregation.

Fi1G. 11. Conformal map onto an infinite spiral.

Sridhar and Davis [3], [27], Floryan [9], and Hoekstra [19] have all described
another variation of channel maps for approximating curved boundaries, based on
formulas dating back at least to Woods [33]. Our implementation does not currently
include this variation, but it would certainly be a valuable addition to any future
software package for calculating Schwarz-Christoffel maps.

8. Conclusion. To summarize the central point of this paper: Conformal maps of
highly elongated polygons should be based on a Schwarz-Christoffel formula for an
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infinite strip, not a disk or a half plane. Many of the polygons that arise in applications
are of this type—perhaps most.

The mathematics of the Schwarz-Christoffel formula for an infinite strip is not
new. What is new here is, first, the proposal that such a formula sould be used even
when the polygon is bounded rather than an infinite channel, and second, an algorithm
for numerical integration and solution of the parameter problem that can reliably and
efficiently compute conformal maps to high accuracy (e.g., 8 or 12 digits, except in
regions subject to secondary crowding) even for extremely elongated polygons (e.g.,
with aspect ratios in the hundreds or thousands). The elements of this algorithm are
adapted from the SCPACK package for mapping the unit disk.

sl

%
3

<

F1G. 12. A polygon with 23 sides (u =~ 156.6241139).

We conclude with a final example. The rather difficult 23-sided polygon of Fig.
12 was mapped from a rectangle, to roughly 10-digit precision, in about one hour on
a Sun 3/50 with an MC68881 floating-point coprocessor. Most of this time was spent
in solving the parameter problem, and since the final convergence is quite rapid, the
time is nearly independent of the required accuracy. The same calculation on a
supercomputer would require only a few seconds.

Appendix. Evaluation of elliptic functions. The use of the rectangle mapping
described in §6 requires the efficient evaluation of the function s(z)=
(1/7) log sn (z| m) over a wide range of values of z and m. All of the formulas we use
for these computations are well known and available in standard references, but since
there are several different asymptotic regimes involved, it seems appropriate to give a
brief summary of our methods here. For more information about any of the following
material, see [1].

The parameter m of the elliptic function sn (z|m) decreases exponentially with
K'/2K, the conformal modulus of the rectangle. For highly elongated regions, therefore,
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m may be less than the underflow limit of many computers. First we will deal with
the case where m is reasonably large; in our own program this means m > 107%°.

To start with, the value of L is determined by the solution to the parameter problem
for the strip transformation, so m = e >"" is known immediately. K and K’ are complete
elliptic integrals with parameter m, and can be readily found by means of the arithmetic-

geometric. mean (AGM) method. To calculate K we first take
(A1) a=1, bo=vm,, c=vVm;

m,; =1-m is called the complementary parameter. The AGM iteration, defined by the
formulas

(A.2) a;'=3(ai_,+b,_y), b= (ai—lbi-“l)l/zs ¢=3(a;1—b,_y),

is then carried out until at the Nth step c5 is negligible to the required accuracy. K
is then equal to 7/2ay; to find K’ the same procedure is followed with m and m,
interchanged.

We need to evaluate sn (z| m) at points inside the rectangle with corners —K, K,
K +iK', —K +iK'. This function has a pole at iK', but we avoid any difficulties there
by using the identity

-1

(A.3) sn(z,m)=ml/zsn(iK'—Z|m)

whenever Im (z) > K'/2. For Im (z) = K'/2 we can approximate sn (z| m) by
1
(A.4) sn (z|m)~sin (z) ~1 m[z—sin (z) cos (z)] cos (z)
when m is small enough; the relative accuracy of this formula is O(m) for Im (z) = K'/2.

If m is not sufficiently small we can reduce it by applying the descending Landen
transformation as many times as necessary:

l—mi/z)2
A. =\—5
(A.5) M (1+m}/2 s
z
(A.6) v=_——l+ul/2’

_(1+p'")sn(v]p)
1+p'?sn® (v|p)

(A7) sn (z|m)

The effect is to replace m and z by u (not to be confused with the conformal modulus)
and v, where w~m?/16 and v~z To avoid cancellation errors, (A.5) should be
evaluated via a power series when m is less than about 107>

When L>11, i.e., m<107>°, we use a different set of asymptotic formulas to
avoid possible underflow of m or overflow of sn (z|m). K and K’ are calculated via
the approximations

(A.8) K~g and K'~wL+log4,

which are accurate to O(m). For Im (z) = K'/2 the approximation sn (z| m)~sin (z)
has a relative accuracy of O(m'/?), and log (sin z) can be expanded to give

(A9) s(z)~;17-{-iz+log [% (ezjz—l)]}.
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When Im (z) > K'/2 the identity (A.3) leads to the similar formula
. 1 . 1 2iu
(A.10) s(z)~L+i+—{iu—log|— (e —1) |,
T 2i

where u =iK'—z.

By the methods described here we can evaluate s(z) = (1/7) log sn (z| m) to close
to full precision (around 15 decimal places in our calculations), for all z in the
fundamental rectangle, for a range of parameters roughly e >"/°« m <3, that is,
O(1)= L« €7', where ¢ is the machine precision.
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