
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 80 (1990) 147-164 
NORTH-HOLLAND 

LAX-STABILITY OF FULLY DISCRETE SPECTRAL METHODS VIA 
ST~ILITY REGIONS AND ~EU~-EIGE~~~* 

Satish C. REDDY and Lloyd N. TREFETHEN 
Department of Mathematics, Massachusetts Institute of Technology, 

Cambridge, MA 02139, U.S.A. 

Received 26 June 1989 
Revised manuscript received December 1989 

In many calculations, spectral discretization in space is coupled with a standard ordinary differential 
equation formula in time. To analyze the stability of such a combination, one would like simply to test 
whether the eigenvalues of the spatial discretization operator (appropriately scaled by the time step k) 
lie in the stability region for the o.d.e. formula, but it is well known that this kind of analysis is in 
general invalid. In the present paper we rehabilitate the use of stability regions by proving that a 
discrete linear multistep ‘method of lines’ approximation to a partial differential equation is Lax-stable, 
within a small algebraic factor, if and only if all of the c-pseudo-eigenvalues of the spatial discretization 
operator lie within O(E) of the stability region as E -+ 0. An e-pseudo-eigenvalue of a matrix A is any 
number that is an eigenvalue of some matrix A + E with llE[l d E; our arguments make use of 
resolvents and are closely related to the Kreiss matrix theorem. As an application of our general result, 
we show that an explicit N-point Chebyshev collocation appro~mation of u, = -nu, on [-1, l] is 
Lax-stable if and only if the time step satisfies k = O(Nm2), although eigenvalue analysis would suggest 
a much weaker restriction of the form k s CN-‘. 

1. Introduction 

Most spectral calculations for time-dependent partial differential equations consist of 
spectral di~ret~ation of the space derivatives coupled with a standard discrete o.d.e. formula 
for the time-stepping, such as an Adams-Bashforth, backw’ards differentiation, or Runge- 
Kutta formula [l, 21. This decoupling of space and time is known as the method of lines, and 
among other advantages it has the virtue of simplicity. Though the order of accuracy with 
respect to the time step k may be low, it is usually practical to obtain acceptable results by 
taking k fairly small, since the computational work grows only linearly with k-l and the 
storage requirements do not grow at all. 

Numerical stability, however, presents serious difficulties in spectral calculations of this 
kind-more serious than with finite difference methods, for at least three reasons. First, 
stability has proven more difficult to analyze for spectral than for finite difference methods, 
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since the operators involved are not translation-invariant and are often far from normal.’ 
Second, the time step limits for stability are far more restrictive: typically k s C/N* and 
k G C/N4 for explicit discretizations of first- and second-order problems on a grid of N points 
per space dimension, respectively, which is much stricter than would generally be required by 
accuracy considerations [2]. Finally, if one chooses to circumvent the problem of stability by 
employing an A-stable implicit time-stepping formula like the trapezoid or backward Euler 
formulas, the matrices to be inverted are dense and ill-conditioned. In certain cases pre- 
conditioned matrix iterations are effective for these problems, sometimes in combination with 
multigridding, but the resulting algorithms can hardly be called, simple [3, 43. 

This paper introduces a new method for dealing with the first of these difficulties, the 
analysis of stability for spectral methods. In any discretization by the method of lines, one has 
two elements to couple together: a family of grids and associated spatial discretization 
operators {Lk}, conveniently indexed by the time step k, and a stability region for the 
time-stepping formula. The standard heuristic for integrations over an infinite. time interval is 
that the discretization will be stable if and only if all the eigenvalues of kL, lie inside the 
stability region, for all sufficiently small k. However, unless the operators {Lk} are normal, it 
is well known that this condition is in fact necessary but not sufficient for Lax-stability. In the 
case of spectral methods, L, may grow rapidly further from normal as k --, 0 in the sense that 
the condition number of the matrix of eigenvectors grows exponentially, and the heuristic can 
be spectacularly wrong. For example, if U, = U, on [-1, 11, with boundary condition ~(1, t) = 
0, is discretized by an explicit spectral collocation method in Gauss-Legendre points, then 
eigenvalue analysis suggests a stability restriction k s CN-’ [5, 61, whereas numerical experi- 
ments indicate that the actual Lax-stability restriction is k = 0(X*) [7, 81. 

This paper will show that the use of stability regions becomes valid if one modifies the 
standard heuristic by replacing eigenvalues by &-pseudo-eigenvalues. This notion is defined in 
Section 2: an &-pseudo-eigenvalue of a matrix A is any number z E C which is an eigenvalue of 
A + E for some perturbation matrix E with I] El] 6 E. Section 3 presents our main theorem: for 
Lax-stability, it is necessary and sufficient that all of the &-pseudo-eigenvalues of kL, lie within 
a distance O(E) of the stability region as E + 0, for all sufficiently small k.* Section 4 presents 
three examples of spectral differentiation operators whose pseudo-eigenvalues differ markedly 
from their eigenvalues, so that one needs this theorem to reach realistic conclusions about 
stability. Section 5 focuses on one particular example, analogous to the one above, and proves 
that for this example the condition k = O(W*) is indeed both necessary and sufficient for 
Lax-stability. 

2. Definition of pseudo-eigenvalues 

Let 93 be a Banach space with norm II - II, and let A : 93 + % be a bounded linear operator; 
in many applications % is a space of vectors of finite length and A is a matrix. The definition of 
pseudo-eigenvalues for matrices is as follows. For operators, the definition is condition (iii), 
although the other definitions can also be appropriately modified. 

1 A normal matrix or operator is one which has a complete set of orthogonal eigenvectors, and consequently, 
eigenvalues that are well-conditioned with respect to perturbations. Symmetric and skew-symmetric matrices are 
the most familiar examples. 

* The precise result gives Lax-stability up to a mild algebraic factor (Theorem 2), and assumes that the boundary 
of the stability region contains no cusps (Assumption A). 
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DEFINfTIoN. Given E > 0, the number h E @ is an &-pseudo-eigenvalue of A if any of the 
following equivalent conditions is satisfied: 

(i) A is an eigenvalue of A + E for some matrix E with ]]E][ s E; 
(ii) 3ue ?4 with ]lu]] = 1 such that ]](AI- A)ull d E; 

(iii) []( AI - A)-‘[[ 5 e-l. 
The set of all &-pseudo-eigenvalues of A is denoted by A,(A) or simply A,. 

Thus a pseudo-eigenvalue of a matrix or operator A is an eigenvalue of some nearby 
operator A + E. The vector u in (ii) is called a (normalized) E-pseudo-eigenvector of A. The 
matrix or operator (AI - A)-’ in (iii) is the re~~lve~~ of A at the point A; all of our results are 
closely tied to the theory of resolvents. 

If A is a normal matrix or operator, the s-pseudo-spectrum A, consists of the union of the 
e-balls about all of the points of the spectrum of A-which is not very interesting. If A is far 
from normal, however, A, may be much larger than this and may have a very different shape. 
One interesting and relatively easy to understand set of examples is the family of nonsymmet- 
ric Toeplitz matrices [9]. The matrices that arise in spectral methods appear to be less easy to 
understand, but they are even more interesting. 

In the remainder of this paper, for simplicity, we shall assume that B is a Hilbert space of 
finite or infinite dimension whose norm ]I- 11 is the usual 2-norm ]I * lj2. If 3 is of finite 
dimension N, then A is an N x N matrix, and an equivalent condition for A to be an 
&-pseudo-eigenvalue of A is 

(iv) gN( AI - A) s E, 
where G-~ denotes the smallest singular value. 

The idea of pseudo-eigenvalues was introduced in [lo]” in connection with applications to 
matrix iterations. Even in that paper, however, the definition was motivated in part by the 
matrices that arise in spectral methods. We have found that pseudo-eigenvalues shed light on a 
wide variety of theoretical and practical problems in numerical analysis, and a survey of their 

uses is in preparation [12]. 

3. Main theorem 

Before turning to Lax-stability for discretizations of partial differential equations, we begin 
with the simpler problem of power-boundedness for families of matrices. Let D denote the 
open unit disk in the complex plane, fi its closure, and aD the unit circle. The following result 
is essentially one part of the Kreiss matrix theorem, sharpened as described in [13]. 

THEOREM 1. Let {A .} be a family of matrices or bounded linear operators of dimensions 
N, s ~0. Zf the powers of these matrices satisfy 

llA=Il s C VnaO CW 
for some constant C, independent of u, then their e-pseudo-eigenvalues (A,) satisfy 

dist(A,, D)< CE Vs >O. P-2) 

3 Under the name ‘approximate eigenvalues’. We have sub~quently learned that the same definition appeared 
earlier in [27]. 
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Conversely, (3.2) implies 

llA~ll<2eCmin{N,, n} Vn>O. 

of fully discrete spectral methods 

(3.3) 

PROOF. By condition (iii) of the last section, (3.2) is equivalent to the estimate 

Il(~I-A,)-‘ll~ dist(~ o> ‘A’@\’ ; , (3.4) 

of course, for A E C\fi, dist( A, D) is another way of writing I A[ - 1. If (3.1) holds, then (3.4) 
follows readily from a Taylor expansion of the resolvent. Conversely, if (3.4) holds, then (3.3) 
can be derived by means of the resolvent integral for A:. The bound 2eCn comes from 
estimating the integral directly, and the bound 2eCN, follows with a bit more work after an 
integration by parts. The details are given in [13], which is a sharpening of an earlier paper by 
Tadmor [14]. q 

If {A,} is a family of matrices of fixed dimension N, then 2eCN is a constant and Theorem 
1 becomes a criterion for power-boundedness-a restatement of one of the assertions of the 
Kreiss matrix theorem. Even for a single matrix A, this criterion is quite different in style from 
the usual criterion for power-boundedness based on the spectral radius p(A), which requires 
p(A) s 1 together with the condition that any eigenvalues on the unit circle be nondefective. 
Of course the two criteria are mathematically equivalent, but here, the nondefectiveness 
condition is implicit in (3.2) rather than explicit. 

Now consider an explicit s-step linear multistep approximation to an autonomous ordinary 
differential equation u, = f(u), 

normalized by cy, = 1 and laoI + [PO] # 0, with the usual notation un = u(nk) and f” = f(C), 
where k is-the time step. For each w E C, let n,+,(z) denote the associated stability polynomial 

%(4 = P(Z) - w4-4 , (3.6) 

of degree exactly s, where p(z) and a(z) are defined by 

s-l 

(3.7) 

Let S c @ denote the stability region in the w-plane for the linear multistep formula (3.5): the 
set of all w E C for which all roots z of T,,,(Z) satisfy ]z] < 1, with simple roots only for Jz] = 1. 
Equivalently, (3.5) can be rewritten as a one-step formula involving vectors of length s, 

u ,,+’ = Au” + Bf” , (3.8) 

that is, 
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(3.9) 

(3.10) 

is power-bounded.4 The idea behind the definition of S is that if (3.5) is applied to the linear 
model problem U, = au, where a E @ is a constant, then the resulting sequence {u”} satisfies 

U” = [ G(ak)]"u" , n 3 0 , 

which is bounded for all initial vectors u” if and only if ak E S. 

To determine the stability region S, one may consider the rational function 

44 = PM /o-(4 , 

(3.11) 

which maps the z-plane in an s-to-l fashion onto the w-plane. The image under r(z) of the 
unit circle c?D in the z-plane is a curve which divides the w-plane into a number of 
components, in each of which the number of roots of r,,,(z) that lie in D is a constant, and the 
interior of S is the union of those components for which this number is s. For simplicity, we 
make the following assumptions concerning the linear multistep formula, which are satisfied 
by most explicit linear multistep formulas but not, for example, by the midpoint rule: 

Assumption A. r(z) # 00 and r’(z) # 0 for z E aD . 

Since r(w) = co, the component containing the point w = 03 is not in S, and thus Assumption A 
implies that S is bounded. Figure 1 shows two examples of stability regions satisfying this 
assumption. 

Now, following the standard formulation of the Lax-Richtmyer stability theory [16], 
suppose we are given an autonomous linear partial differential equation 

u,=a4, (3.13) 

where u(t) is a function of one or more space variables on a bounded or unbounded domain 
and 2 is a differential operator, independent of t. For each sufficiently small time step k > 0, 
let a corresponding finite or infinite spatial grid be defined and let (3.13) first be discretized 

4 The power-boundedness of such matrices is considered in [15], where the analysis also leads to a condition like 
Assumption A. 
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-1 0 1 -1 0 1 

(a) 3rd order (b) 4th order 

Fig. 1. Stability regions for Adams-Bashforth formulas. 

with respect to the space variables only, so that it becomes a system of ordinary differential 
equations, 

v, = L,v ) (3.14) 

where v(t) is a vector of dimension Nk s 03 and L, is a matrix or bounded linear operator. 
With the space discretization determined in this way, let (3.14) then be discretized with 
respect to t by the linear multistep formula (3.5) with time step k. The resulting fully discrete 
approximation to (3.13) can be written 

u FI+’ = A# , 

where A, is the block companion matrix 

[&-& - aJ 

: 

I 

A, = G(kL,) = 

with I denoting the identity operator on vectors of length Nk. 
Here is the main theorem of this paper. 

THEOREM 2. Zf the method of lines discretization described above satisfies 

I~A;~~sC~ VnaO, 

then the e-pseudo-eigenvalues { pL,} of the operators (kL,} satisfy 

(3.17) 

(3.18) 
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Conversely, (3.18) implies 

ljAL\\ s C, min{iV,, n} Vn > 0. (3.19) 

The constants Cj are independent of k, and the ratios C,/ C, and C, /C, may be chosen to 
depend only on the linear multtitep formula, which is assumed to satisfy Assumption A. 

PROOF. By Theorem 1, these assertions are certainly true if (3.18) is replaced by the 
estimate 

dist(A,, D)< CUE V&a0 (3.20) 

on the &-pseudo-eigenvalues {A,} of A,. Therefore we are done if we can show that (3.18) 
and (3.20) are equivalent. Restating these conditions in terms of resolvents, as in the proof of 
Theorem 1, we find that we are done if we can show the equivalence of 

(3.21) 

Il(AI - AJ'll G dist;h2 D) VAE@\D . 
, 

(3.22) 

First we shall prove that (3.21) implies (3.22). We begin by assuming that A is close to D. 
Let 0, be an annulus 

(3.23) 

with T, > 0 chosen small enough so that r(z) # CO for all z E 4 (possible by Assumption A). 
Let A E Q be arbitrary, and define p = r(A) (Fig. 2). Since A, = G(kL,) by (3.16), we can 
write (AI - A,)-’ as a resolvent integral with respect to w, 

(AI - A,)-’ = & 1 (AI - G(w))-‘@(WI - kL,)-’ dw , (3.24) 

where r is any simple closed contour in the w-plane contained in the region of analyticity of 
(AI - G(w))-’ and enclosing the spectrum of kL, [17]. As indicated by the symbol 8, the 
integrand is a matrix or operator of dimension sN, obtained as the tensor product of a matrix 
of dimension s and a matrix or operator of dimension Nk. Now, (AI - G(w))-’ is an s x s 

matrix-valued function of w that is analytic throughout the w-plane except for a pole at 
p = r(A), which must be simple because det( AI - G(w)) is an affine function of w by (3.9) and 
(3.10). Accordingly, as suggested in Fig. 2, we can evaluate the integral by choosing r to be 
the union of r,, a small circle about p traversed negatively, and r,, a large circle enclosing 
both p and the spectrum of kL,. The contribution from r, is 

-R(P)@‘(P~ - k&J-‘, 
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Fig. 2. Integration contours for the proof of Theorem 2. 

where R(p) denotes the residue of (AI - G(w))-’ at w = p, a nonzero matrix of dimension s. 
The contribution from r, is 

(AI - G(m))-‘81 , 

where (AI - G(m))- ’ is an abbreviation for lim ,_,_( AI - G(w))-‘; the term I appears as the 
residue of (WI - kL,)-’ at w = 01. All together, we have 

(AI-A,)-‘=(AI-G(~~))-‘~I-R(~)~(~I-~L~)-~, (3.25) 

and therefore 

Il(AI- Ad-‘11 d C, + c,ll(~I - &)-‘I/ , (3.26) 

where C, and C, are defined by 

Cd = ,s,l IIW - G@N-‘ll 7 c5 = ;;: IIww)ll ; (3.27) 
I z 

both con$ants are finite since the suprema involve continuous functions on the compact 
domain Oz. Combining (3.21) and (3.26) gives 

@I-A,)-‘(lcC,+ ‘2’S 
dist( p, S) ’ 

(3.28) 

Now from Assumption A it is readily verified that we have 

dist( A, D) s C, dist( p, S) VA E @ , (3.29) 

for some constant C,, independent of A. Since we also have dist( A, D) s TV for A E 0,) the 
combination of (3.28) and (3.29) implies 
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J((AI-A,)-‘l(~ei/dist(h,D) VAEQ 

with C; = C4rZ + C,C,C,. 
This-shows that (3.21) implies the inequality of (3.22) for A E OZ. The remaining values 

A E @\D, namely those with dist( A, D) 3 r,, can be handled as a corollary of this result by 
making use of the resolvent integral 

(AI - A,)-’ = & 1 (A - z)-'(~1 - A,)-’ dz (3.30) 

in the z-plane. Choosing the contour of integration to be r = {z E @ 1 IzI = 1 + $T,} gives the 
bounds 

and 
[(A - z)-‘I <2/dist(A, D) 

\[(zI - A,)-‘/ s 2C;/7, 

for the two factors of this integrand, for all A with dist( A, D) a TV, and therefore (3.30) 
implies 

II(AI - A,)-*II s ~‘~$)$ , 
* , 

(3.31) 

since the arc length of ris 27~(1+ 1~~). In other words, (3.22) holds for all A E 06 if we take 
C; = 4(1 + $T,)c;/T,. 

Now we shall prove the converse, that (3.22) implies (3.21). As before, we begin by 
assuming that p is close to S. Let flZ again be the annulus defined in (3.23) and define 

n,={WE@IOCdist(w,S)<T,} (3.32) 

for some T,,, > 0. From Assumption A it can be shown that one can pick T,,, small enough so 
that for each p E R,, there is a number A E JJZ satisfying r(A) = p and, in analogy to (3.29), 

dist( p, S) s CL dist( A, D) . (3.33) 

(There are s values of r-l(w) to choose from, among which we may take A to be one that is 
largest in modulus.) This pair A, F will again satisfy (3.25)) which implies 

IbI- &)-‘I( c c;(C, + II(AI - AJ'll) , (3.34) 

with 

‘i = [jz& ,~~~SS IR(r(z))ijll-’ ; (3.35) 

we have C; < m since R(r(z)) is a continuous nonzero function on Q . Combining (3.22)) 
(3.33) and (3.34) implies 
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ll(~I- kL,)-‘11 s C,/dist(p, S) VP E 0,) 

with CZ = C;CA(C,T~ + C;), since supZEn dist(w(z), S) < CAr,. 
Thus (3.22) implies the inequality of (j.21) for p E Q,,, and to complete the proof, all that 

remains is to extend this conclusion to values p E 0s with dist( ,u, S) 2 TV. This can be carried 
out much as before by means of the resolvent integral 

(PI - ‘=,)-’ = y$ /- ( /.L - w)-‘(WI - kL,)-’ dw , (3.36) 

with the contour of integration chosen as r = {w E @ I dist(w, S) = $T,}. We omit the 
details. 0 

Many extensions of Theorem 2 are possible. For example, it is natural to consider 
1. 

2. 

3. 

4. 
5. 
6. 

Stability for initial-value problems defined on a finite time interval 0 < t < T instead of 
the infinite interval 0 < t < ~0; 
Weighted norms I] - II rather than just the 2-norm, to permit sharp stability estimates for 
nonuniform grids; 
Weaker definitions of stability (e.g., algebraic stability in the sense of [l]), with 
correspondingly weaker conditions on the pseudo-eigenvalues; 
Implicit as well as explicit time-stepping formulas; 
Runge-Kutta and other classes of time-stepping formulas; 
Time-stepping formulas that violate Assumption A. 

Most of these generalizations will be treated in our upcoming paper [ 111. As for the sharpness 
of Theorems 1 and 2, it is an open question whether the factors IZ and N in (3.3) and (3.19) 
can be improved, but for many practical purposes, including the applications of the next two 
sections, they are nearly as good as constants. 

Theorem 2 is certainly not the first result in the literature concerning stability of method of 
lines discretizations. Close in spirit to our own work are [18, 191, based on the idea of the 
spectrum of a family of matrices [20, 211, which corresponds roughly to a limit of s-pseudo; 
spectra as N+ 03 and- E + 0~. Also closely related are the various results of Lenferink et al. [22, 
231, some of which are valid for nonlinear as well as linear operators JZ in (3.13). As far as we 
know, however, none of these results include necessary and sufficient stability criteria for 
multistep method of lines calculations. 

4. Examples of pseudo-spectra 

In this section we present three examples of pseudo-spectra of spectral differentiation 
matrices. The interesting cases are those in which the pseudo-eigenvalues differ markedly 
from the exact ones, and this is the typical situation for spectral differentiation of odd order on 
domains with boundaries. 

In particular, consider two model first-order initial boundary value problems defined for 
xE[-l,l], tao: 
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u, = u, , u(x,O)=f(x), u(l,t)=O (4.1) 
and 

u, = --xu, ) 4% 0) = f(x) 9 no boundary conditions . (4.2) 

Both these problems are well-posed in various norms. The solution to (4.1) is u(x, t) = 
f(x + t) if x + t s 1, U(X, t) = 0 otherwise, and the solution to (4.2) is u(x, t) = f(e-lx). Let D, 
be the N x N differentiation matrix obtained by a spectral collocation discretization of the 
operator i3, or -xa, in a grid of distinct points x1, . . . , xN. Then both (4.1) and (4.2) take the 
semidiscrete form 

v, = D,v , (4.3) 

a special case of (3.14). In the case of problem (4.l)‘the grid points lie in [-1, l), and DN is 
defined by first interpolating the data {vi} by a polynomial p(x) of degree N that satisfies the 
boundary condition p(1) = 0, then setting (DNv)j = p’(xj). (Thus the jth column of D, consists 
of samples of the derivative of the Lagrange interpolating polynomial to the discrete delta 
function located at xi.) In the case of problem (4.2) the points lie in [ - 1, 11, p(x) becomes a 
polynomial of degree N - 1 since there are no boundary conditions, and D, is defined by 
(DNv)j = -xjp’(xj). 

Many grids {xi} may be chosen for these differentiation processes, of which we shall 
consider two. Our Legendre grid is defined by taking xi to be the jth zero of the Legendre 
polynomial P,,,(x). Our Chebyshev grid is defined by taking xi to be the jth extreme point of 
the Chebyshev polynomial T,,,_1(x) for problem (4.2), or the jth extreme point of TN(x) (other 
than x’= 1) for problem (4.1). (That is, xi = cos((i - l)n/(N - 1)) for (4.2), cos( jn/N) for 
(4.1).) Other grids could equally well be considered. Any choice with density proportional to 
(I - x2)-1’2 in the limit N+ ~0 is a reasonable candidate, but other limits such as a uniform 
density lead to differentiation operators with eigenvalues in the right half-plane, making them 
exponentially ill-posed even in semidiscrete form, before the time-discretization is introduced. 

For our first example, Fig. 3 illustrates the spectral behavior of D,/N2 for problem (4.1) on 
a Legendre grid in the limit N* ~0 (essentially the same pictures would be obtained with 
N = 64 or 128). The important thing to notice is that we have divided D, by N2, and-even so, 
interesting behavior remains. The solid dot at the origin reflects the fact that in the limit 

N+ 03, the only eigenvalue of D,/N2 is 0; the eigenvalues of D, itself have magnitude O(N) 
[5, 61. The pseudo-eigenvalues of D,/N2 are quite another matter, however, as is revealed by 
the curves representing the boundaries of the sets A, for E = 10e5, lo-” and 10-‘5.5 Evidently 

for large N and small E, the &-pseudo-spectrum of D,/N2 includes a large lobe to the left of 
the origin. This lobe is approximately circular in shape, with a radius that decreases 
approximately in proportion to [log ~1-l but independently of N. These pseudo-eigenvalues 
will have practical consequences just like exact eigenvalues, and indeed, in floating-point 

5 To determine curves like these numerically, having picked a reasonably large value of N, one can evaluate the 
smallest singular value a,(wI - DN) at a grid of points in the w-plane and then draw a contour plot of the results, 
but this process requires a great deal of computing. Instead, we have perturbed D, by a random matrix of norm E 
and computed the corresponding eigenvalues, which tend to delineate the boundary of A, inexactly but cheaply. 
(For examples of such plots see [7-91.) Figures 3-5 are approximate sketches based on a few such computations 
with N = 32, 64 and 128. 
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-0.1 0 0.1 

Fig. 3. Eigenvalue (the solid dot at the origin) and E-pseudo-eigenvalue domains (bounded by curves) of D,/N’ 
for problem (4.1) on a Legendre grid in the limit N+m. The curves are approximate. 

arithmetic with machine precision lo-“, for example, D,/N2 would behave numerically as if 
the middle circle in Fig. 3 were entirely filled with solid dots. 

For the matrix D, instead of D,/N2, we see from Fig. 3 that the pseudo-eigenvalues fill 
much of the left half-plane, scaling in proportion to N2 even though the eigenvalues scale in 
proportion to N. 

Theorem 2 enables us to draw conclusions concerning stability from these pseudo- 
eigenvalue domains. Assuming that Fig. 3 is correct, the theorem indicates that a Legendre 
method-of-lines discretization of (4.1) will be Lax-stable if and only if the stability region 
contains any disk in the left half-plane whose boundary passes through the origin. For most 
explicit formulas, the resulting time step constraint will be k = O(NP2), where the constant 
implicit in the ‘big 0’ is arbitrary, a conclusion supported abundantly by numerical experi- 
ments in [8]. Thus for this problem, the time step restriction for Lax-stability is determined 
entirely by pseudo-eigenvalues rather than by eigenvalues. 

For our second example, Fig. 4 illustrates the spectral behavior of problem (4.1) on a 
Chebyshev instead of a Legendre grid. Again, the figure shows the eigenvalues and pseudo- 
eigenvalues of D,/N2 in the limit N+ 00. The pseudo-eigenvalues look much as before: they 
are of magnitude O(l), indicating that the pseudo-eigenvalues of D, itself scale again as 
O(N2). Now, however, there are nonzero eigenvalues too, for some of the eigenvalues of D, 
scale as N2. By Theorem 2, a Chebyshev method of lines discretization of (4.1) will be stable if 
and only if the stability region contains these eigenvalues and in addition some disk in the left 
half-plane whose boundary passes through the origin. For most explicit linear multistep 
formulas, the former condition will be more restrictive than the latter, and we will end up with 
a stability restriction k s CNe2 for some particular constant C. 
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Fig. 4. Same as Fig. 3, but for problem (4.1) on a Chebyshev grid. Now some nonzero eigenvalues as well as 
pseudo-eigenvalues are present (solid dots). 

-0.1 0 0.1 
Fig. 5. Same as Figs. 3 and 4, but for problem (4.2) on a Legendre or Chebyshev grid. As in Fig. 3, the only 
eigenvalue is 0. 
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Finally, Fig. 5 is analogous to Figs. 3 and 4 but represents problem (4.2) on either a 
Chebyshev or a Legendre grid (the results for the two grids differ little). Except for a scale 
factor of about 2, the picture is much as in Fig. 3: the eigenvalues of D,/N2 all approach 0 in 
the limit N-+ 03 (easy to prove; the eigenvalues of D, are in fact 0, - 1, . . . , 1 - N), but the 
pseudo-eigenvalues occupy approximate disks in the left half-plane. Again the Lax-stability 
restriction will be k = O(NW2), with an arbitrary constant implicit in the 0. Experiments with 
this spectral method are reported in f7,24]. 

Many theoretical and empirical results have been derived previously concerning the 
eigenvalues of the differentiation matrices just considered, of which the most precise are those 
of Dubiner [5, 61, who proved that the eigenvalues of II, have magnitude O(N) for problem 
(4.1) with a Legendre grid, and related their distribution to the zeros of a L-Zankel function, 
and Vandeven [25], who has shown more recently that the eigenvalues of D, are essentially 
zeros of Pad6 approximants. Since the eigenvalues of these matrices are so sensitive to 
perturbations, however, the consideration of them alone may be misleading; one must take 
the pseudo-eigenvalues into account too. 

5. An application 

The pseudo-eigenvalue domains presented in the last section were computed numerically. 
In combination with Theorem 2, these results immediately suggest time step limits for 
Lax-stability, but before these limits can be stated as theorems one must prove that the 
pseudo-eigenvalues behave as they appear to. 

At present we have just a few results in this direction, and therefore in this final section, we 
shall establish only a single stability estimate for a special case, leaving sharper and more 
general estimates to a later paper. As far as we know, the theoretical determination of 
pseudo-eigenvalues is not a routine matter like Von Neumann analysis for finite difference 
formulas. This is unfo~unate, but it does not imply that analysis of pseudo-eigenvalues is the 
wrong approach to stability. After all, Theorem 2 shows that one has to consider pseudo- 
eigenvalues, explicitly or implicitly, since eigenvalues alone may give the wrong answer. A 
more positive observation is that unlike exact eigenvalues, pseudo-eigenvalues can reliably be 
determined numerically (because the effect of small pe~urbations is built into their 
definition), and as a result, practical stability analysis based upon them can be carried out with 
the aid of the computer. As for theoretical stability analysis, we suspect that the analytical 
estimation of pseudo-eigenvalues will in the long run prove no harder than the analytical 
estimation of exact eigenvalues, and possibly easier, since the estimates in question are less 
sensitive to perturbations. For some ideas in this direction we refer to the final section of [7]. 

The example we shall consider is problem (4.2) on the Chebyshev grid, whose pseudo- 
spectrum was depicted in Fig. 5. To make our proof go through we shall restrict our attention 
to a special class of linear multistep formulas, which includes for example the Adams- 
Bashforth formulas of orders 3 and 4 (Fig. 1) but not of orders 1, 2 or 5: 

Assumption B. The stability region S contains the intersection of the left half-plane with some 
disk A centered at the origin. 
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Roughly speaking, the following theorem asserts that the spectral method in question is 
algebraically Lax-stable provided that the time step satisfies k = O(N-2), where the constant 
in the ‘big 0’ can in principle be arbitrarily large. Our stability estimate (5.2) is certainly not 
sharp, and Assumption B is possibly unnecessary. 

Reversing the convention of Section 3 to conform to the more standard usage in the spectral 
literature, in what follows we speak of N as the independent parameter and of k as a function 
of N, and for consistency, the solution operator A, gets the new name A,. 

THEOREM 3. Let problem (4.2) be modeled by spectral differentiation in Chebyshev extreme 
points, as described in the last section, coupled with a linear multistep formula satisfying 
Assumptions A and B. Zf k = k(N) satisfies 

k s C,N-2 

for some constant C,, then we have the stability estimate 

[[A;[[ s C2N3’2 log N Vn a0 

(5.1) 

(5.2) 

for some constant C,, for all N larger than some constant N,,. 

PROOF. The estimate (5.2) is the same as (3.19), except weakened by a factor of N”2 log N. 
Therefore, by a trivial modification of Theorem 2 to take this factor into account, we are done 
if we can show that (5.1) implies the correspondingly modified version of (3.18)) 

dist(p,, 5)~ C,~N~‘~log N VsaO, (5.3) 

where CL, ranges over the c-pseudo-eigenvalues of the operators { kD,}. Equivalently, it is 
enough to show that (5.1) implies 

[I( ~1 - kD,)-‘11 G C3N1’2 log N/dist( p, S) VP E @\s , (5.4) 

in analogy to (3.21). 
First, suppose that p E 0s lies in A, hence in the right half-plane by Assumption B. The 

continuous problem (4.2) has solution operator exp(--xd,t) and solution u(x, t) = u(e-‘x, 0), 
from which we readily derive the identity 

Ilexp(-xd,t)ll = et” P-5) 

in the 2-norm on [-1, 11. The semidiscrete problem (4.3) has solution operator exp(D,t), and 
in a suitably weighted discrete 2-norm we could derive a well-posedness estimate closely 
analogous to (5.5). Since Theorem 2 was stated for simplicity in the unweighted discrete 
2-norm, however, we shall make do instead with the estimate 

Ilexp(D,t)(l =s C3N112 log N Vt a 0 (5.6) 
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for some C,, or equivalently, 

J]exp(kD,t)(( 6 C3N1’2 log N Vt 2 0 . (53 

To establish (5.6), note that the solution operator exp(D,t) can be interpreted as the 
composition of polynomial interpolation in the grid points {xi}, dilation by the factor e’, and 
resampling at the grid points. In the supremum norm (( - Ilm these three operations have norms 
bounded by AN, 1 and 1, respectively, where AN is the so-called Lebesgue constant for the set 
{xi}. For Chebyshev extreme points it is known that the Lebesgue constants satisfy A, G 
C, log N for some C, [26], and we lose the additional factor of N1’2 in converting back from 

II * IL to II - II = II - 112’ 
By the exponential version of the Kreiss matrix theorem-the analogue of the relationship 

(3.1) * (3.4) f or exponentials of matrices rather than powers-it now follows from (5.7) that 
the resolvent satisfies 

II< PI - kD,)-ill 6 C,N"2 log N/Re k , (5.8) 

and this in turn implies (5.4), since dist( p, S) G Re p for p E @\S by Assumption B. Note 
that this part of the argument holds regardless of the size of k; we did not make use of (5.1). 

On the other hand, suppose CL E C\S lies outside of A. Explicit formulas for the entries of 
the matrix D, are given in [2, p. 691 among other places, and the largest of these entries scale 
as N2, so if (5.1) holds, the entries of kD, are bounded independently of N. By elementary 
consideration of the formulas for these elements, it can be shown that if kD, is viewed in a 
natural way as an infinite matrix with all entries equal to 0 except in an N X N submatrix, then 

[IkD, - kD,ll+O as N-co, (5.9) 

where kD, is the infinite matrix of limiting entries, and moreover, the spectrum of kD, is the 
single point (0). Now choose c0 > 0 small enough so that the pseudo-eigenvalue domain 
A2E (kD,) is contained in A, and choose N, large enough so that I] kD, - kD, (( 6 E,, for 
N 2 N,. Then for N 2 N, we have 

(5.10) 

or to put it in terms of the resolvent, 

(](pI-kDJ1]]<&-l VNaN,, (5.11) 

since p $A. This establishes (5.4) even without the factor N”2 log N. Cl 

As for the converse of Theorem 3, it is shown in the Theorem of [8] that if k # O(N-‘) as 
N+ 03, then the spectral discretization is at least algebraically unstable. Although we shall not 
prove it here, the instability is actually much more dramatic than this, as can be seen by 
considering the logarithmic spacing of the pseudo-eigenvalue domains in Fig. 5. If k = N-” 
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with (Y < 2, for example, then for each small E, the e-pseudo-eigenvalue domains of kD, grow 
in size as N+ ~0, quickly reaching outside any bounded stability region. Concomitantly, given 
any tixed stability region S, the values of E for which the r-pseudo-eigenvalues of kD, lie 
within O(E) of S decrease exponentially with N, and by Theorem 2, the result is an 
exponential instability. 

Note added in proof 

Recently we have received several new papers dealing with stability of the method of lines 
via resolvents. Sufficient conditions for stability are obtained for one-step methods with 
bounded stability regions in [28,29] and for A-stable methods in [30]. 
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