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A HYBRID GMRES ALGORITHM FOR NONSYMMETRIC
LINEAR SYSTEMS*

NOEL M. NACHTIGAL’, LOTHAR REICHEL:I:, AND LLOYD N. TREFETHEN

Abstract. A new hybrid iterative algorithm is proposed for solving large nonsymmetric systems of linear
equations. Unlike other hybrid algorithms, which first estimate eigenvalues and then apply this knowledge in
further iterations, this algorithm avoids eigenvalue estimates. Instead, it runs GMRES until the residual norm
drops by a certain factor, then re-applies the polynomial implicitly constructed by GMRES via a Richardson
iteration with Leja ordering. Preliminary experiments suggest that the new algorithm frequently outperforms
the restarted GMRES algorithm.
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1. Introduction. In this paper we present a new point of view regarding nonsym-
metric matrices, and as a natural outgrowth, a new hybrid iterative algorithm. The point
of view is that if a matrix is nonsymmetric (more precisely, nonnormal), any attempt
to make use of its eigenvalues should be viewed with caution. The new algorithm is a
hybrid scheme in which a few steps of GMRES [29] are followed by a Richardson
iteration based on the polynomial implicitly constructed by GMRES, with the factors
ordered in a Leja sequence for stability [25]. Unlike other hybrid algorithms, this one
never estimates any eigenvalues. It is simpler than other hybrid iterations, but more
robust, and appears to outperform other methods in many cases.

We begin with a brief explanation and survey of hybrid methods, assuming that the
reader is already familiar with GMRES, the Arnoldi process, and polynomial iterations.
Suppose we are given a large nonsymmetric system of linear equations

(1.1) Ax=b, AECNN, x, bECN,
where A may be the matrix that results after preconditioning. The many nonhybrid
iterative methods that have been proposed for solving such systems can be divided into
two categories: (i) those that require no a priori information about A, of which three of
the most important are CGN, CGS, and GMRES, and (ii) those that do require a priori
information about A, such as the Richardson and Chebyshev iterations. The idea of a
hybrid iteration is to combine these approaches in a two-phase algorithm:

Phase I: acquire information about A via an iteration of type (i);
Phase II: apply that information in further iterative steps of type (ii).

In practice, of course, things need not be quite so simple; a robust code may loop back
to Phase I one or more times to ensure an adequate convergence rate.
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The assumption underlying the hybrid idea is that algorithms of type (i) cost more
per step than those of type (ii), so that a switch from the one to the other is potentially
advantageous. This assumption frequently holds for GMRES and for the many other
Krylov subspace iterations such as ORTHORES, ORTHOMIN, and ORTHODIR, be-
cause these algorithms have the unfortunate property that the work and storage required
to carry out the nth step grow in proportion to n. The goal of a hybrid algorithm is to
recover some of this factor O(n). On the other hand the assumption does not hold for
CGS nor for CGN in problems where A * is as easy to apply to a vector as A. Thus the
natural realm of applicability of hybrid methods is to problems where Krylov subspace
methods take fewer steps than the alternatives. For a discussion of when this is likely to
be the case, see [20].

The recent literature on hybrid methods begins with a paper of Manteuffel 18 ]. In
Manteuffel’s algorithm, a number of extreme eigenvalues of A are first estimated by a
modified power iteration (Phase I). These eigenvalue estimates are then surrounded by
an ellipse, and a Chebyshev iteration is carried out with parameters corresponding to
that ellipse (Phase II). Schematically,

Manteuffel ’78:
modified power iteration - eigenvalue estimates -- ellipse -- Chebyshev iteration.

Ashby has implemented this algorithm in a Fortran code package called ChebyCode 2 ],
which incorporates many safeguards and extra features omitted in this outline.

Let x0 denote the approximation to the solution A lb at the beginning ofan iterative
process, which may correspond to Phase I or Phase II depending on context. We use the
following (standard) notation:

nth iterate: xn,

nth error: en=A-Ib-xn,

nth residual: rn Aen b Axe.
Manteuffel’s algorithm delivers Phase II iterates x satisfying

xn x0 + q (A) r0, q P
and

(1.2) e,,=p(A)eo, r,=p,(A)ro, pn6P,, p(0)=l,

where p,(z) zq, l(z) is a Chebyshev polynomial shifted to the ellipse ofeigenvalue
estimates. (P, denotes the set ofpolynomials ofdegree less than or equal to n. The same
equations (1.2) hold for other hybrid Krylov subspace iterations, including our own.
The various algorithms differ only in the choice of the sequence of polynomials p(z),
known as residual polynomials, and in the mechanics of how they are applied. Our
goal is to make Ilpn(A)roll small, and the obvious way to achieve this is to try to make
IIP,(A) small.

One modification of Manteuffel’s algorithm is to replace the Chebyshev iteration
of Phase II by a more general iteration, an idea first proposed by Smolarski and Saylor
34 ], 35 ]. Phase I oftheir algorithm constructs a polygon containing eigenvalue estimates,
then solves a discrete least-squares approximation problem on that polygon to obtain an
effective residual polynomial p,(z) for some integer . Phase II applies this polynomial
one or more times by means of a cyclic Richardson iteration

(1.3) pk,(z)=[p,(z)] k, k 1,2, ....
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In outline:

Smolarski andSaylor ’81:
modified power iteration -- eigenvalue estimates- polygon --L2-optimal p,(z) -- Richardson iteration.

The advantage of such an algorithm is that since the approximation problem is posed
on an arbitrary domain ofestimated eigenvalues, there is no restriction to matrices whose
spectra are well approximated by an ellipse. Throughout this paper, p,(z) denotes a
residual polynomial of fixed degree which forms the basis of a cyclical Phase II iteration
defined by (1.3).

Another modification of Manteuffel’s algorithm is to replace the power iteration of
Phase I by an Arnoldi iteration, which is now the standard method for estimating eigen-
values of nonsymmetric matrices iteratively. In fact this difference is not as great as the
names suggest, for the modified power iteration is essentially the same as the Arnoldi
iteration. Together with the Arnoldi point of view, however, comes the important ad-
ditional advantage that an approximate solution in Phase I can be conveniently con-
structed by the closely related GMRES algorithm. This kind of hybrid was first proposed
by Elman, Saad, and Saylor [7]:

Elman, Saad, andSaylor ’86:
Arnoldi/GMRES -- eigenvalue estimates -- ellipse -- Chebyshev iteration.

To be more precise about what we mean by an "Arnoldi/GMRES" calculation, the
Arnoldi and GMRES iterations both make use of a Hessenberg matrix obtained by the
orthogonalization of a sequence of Krylov vectors. The Arnoldi iteration estimates ei-
genvalues of A by computing the eigenvalues of the square part of this matrix, while
GMRES finds approximate solutions to Ax b by solving a least-squares problem in-
volving the same matrix made rectangular by the addition of an extra row. In a Phase I
calculation of Arnoldi/GMRES type, both of these computations are carried out si-
multaneously, so that Phase II begins with both eigenvalue information and a good
initial guess.

The most general hybrid algorithms combine both of these modifications, and thus
differ from Manteuffel’s algorithm in both Phases I and II. One of the first of these to be
proposed was the PSUP algorithm ofElman and Streit 8 ], in which an Arnoldi/GMRES
iteration to obtain eigenvalue estimates is followed by a solution ofan L approximation
problem on a polygonal domain, with the resulting polynomial iteration implemented
by a matrix version of Horner’s rule:

Elman andStreit ’86:
Arnoldi/GMRES eigenvalue estimates -- polygon --L oo-optimal p,(z) -- Horner iteration.

Another algorithm of this type, developed at about the same time by Saad [28 ], solves
an L2 approximation problem on a polygon after first constructing a well-conditioned
basis of shifted Chebyshev polynomials, then applies the resulting polynomial in a second-
order Richardson iteration:

Saad ’87:
Arnoldi/GMRES -- eigenvalue estimates -- polygon -- Chebyshev basis --L2-optimal p,(z) -- second-order Richardson iteration.
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More recently, Saylor and Smolarski have also modified their method to take advantage
ofGMRES 32 ], 33 ]:

SaylorandSmolarski ’91:
Arnoldi/GMRES eigenvalue estimates -- polygon --L2-optimal p,(z) -- Richardson iteration.

Finally, two recent algorithms developed since this article was first drafted make use of
numerically computed Schwarz-Christoffel conformal maps [17], [43]:

Li ’91:
Arnoldi/GMRES -- eigenvalue estimates polygon -- conformal maprational approximation (k,/)-step iteration.

Starkeand Varga ’91:
Arnoldi/GMRES -- eigenvalue estimates- polygon --conformal map-- Faber polynomials-- Richardson iteration.

The above algorithms are summarized in Table 1.1. We hasten to add that these
algorithms differ in many important ways that we have not mentioned and indeed, all
of the one- or two-line summaries of this section represent only the barest of skeletons.

This completes our survey of existing hybrid algorithms of the fully specified sort,
where procedures for both Phases I and II are given, so that the algorithm is applicable
in principle to an arbitrary matrix. In addition, however, there is a large literature of
"polynomial iterations" or "semi-iterative methods" devoted to Phase II by itself, on the
assumption that eigenvalue estimates are already available, and each ofthese becomes a
full-fledged hybrid algorithm as soon as it is coupled with an Arnoldi/GMRES iteration
for Phase I. For example, Opfer and Schober construct a first-order Richardson iteration
from an L-optimal polynomial [22]; Eiermann [5] and Gutknecht [13] investigate
Faber and Faber-CF approximations, respectively; Fischer and Reichel [9 ], [24] and
Tal-Ezer 37 derive p,(z) by polynomial interpolation in Frjer points conformal images
ofroots ofunity); and Gragg and Reichel recommend the use ofpolynomials orthogonal
on the boundary of the eigenvalue domain [11]. There are also a number of important
papers by Eiermann, Niethammer, Varga, and others on further aspects ofthese iterations
and their connections with approximation theory and complex analysis; an example is
[6]. We will not attempt a survey, but merely note in conclusion that whereas the idea
of estimating eigenvalues by the Arnoldi process clearly predominates for Phase I of
hybrid algorithms in the current literature, the possibilities for Phase II are numerous.

Phase

Power Method

Arnoldi/GMRES

TABLE 1.1
Hybrid algorithms.

Phase II

Chebyshev Other

Wrigley [42]
Manteuffel 18]
Saylor [30]

Elman, Saad, and Saylor [7]

Smolarski and Saylor [34], [35]

Elman and Streit [8]
Saad [28]
Saylor and Smolarski [32], [33]
Li [17]
Starke and Varga [43]
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Hybrid iterative algorithms are closely related to the idea of polynomial precondi-
tioners 15 ], 27 ]. The polynomial p,(z) constructed by the hybrid algorithm proposed
in this paper might be applied as a preconditioner, and a recursive version of this idea
has recently been considered by Joubert [16, 3.5].2 In the symmetric case, there is a
long history of hybrid algorithms and polynomial preconditioners motivated mainly by
the search for parameters for Chebyshev iterations. In particular, a recursive conjugate-
gradient preconditioner analogous to Joubert’s has recently been proposed for the sym-
metric case by O’Leary [21]. Various further combinations ofhybrid and preconditioning
ideas will undoubtedly be investigated in the years to come.

2. The trouble with eigenvalues. What the existing hybrid methods have in common
is that they all estimate eigenvalues, construct a domain enclosing them in the complex
plane, and then calculate a polynomial p,(z) that is small in some sense on that domain.

(2.1)

Existing algorithms:
Arnoldi /GMRES -- eigenvalue estimates --enclosing domain-p,(z) -- iteration.

In this section we explain why we consider the introduction and subsequent manipulation
of eigenvalue estimates inappropriate. The principal problem is that eigenvalues do not
generally contain enough information to capture the behavior of a matrix efficiently in
the nonnormal case and, in particular, even though the scalar p,(3,) may be small whenever
X is an eigenvalue of A, it does not follow that the matrix p,(A) is small in norm. A
secondary problem, relevant even for normal matrices, is that the smallness ofp,(z) on
a set of estimated eigenvalues does not imply that it is small at the exact eigenvalues.

To begin the discussion with the first of these problems, let us suppose first that
exact eigenvalues rather than mere estimates happen to be available at the end of Phase
I. On the face of it this should be the ideal situation for the standard iterations in Phase
II. Following [38 ], however, we can show by an example that eigenvalue information
may be utterly misleading as to the actual behavior ofA. Let A be a large upper-triangular
Toeplitz matrix of the form

(2.2) A 1/2
1/2 (N N).

This matrix has just the single eigenvalue { ).3 Thanks to this simple eigenvalue distri-
bution, one might naturally expect a Phase II iteration to achieve rapid convergence with
the sequence ofresidual polynomials Pn(Z) z) n. In actuality, however, this choice
will lead to geometric divergence at a rate approximating () for large N and n (( N.
The reason is that for practical purposes A behaves much more nearly as if its spec-
trum were

2.3 Jpractical f(D ),

Joubert’s work, though formulated in terms ofpreconditioning rather than hybrid iterations, is the closest
we have seen in the literature to the idea proposed here. His implementation does not take advantage of the
O(u) speedup in Phase II, however, so little improvement over existing methods is achieved.

In fact it is defective, but the reader should not make too much of that, for the defectiveness is an
inessential property that could be removed without changing the matrix behavior significantly by adding small
perturbations to the diagonal elements. In any case, similar examples are readily constructed that are nondefective
to begin with, such as the matrix (3.6) in 3.
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where D is the closed unit disk andf(z) is the symbol of this Toeplitz matrix [26],

(2.4) f(z)= +z+1/2z2.

This domain is illustrated in Fig. 2.1. Although it contains the exact spectrum A { ),
it is much larger than that and, in particular, the fact that it extends to the fight as far
as the point z 2.5 is what causes divergence at the rate ()n of a Richardson iteration
based on pn(z) z).

On the other hand, if we take p,(z) to be a sequence of polynomials that are small
on _A_practica instead of just A, the convergence of the Richardson iteration for the same
example becomes rapid.

This example is contrived, but similar phenomena occur frequently in scientific
computing. Convection-diffusion equations, for example (the favorite test problems in
papers on iterative methods), sometimes lead to matrices with misleading spectra closely
related to (2.2). The matrices that arise in spectral methods also have misleading eigen-
values [23 ]. We are convinced that this pattern is a common one throughout applications
involving nonnormal matrices [39].

If eigenvalues are not the fight information on which to base a Phase II iteration,
might some different information perform better? It will not do to look at Jordan structure,
for aside from the impracticability of estimating Jordan blocks in Phase I, we have already
noted that small perturbations would make the Jordan canonical form of this and any
other matrix diagonal without changing the eigenvalues very much, in which case we are
back where we started. Another unsuitable idea is to consider the spectrum ofA in the
operator limit N oe. That would be satisfactory for the example above, but not for
many other problems in which the limit process is less sharp, as occur, for example, in
spectral methods. A third idea is to replace the spectrum ofA by the the field ofvalues
W(A), i.e., the set of Rayleigh quotients x*Ax/x* x, x Cu. However, fields of values
are too big to be appropriate for eigenvalue-style applications, besides being always convex.
For example, although the matrices

(2.5)
0- 0

FIG. 2.1. Spectrum (dot) and pseudospectrum (bounded by solid curve) ofthe matrix A of(2.2 )for large
dimension N. Since the pseudospectrum extends outside the dashed circle, a Richardson iteration based on the
residual polynomials p,(z) z)" will diverge as n increases with n (( N.
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are far from singular, their fields of values both contain the origin, and therefore no
residual polynomial satisfying the normalization condition p(0) can ever be smaller
than on W(A). For a further discussion of this point, see [20, 6].

We believe that if the idea of working with a domain in the complex plane is to be
retained, a better approach might be to replace A by a fourth candidate, the e-pseudospec-
trum 23 ], 26 ], 38 ], 39 ], defined by

(2.6) A= { ,6C: (M-A)-’][ e-1 },

where e > 0 is a small parameter which for hybrid methods should be taken to be on the
order of the residual reduction that has been achieved by Phase I (i.e.,
defined by (3.3), below). Equivalently, A can be defined in terms of perturbations
of eigenvalues

(2.7) A= { C: , is an eigenvalue ofA + E for some

We have discussed pseudospectra elsewhere, however, and will not pursue the idea further
here. Instead, our more fundamental proposal (in 3) is that domains in the complex
plane need not be manipulated at all.

Before leaving the subject ofeigenvalue-related quantities, however, we must mention
a remarkable phenomenon that may partially explain why existing hybrid algorithms
work as well as they do. Eigenvalues estimates are sometimes more reliable than exact
eigenvalues! We have noticed this effect in our experiments and Manteuffel informs us
that he has noticed it too 19 ]. One way to explain it is to note that eigenvalue estimates
tend to come closer to a pseudospectrum than to the exact spectrum 39 ], and it is
usually the pseudospectrum that provides the better iteration parameters. A related phe-
nomenon in another context has been mentioned in [40, 7].

However, this eigenvalue-estimate effect is not robust enough to provide a foundation
for an algorithm to be applied to arbitrary matrices, and to illustrate this we will now
turn to the second problem with eigenvalue estimates mentioned in the opening paragraph
of this section. For a trivial example, take

(2.8) A
-1

After one step of the Arnoldi iteration, the estimated eigenvalue is

rAro
(2.9) Arnoai rro O,

assuming r0 is real. Considering the symmetry about the origin of the actual eigenvalues
+i, this may seem a natural enough choice, but it is fatal for any polynomial iteration
that attempts to construct polynomials p(z) that are small on the spectrum but nor-
malized by p,(0) 1. For example, if p(z) is constructed as a product of terms

z/X corresponding to various eigenvalue estimates ,; (see (5.3)), an eigenvalue
estimate 0 will lead to a factor z/O) and a consequent division by zero. We
shall return to this example at the end of 3.

For a richer example along the same lines, consider the matrix

(2.10) A
0 -I+R2

(NN),

where R1 and R2 are dense matrices of dimension N[2 with independent normally dis-
tributed random elements of standard deviation 1/4 /N/2. For large N, the eigenvalues of
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FIG. 2.2. ArnoMi eigenvalue estimates at step n 11 for the matrix A of(2.10), N 200. The small dots
are the exact eigenvalues ofA. One ofthe estimates appears near the origin, farfrom the exact spectrum, which
will cause a residual polynomial based on these estimates to perform poorly.

A are approximately uniformly distributed in the disks [z + 11 -< , well away from the
origin, and the condition number is K(A) 2.06 [4]. Fig. 2.2 shows that ten of the
Arnoldi estimates match this spectrum reasonably well at step n 11, but the eleventh,
thanks to the symmetry, appears near the origin. Since this spurious eigenvalue is not
exactly at the origin, it does not cause a division by zero, but it certainly leads a polynomial
iteration astray.

To summarize, it is not entirely safe to base a matrix iteration on exact eigenvalues,
if they happen to be available, nor, so far as we are aware, on eigenvalues estimated by
any existing methods. Of course, a new eigenvalue estimator might be found with better
properties--and in fact the algorithm we are about to propose might be described in
those terms. Since the successful operation of such an algorithm depends on its estimating
eigenvalues incorrectly, however, we see little to be gained by interpreting it as an eigen-
value estimator.

3. The hybrid GMRES algorithm. We propose that in (2.1), the middle steps should
be eliminated:

New algorithm:
GMRES -- p,(z) -- iteration.

The GMRES iteration of Phase constructs a sequence of residual polynomials that
minimize the norm of the residual

(3.2) GMRES: Ilrnll- ]lpn(A)ro]l min I]p(A)ro[], n 1,2, ....
PPn

p(0)=

Correspondingly, what Phase II requires is another sequence of residual polynomials.
Why translate from polynomials to eigenvalue estimates and back again? We propose to
take precisely the GMRES polynomial p,(z) obtained at some step u of Phase I and
continue applying it over and over again in Phase II cyclically as in 1.3 ):

HYBRID GMRES ALGORITHM
Start with a random initial guess x0.
Phase I: Run GMRES until rll drops by a suitable amount. Set u := n.
Phase II: Re-apply the GMRES polynomial p,(z) cyclically until convergence.

This algorithm is purely a GMRES hybrid, for no Arnoldi eigenvalue estimates are cal-
culated. No domain ofestimated eigenvalues is constructed and no approximation prob-
lem is solved in the complex plane. The omission ofthese steps makes our hybrid algorithm
simpler than most of those previously proposed.

Of course, many issues have been left out of this description, such as:
1. What is a "suitable" reduction in rnll for terminating Phase I?
2. How shall p(z) be constructed from the GMRES iteration?



804 N. M. NACHTIGAL, L. REICHEL, AND L. N. TREFETHEN

3. How shall p,(z) be applied in Phase II?
4. What safeguards should be added to ensure convergence?
5. What are the properties of this algorithm in theory?
6. How does it perform in practice?

Most of these questions will be addressed in the next few sections, but not definitively.
We have little doubt that improvements can be effected in many of the details of our
implementation.

Before we turn to these issues, however, a few remarks will clarify the idea of our
algorithm; further details are given in 6. Suppose that at the uth GMRES step we have

(3.3)
Ilroll Ilroll

for some r < 1. Our hope is that we then have

(3.4) p,( A )ll r,

so that further iterations with the same polynomial p,(z) will continue to reduce the
residual. Of course, such a conclusion can never be guaranteed, for just as adaptive
integrators can always be fooled by integrands with spikes in places that fail to get sampled,
adaptive matrix iterators can always be fooled by initial residuals r0 with small components
in key directions. Nevertheless it is a reasonable hope that (3.4) may hold, provided that
x0 (or more precisely r0) is chosen at random, and provided also that r lies well enough
below so that p,(z) is forced to contain some genuine information about A. Probabilistic
theorems to this effect could be proved.

Thus what GMRES "knows" about the matrix A at the end of Phase I, with a little
luck, is no more and not much less than (3.4). It does not know anything very precise
about the eigenvalues ofA, and in particular, there is no reason to expect that the roots
ofp,(z) must always be good approximations to eigenvalues (though in some cases they
will be). More generally, consider the family of lemniscates defined by

(3.5) L,= zea2: Ip(z)l c}, o0.

The set of roots ofp,(z) is the same as the lemniscate L0, which we have just claimed to
be of little significance. But there is a choice of c of greater interest:

L, "the GMRES lemniscate."

Roughly speaking, the domain enclosed by L, is GMRES’s best concept at step u of the
effective spectrum of A. (We hope to make this statement more precise in later work.)
In running our hybrid algorithm, we have found it informative to plot L, at the end of
Phase I (by sampling log P,(Z)l on a grid and calling a contour plotter). On the same
plot we generally display the zeros ofp,(z) and also the lemniscate L1 that passes through
the origin. These plots of lemniscates give a graphic indication of the manner in which
A may be causing difficulty, and in the practical world this translates into guidance in
the design of preconditioners.

For example, consider the following banded Toeplitz matrix investigated by
Grcar 12 ]:

1 1 1 1
1 1 1 1 1

(3.6) A= -1 1 1 1 1 (NN).
-1 1 1 1 1
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FIG. 3.1. Spectrum (along the dashed curve) and e-pseudospectrum (enclosed by the solid curve) of the
matrix A of 3.6 for large N and small e. Thefigure looks approximately the samefor any Nand satisfying,
say, e-u/s < < 50. See 26 ].)

Like (2.2), this is a matrix whose effective spectrum is quite different from its spectrum.
In this case Apractica is the region of the complex plane enclosed by f(S), where S is the
unit circle and

(3.7) f z z- + qt- z -t- z Z qt- Z

for large N. Figure 3.1 shows A and Apractical for this matrix, assuming N is close to
and Fig. 3.2 shows the lemniscates LT computed by GMRES at steps n 2, 3, 6, and 20

r 0.797

n=2

)
)

r 0.723

n=3

r 0.204r 0.549

n=6 n=20

FIG. 3.2. GMRES zeros and lemniscatefor the same matrix at steps n 2, 3, 6, 20, with N 200. Each
square represents the domain [-5, 5] x [-5, 5 ]. The lemniscates approximate the pseudospectra, not the
spectrum.
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for the case N 200. Clearly, GMRES has done quite a good job of locating _A_practica It
neither can nor should locate the exact spectrum A. Note that for this example the convex
hull of-A-practica encloses the origin, which means that ChebyCode and some of the other
existing hybrid algorithms would fail.

To close this section, let us return to the 2 2 example (2.8) that breaks an Arnoldi
hybrid algorithm. In the first step GMRES makes no progress whatever with this matrix,
and the corresponding residual polynomial is p (z) 1. Thus after one step we have

Arnoldi: p (z) z/ 0,

GMRES: p (z) z/.

To speak conventionally in terms of eigenvalues, we might say that GMRES has chosen
the only other possible eigenvalue estimate besides 0 that is symmetric with respect to
the spectrum +i, namely, the equation analogous to (2.9) is

rA TAro3.8 XGMRES rAro
This choice has made all the difference, however, since it has led to a polynomial p (z)
that is finite rather than infinite. Brown has pointed out that this phenomenon is general:
when the Arnoldi iteration divides by 0, GMRES stagnates harmlessly, and vice versa
[3 ]. Thus, although the performance of our hybrid algorithm can certainly be dis-
appointing, if GMRES converges slowly or if (3.4) fails to hold and some kind of
restart is necessary, the finiteness of IIp(A)I[ implies that at least it can never
break down.

We have now presented a number of arguments in support of the view that the
residual polynomial p,(z) in a hybrid algorithm should be derived from the GMRES
method rather than from Arnoldi eigenvalue estimates. This idea also appears to be
supported by numerical experiments. Throughout our computations for this project we
have subjected each example matrix to two versions ofour program, one based on GMRES
and the other on Arnoldi. Each of the two methods sometimes outperforms the other,
but the Arnoldi variant usually converges more slowly, and it fails considerably more
often. (Of course, a failure is not absolute; with a robust implementation it will mean a
return to Phase I as described in 7.) A few comparisons of this sort are reported in Fig.
8.8, below.

4. Construction of p,(z). Our implementation of the hybrid GMRES algorithm
calculates the coefficients ofp,(z) explicitly. We have not investigated the stability ofthis
procedure, and it may be that there are better ways to find the roots ofp,(z), for example,
by solving an eigenvalue or generalized eigenvalue problem (see the additional remarks
on stability in the next section). However, computational experience indicates that the
explicit approach works well in practice.

Here is how the coefficients are determined. Let Kn denote the N n matrix of
Krylov vectors

(4.1) Kn=(ro Aro An-ro).

The Arnoldi/GMRES process constructs an N n matrix of orthonormal vectors span-
ning the same space

(4.2) Vn v I)2 1)n

by applying the iterative formula

(4.3) 1)n + h-l+ l,n(A1)n Vnhn), hn hln, hnn) T,
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where the numbers hij are the elements of a Hessenberg matrix of inner products. (We
use the same notation as in [29].) Since the columns of Vn and Kn span the same space
for each n, we have that

Vn=KnCn
for some upper-triangular matrix

(4.4) Cn= C:nn!
This matrix is not formed during the GMRES iteration as presented in 29 ], but to find
p,(z) explicitly we will need it. The appropriate formula comes from (4.3):

0
Cl,n + Cl’n h l+ 1,n(4.5) hn+ l,n O

Cn + 1,n + Cn

By inserting the calculation (4.5) in the GMRES iteration, we generate the elements of
Cn column by column as the iteration proceeds.

Having solved a Hessenberg least-squares problem at step n , GMRES produces
an iterate x of the form

(4.6) x, Xo + V,y

for some vector y of dimension v. Since V,y K,C,y, it follows that the vector C.y
contains the coefficients of the polynomial q._ l(z) of 1.2):

(4.7) C,y=(ao, ,Otu_ 1) T, q_l(z)=ao+alz+ +a_lz-1

Since p,(z) zq,_ l(z), this gives us the coefficients ofp,(z) as well.

5. Richardson iteration for Phase II. Phase I is complete and we have determined
the polynomials q,_ (z) and p,(z) implicit in the GMRES iteration. We now face the
question of how best to re-apply these polynomials for the further iterations of Phase II.

As mentioned in the Introduction, many ideas have been advanced for this phase
of a hybrid algorithm, ofwhich one ofthe simplest is the Horner iteration of Elman and
Streit [8]. From (1.2) and (4.7) we have that

(5.1) Xn Xo qn A ro qn Z Oto + Ot Z ff "J- Oln -1Zn -1

and therefore x, Xo is the final result w of the loop

W: O/n 1F0

(5.2) For i:= to n-

w:=Aw+ a i- ro.

In our experiments this method has worked quite well. So has a related and even simpler
method in which one forms q,_ I(A)r0 as a student would do who had never heard of
Horner’s rule--for the familiar factor-of-2 advantage of the Horner formula vanishes
when we are dealing with matrices rather than scalars. The disadvantage of such ap-
proaches is that the intermediate steps may correspond to residuals so large that infor-
mation may be lost due to rounding errors, though this has not troubled us in practice.
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The alternative we have preferred is to factor p.(z) numerically,

(5.3) p.(z) H (1--Z/i),
i=1

and then carry out a first-order Richardson iteration4 along the lines of Smolarski and
Saylor 34], 351:

For j:= to
(5.4)

Xj := Xj- + rj-1/ j.

(One could also formulate the calculation in terms of q,_ (2) rather than p,(z) by means
of the "grand leap" iteration described in [31], a method that can be slightly more
efficient than (5.4).) The reader may object that finding the roots of a polynomial is an
ill-conditioned problem, so that incorporating a root-finding step in a hybrid algorithm
is likely to make the algorithm unstable. Though we have not yet analyzed the matter
fully, we believe that this concern is about halfjustified. On the one hand, ill-conditioning
in the rootfinding problem per se is probably not important, for the success of our al-
gorithm ultimately depends on the size ofp,(z) in the complex plane, not the locations
of its roots. On the other hand, the size ofp,(z) is itself an ill-conditioned function of its
coefficients in general. Thus there is a stability issue, but it lies not in the rootfinding but
in the representation ofp,(z) by its coefficients in the basis of monomials, as alluded to
at the beginning of 4. The ideal hybrid algorithm might begin by constructing a more
stable basis in which to represent p,(z). We do not know how worthwhile this extra
complication would be in practice.

There is still another question of stability to be addressed. The factorization (5.3)
offers a choice of the order in which to label the roots ’, and as discussed first by Young
and more recently by Anderssen and Golub ], Fischer and Reichel 9 ], 25 ], and Tal-
Ezer [37], this ordering is important for stability. The reason is that although the final
result p,(A) will be small in exact arithmetic, floating-point errors may destroy this prop-
erty unless (approximately speaking) the intermediate productsp(A also are reasonably
small. This issue is not academic; the factors at stake are potentially enormous.

How can an ordering of the roots { ’} be efficiently selected to ensure that the
intermediate products p(A are small? Our choice has been the weighted Leja ordering
described in [25], which is defined by the condition

j-1 j-1

(5.5) [[ I-I [’-[ max [’/[ I-I [/-g[, j= 1,2, ,v-1,
J<--l<=v

assuming the points ’ are distinct. (At the first step (5.5) reduces to the condition
I’1 max __<t__<, ’1.) The idea behind this ordering is that it tends to approximately
equidistribute the points ’ in the sense of potential theory. The Leja ordering is easy to
calculate, and in the examples we have looked at, it performs dramatically better than
more elementary alternatives.

The Richardson iteration with Leja ordering also has the appealing property that
since the polynomials p(A) tend to decrease steadily in norm, the Phase II iteration can
be meaningfully stopped at any point rather than just at the end of a cycle of v steps.

When A is real, the introduction ofcomplex arithmetic by a complete factorization ofp,(z) is unnecessary.
One can factor it instead into linear and quadratic terms with real coefficients and obtain a Richardson iteration
with steps of both first and second order. See 22 ], 31 ], or 34 for details.
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It is not hard to argue that (5.5) cannot be exactly the fight ordering condition to
impose in all cases. For example, this algorithm has a sensitivity to multiple points
that is unnatural and that in contrived examples may cause instability. A more perfect,
ifmore complicated, ordering algorithm might involve the minimization ofan appropriate
Leja product not just over the points ’j, ’, but over some approximation to the
lemniscate L,. Nevertheless, our experience indicates that the Leja ordering is a reliable
solution to the instability problem in the great majority of cases.

6. Switching criterion; behavior of the idealized hybrid GMRES algorithm. The
principal feature of our algorithm that we have not yet specified is when Phase I should
be terminatedin other words, the choice of u. Optimizing this decision is a complicated
matter, for it depends on both the problem and the computing environment. For example,
if matrix-vector products are far more time consuming than other operations and plenty
ofstorage is available, then one might as well stay in Phase I forever with a "GMRES()"
iteration. On the other hand, if storage is so limited that only a few vectors can be
retained, then GMRES( is out of the question and one must switch quickly to Phase
II. Considerations such as these suggest that to a certain extent users of a hybrid GMRES
algorithm will inevitably have to make some of the decisions themselves if the aim is
optimal performance.

More can be said, however, ifwe are willing to make some simplifying assumptions.
In particular, let us assume that storage is unlimited, so that the only goal is to minimize
the computing time. Assume further that only operations on N-vectors are significant,
and define a vector operation, our fundamental work unit, to be the cost of an "axpy"
operation ax + y involving a scalar a and N-vectors x and y. Finally, assume also that

(6.1) one matrix-vector multiplication costs vector operations

for some 6 > 0. For a sparse matrix on a serial computer, 6 is approximately the average
number of nonzero elements per row.

These assumptions are mechanical ones, whose degree of validity depends on
straightforward factors readily checked. To motivate our choice of , we are now going
to make two further highly idealized assumptions that are in another category entirely--
approximately true in some cases, perhaps, but sometimes far from true, almost never
true exactly, and in any case unverifiable. First, we assume that the GMRES iteration of
Phase I accelerates as it proceeds, or at worst, converges steadily:

(6.2) Phase I: rn + <__ rnll rml]
for all m n > 0

roll r01l roll
(If rnll/llroll IIp,(A)II at each step n, as in 3.4 ), then (6.2) follows as a corollary, but
in general we only have Ilrnl[ ! [Iroll ----< IlPn(A)II,) Second, we assume that the Richardson
iteration of Phase II converges steadily at exactly the same rate as in Phase I:

(6.3) PhaselI:
I]rk[I (lira[)

k

roll
for all k >- 0.

Our strategy for choosing u is motivated by the following idea:

(6.4) Goal: equal amounts of work in Phase I and Phase II.

Figure 6.1 explains the thinking behind (6.4) by illustrating the kind of convergence
behavior we are hoping for under idealized circumstances. The hybrid algorithm cannot
take fewer iterations than GMRES(), but with luck it will take nearly as few. If is
large this will correspond to a large reduction in the total computing time.



810 N. M. NACHTIGAL, L. REICHEL, AND L. N. TREFETHEN

Phase I Phase II Phase I Phase II

n u iteration no. work

log1
logr

FIG. 6.1. Convergence of the hybrid GMRES algorithm under idealized circumstances as a function of
iteration number and computing time. The switchover step v is determined by the condition that equal amounts
oftime are spent in Phase and Phase II. The resultingfactor ofimprovement over GMRES(oe is O(u2).

Now we work out the algebra required to implement (6.4). Suppose we have just
completed step u of Phase I, the residual has been reduced by the factor of

(6.5)
IIr011 ’

and our desired accuracy is:

(6.6) convergence tolerance:

According to estimates in [29], the work performed so far is

(6.7) Phase I work: v(v + 3 + i) vector operations.

On the other hand in the Richardson iteration of Phase II the work per step will be +
6 vector operations, and by (6.3), the total number ofsteps to convergence will be u log e/
log rmhence in Phase II, u(log e/log r ). This implies that

log e_ ) vector operations.(6.8) Phase II work: u( + 6)
log r

The condition (6.4) can be realized by equating the fight-hand sides of (6.7) and (6.8):

(6.9) switching condition:
log e_ 1).v+3+6=(1+6)
logr

To summarize, here is how we decide when to terminate Phase I. During Phase I
the left-hand side of (6.9) increases monotonically and the fight-hand side decreases
monotonically (because is decreasing). We switch to Phase II as soon as the left-hand
side exceeds the fight-hand side.

Besides its aesthetic appeal, the condition (6.4) has some more solid justification.
In particular, we have the following theorem.

THEOREM 1. Suppose the assumptions above hold, including (6.2) and (6.3), and
let the transition from Phase I to Phase II be determined by (6.9). Then the hybrid
algorithm converges, and no other choice ofu could have reduced the computing time by
more than afactor oftwo.

Proof. Increasing v can shorten the computation only by reducing the length of
Phase II, and since Phase II consumes only halfofthe computing time, the improvement
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can be at most a factor of two. On the other hand decreasing u would mean entering
Phase II with an inferior polynomial p,(z) and further to travel with it, by (6.2) and
(6.3), so that the work in Phase II would have to increase. Since that work is already
half of the total, the maximum possible improvement is again a factor of two. U]

So long as the assumptions (6.2) and (6.3) hold, the reasoning above shows that
our strategy for choosing u is actually optimal in the sense that any other choice might
lead to a penalty of a factor greater than two.

7. Practical safeguards. In practice, of course, our idealized assumptions do not
always hold. They may fail in several ways, and one of these is particularly important:
equation (3.4) may fail, leaving us with

(7.1) r ]o p(A

In such circumstances (6.3) will be far from satisfied, and the Richardson iteration of
Phase II may converge much more slowly than expected or may not converge at all. The
reason why (7.1) may occur is that the GMRES algorithm depends upon the particular
initial residual r0 and, consequently, the coefficients ofp,(z) are affected by which com-
ponents happen to be well represented in that vector.

There are several ways in which one might modify the hybrid algorithm to try to
minimize the risk of occurrence of (7.1). For example, one might impose a threshold
value of rminsist that switchover to Phase II not take place until rn has been reduced
by a factor of at least, say, 2. Or one could monitor the details of convergence in Phase
I more carefully than we have proposed, forbidding switchover until some evidence has
accumulated that the rate ofconvergence is steady. Another, more expensive, idea would
be to apply Phase I to two or more independent vectors r0 in parallelm"block GMRES."
This would lead to a more reliable polynomial p,(z), though the extra work would be
partly wasted since the residual rn of actual interest would not be reduced. For problems
with multiple fight-hand sides, however, such an idea would be natural.

But there is a more fundamental implication of (7.1), and that is that any robust
hybrid iterative code must include safeguards for coping with failure. If the convergence
of the Phase II iteration proves unsatisfactory, there are various actions that may be
taken. The simplest might be to restart the hybrid algorithm entirely from scratch from
the current best available solution x,. This would mean throwing away the information
obtained in the GMRES steps already carried out, but ifp,(z) has performed disappoint-
ingly, one might argue that that information is unreliable anyway.

The approach we have used instead is to return to the original GMRES iteration of
Phase I and resume that iteration where it was interrupted. Returning to Phase I in this
way is an easy matter if one has retained the necessary vectors in storage. Once a new
polynomial p,,(z) is obtained that is deemed to be substantially better than the old one,
we cycle back again to Phase II. To be precise, here is our current scheme, whose effects
in one example can be seen in Fig. 8.6 below:

1. If any cycle of u steps of Phase II reduces rll by a factor less than fmthat is,
if the convergence is more than twice as slow as expectedmreturn to Phase I.

2. Carry out additional GMRES steps u + 1, u + 2, ..., u’ of Phase I until the total
computing time in Phase I has doubled, and calculate a new polynomial p,,(z).

3. Begin a new Phase II iteration with the new polynomial p,,(z), starting from the
previous best value x, which will come either from the previous Phase II if the
convergence there was slow but positive, or from the new Phase I if there was
actual divergence in the previous Phase II.
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Since this algorithm reverts to Phase I whenever the convergence ofPhase II is going
badly, it can never do much worse than GMRES(oe), as stated in the following theorem.

THFORFM 2. The hybrid algorithm with the safeguards described above always
converges and never requires more than three times as much computer time as
GMRES(o).

Sketch ofproof. The factor of 3 is attained if the first Phase II computation proceeds
twice as slowly as expected in a case where GMRES(oe would have converged to the
desired precision at step u + 1. Careful consideration of the details of the algorithm,
which we shall omit, shows that further cycling between Phase II and Phase I never leads
to a factor greater than 3.

Ofcourse we generally expect convergence much faster than for GMRES. We remind
the reader that Theorem 2 depends on our assumption that storage is not limited, so
that the hybrid algorithm can be implemented as described. It also ignores rounding
errors.

The details of the safeguarding procedure proposed above are arbitrary. There are
many other ways to make a hybrid scheme robust, and we hope to have more to say on
the subject in the future.

8. Numerical experiments. Three sorts ofproblems are chosen most often for testing
numerical algorithms: realistic, artificial, and random. Realistic test problems have the
advantage that they are tied directly to applications and thus, in a sense, are most reliable.
Artificial problems have the advantage that they can be made cleaner and more extreme
in their behavior, so that they provide more insight into fundamentals. As for random
problems, they also have advantages in some contexts, but not here, for none of the
known nonsymmetric matrix iterations beat the O(N3) (serial) performance of direct
methods for random matrices [20]. In other words, iterative methods are useful only
for matrices with special properties, which they typically acquire through preconditioning.

In this section we apply our hybrid algorithm to some test problems of the artificial
kind and illustrate some of its good and bad properties in the process. We hope to
investigate more realistic problems in the future.

Each of our experiments compares four algorithms:
1. Hybrid GMRES (solid curves),
2. Restarted GMRES(u) (solid curves),
3. CGN (dashed curves),
4. CGS (dots).5

So far as we know, these are the best matrix iterations available6 [20 ]. TO keep the
comparison simple, our restarted algorithm is GMRES(u), where u is the same switchover
step number determined adaptively by the hybrid algorithm. Thus our restarted and
hybrid GMRES iterations are identical for the first u steps, and from that point on the
hybrid algorithm re-applies the same residual polynomial p,(z) cyclically, while the re-
started algorithm finds a succession of new optimal polynomials of degree u. Except in
Fig. 8.6, all of the hybrid results shown come from the idealized algorithm described in

6, with none of the safeguards mentioned in 7.
In each experiment the dimension is N 1000 (except as noted), the convergence

tolerance is e 10 -5, and the fight-hand side b and the initial guess x0 are random real
vectors with independent normally distributed elements.

CGS convergence curves are often so erratic that they obscure the rest of the plot. To avoid this clutter
without suppressing convergence rates that are often very impressive, we have settled for a single dot representing
the residual at the end of each CGS iteration.

See the further remarks about CGS in the Conclusions.
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For each example we present three plots. The first plot shows log10 ][rn[[ as a function
of the iteration number n. By this measure the hybrid algorithm can do no better than
GMRES(), whereas CGS and CGN may do better or worse depending on the matrix.
The second plot shows log10 [Irn][ as a function of work measured by vector operations,
defined in 6. By this measure the hybrid algorithm may outperform restarted GMRES
by a factor as high as 0(,). The third plot shows the roots ofp,(z) in the complex plane
together with the associated GMRES lemniscate L and the lemniscate L passing through
the origin. As mentioned in 3, L gives an indication of the spectrum or z-pseudospec-
trum ofA.

Example 1. Our first and simplest example, shown in Fig. 8.1, is the triangular
Toeplitz matrix (2.2). This is an example where the hybrid algorithm outperforms
GMRES() very cleanly. Plotted against the step number, the GMRES(u) residual con-
verges smoothly and linearly and the hybrid algorithm lags a little behind. Plotted against
work, however, that linear convergence curve becomes scalloped, a common phenomenon
for restarted GMRES which reflects the fact that later cycles tend to waste time redeter-
mining information that was already obtained in earlier cycles. The hybrid algorithm
now does much better, achieving rapid and steady convergence after the point of switch-
over. In fact, the figure matches the idealized curves of Fig. 6.1 remarkably well.

A comparison of Figs. 2.1 and 8.1 reveals that GMRES has done a good job of
locating the -pseudospectrum ofA.

In this example the hybrid algorithm is the fastest of the four algorithms asymptot-
ically and is roughly tied with CGN for the specified tolerance e 10 -5 CGS converges
erratically and somewhat more slowly. GMRES() converges much more slowly.

Example 2. A similar but somewhat more complicated Toeplitz example is the
Grcar matrix (3.6) (Fig. 8.2 ). As mentioned above, this is a case where ChebyCode and
some of the other hybrid algorithms would fail since the pseudospectrum does not lie in
a half-plane. Again the hybrid GMRES algorithm substantially outperforms GMRES(u).
CGS does about equally well. CGN does much better, however, because this is a matrix
whose singular values (smoothly distributed in the interval 0.89, 3.24 are much better
behaved than its eigenvalues and pseudo-eigenvalues (encircling the origin).

Example 3. For an example in which CGN does poorly, consider the tridiagonal
Toeplitz matrix (Fig. 8.3)

51 3
5.1 3

(8.1) a 2 5.1 3 (1000 1000).
2 5.1 3

2 5.1

The symbol of this matrix isf(z) 2z- + 5.1 + 3z, which maps the unit circle into an
ellipse whose intersection with the real axis is [0.1, 10.1 ]. Consequently the condition
number is K 101 for large N, and since the spectrum and pseudospectra do not wrap
around the origin, the Krylov subspace iterations do relatively well.

In this example the convergence of the Richardson iteration of Phase II is disap-
pointing; (6.3)does not hold very closely. Nevertheless, the plot of [[rn[[ against work
reveals that the hybrid iteration is the fastest. The GMRES lemniscate closely matches
the elliptical pseudospectrum.

Example 4. Our fourth example is bidiagonal but not Toeplitz (Fig. 8.4). On the

d.ional this matrix has the elements .5 w, .5 o, where o -.5 +
V3 /2 is a cube root of unity. The superdiagonal contains uniformly distributed random
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FIG. 8.1. Example 1: the Toeplitz matrix (2.2). The CGN and hybrid GMRES algorithms are the winners.
For this and the subsequent examples, the dimension is N 1000, except as noted.
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(c) GMRES lemniscate at step v 24

FIG. 8.2. Example 2: Grcar’s Toeplitz matrix (3.6). The hybrid GMRES algorithm again beats GMRES(v),
but CGN does much better.
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(c) GMRES lemniscate at step 13

FIG. 8.3. Example 3" the tridiagonal Toeplitz matrix (8.1). This matrix has condition number K 101,
and CGN converges much more slowly than the other iterations. The hybrid GMRES algorithm is the winner.
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FIG. 8.4. Example 4: a bidiagonal matrix with three distinct eigenvalues. The CGS and hybrid GMRES
algorithms are the most efficient.
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numbers in the interval 0, 1.5 ]. This is a matrix whose spectrum consists ofjust three
points but whose pseudospectra are larger domains surrounding those points. The singular
values are not very tightly clustered, and we find that CGN converges more slowly than
any of the other algorithms. Among the three Krylov subspace iterations the hybrid
GMRES iteration does best.

Figure 8.4(c) reveals an outlying root ofp,(z) that is worth a comment. Since the
pseudospectra have approximate three-fold symmetry but (= 13) is not divisible by
three, it is not surprising that one of the linear factors of the residual polynomial should
be nearly useless (compare Fig. 2.2). The GMRES lemniscate L contains a very small
lobe near the outlying root (too small to be apparent in the picture), and thus this
example illustrates that the connection ofL with a pseudospectrum ofA is not perfect.
The outlying root does no harm to the hybrid iteration, however.

Example 5. Finally, we give an example in which the hybrid GMRES algorithm
performs poorly, at least in its idealized form described in 6. Let A be a diagonal matrix
of dimension N 1001 whose diagonal entries are complex numbers lying on the unit
semicircle in the fight half-plane. Rather than a uniform distribution of points along the
semicircle with respect to arc length, we take a uniform distribution with respect to the
imaginary coordinate,

aj= eJ, O= sin- ((j- 501)/ 500), l=<j=<1001.

These points are sparsely located near ___i, and as a result, for most initial residuals r0,

GMRES can reduce the residual significantly without going to the considerable trouble
of making p(z)l substantially smaller than near z _i. This is exactly what is
revealed in Fig. 8.5. Assumption (6.3) does not hold closely, and we end up with a Phase
II iteration that makes little progress. GMRES(u) beats the hybrid algorithm by a large
factor, and CGS does even better. Since the singular values are all equal to 1, CGN
converges in one step.

These observations, and Fig. 8.5, pertain to the idealized hybrid algorithm with
none of the safeguards mentioned in 7. In practice, of course, one would never permit
so many iterations to be wasted in Phase II before returning to the GMRES iteration to
get better information about A. In Fig. 8.6, we do this. The same example is run with
the safeguarded hybrid algorithm described in 7 and the convergence becomes acceptable.
Note the plateau in Fig. 8.6 (b), revealing a return to Phase I that generates an improved
residual polynomial p,,(z) without reducing the best available residual.

This example is worth dwelling on because it reveals how important the quality of
the information in r0 is to achieving rapid convergence in Phase II. To put it succinctly,
for hybrid iterative algorithms, multiplicities matterweven if the matrix is normal. Ei-
genvalues of higher multiplicities correspond to larger eigenspaces, so they tend to be
better represented in a random initial vector, which increases their influence on p,(z).
To demonstrate this, Fig. 8.7 repeats the computation of Fig. 8.5 for a new matrix, which
is exactly the same as before, except that the multiplicities ofthe end eigenvalues __+i have
been increased from to 101. Thus the dimension ofA is now 1201. The convergence
of the hybrid algorithm without safeguards becomes quite rapid, and the explanation
can be seen in the difference of the lemniscates L1 in Figs. 8.5 and 8.7.

We close this section with four final examples to illustrate the difference between
our hybrid GMRES algorithm, based on the residual polynomial p,(z) derived from
GMRES, and a "hybrid Arnoldi" algorithm in which p,(z) is taken to be the normalized
polynomial whose roots are the Arnoldi eigenvalue estimates at step u. Figure 8.8 compares
the convergence ofthese two algorithms for Examples 2, 3, 5, and 7 above. For Example
3 the Arnoldi variant is faster in Phase II by about 50 percent, but in our experience this
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(c) GMRES lemniscate at step 6

FIG. 8.5. Example 5: a diagonal matrix ofdimension N 1001 with eigenvalues on the unit semicircle in
the right half-plane. The hybrid algorithm without safeguards constructs a residual polynomial p,( z) that is not
much smaller than near z +_i, and the convergence is very slow.
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FIG. 8.6. Example 5 again, but solved now with the safeguarded hybrid GMRES algorithm described in
7. The algorithm returns to Phase to get better information, and ends up solving the problem with reasonable

efficiency.
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FIG. 8.7. Example 5 a third time, except that now, the matrix has been changed by increasing the multiplicities’
ofthe eigenvalues +ifrom to 101, so that the dimension becomes 1201. Now p,( z contains better information,
and the convergence ofthe hybrid algorithm, even without safeguards, is rapid.
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FIG. 8.8. Comparison ofthe hybrid GMRES algorithm with a "hybrid Arnoldi" variant for Examples 2,
3, 5, and 7 above. Usually, though not always, the Arnoldi variant performs less well, for the reasons discussed

in2.
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is not typical. More often it is slower, as in Example 7. In addition, as in Examples 2
and 5, it is not uncommon for the Arnoldi variant to stall, necessitating a return to Phase
I that may not be required by the hybrid GMRES algorithm. In principle the hybrid
Arnoldi algorithm can break down completely with a division by zero, as mentioned in

2, but of course the probability of such an event is zero.

9. Conclusions. In conclusion, we would like to summarize the relationships as we
see them between our hybrid GMRES algorithm and the four principal classes of com-
peting algorithms for the iterative solution of nonsymmetric linear systems: the restarted
and truncated Krylov space iterations such asGMRES(k) andORTHOMIN(k); previous
hybrid algorithms; the normal equations-conjugate gradients combination known as
CGN; and the Lanczos-type algorithms such as CGS. We assume as usual that the cost
of vector operations is significant enough that a "pure" Krylov space iteration such as
GMRES( is not competitive.

The comparison with the first two groups of alternatives turns on the question: how
good is the information contained in the initial steps of an Arnoldi/GMRES iteration?
The first group, the restarted and truncated algorithms such as GMRES(k), are motivated
by the assumption that this information is not reliable and should be replaced regularly
as the iteration proceeds even if this increases the work per step substantially. The second
group, the existing hybrid algorithms summarized in our Introduction, are motivated by
an opposite assumption: that initial Arnoldi/GMRES steps may produce information
solid enough that it makes sense to perform further manipulations and "data compression"
upon it, in particular, the solution of an approximation problem in the complex plane
that typically leads to an iteration polynomial of lower degree.

Our hybrid GMRES algorithm entails an assumption intermediate between these
two. It assumes that the information coming from Arnoldi !GMRES steps is too valuable
to be discarded, but not so solid that further data compression is appropriate. Of course
the validity of this assumption depends upon various factors, notably, the initial vector
for the GMRES iteration and the choice of the switchover step u. We believe that it is a
reasonable assumption in many cases, however, and this view of the matter, combined
with our numerical experiments, leads us to believe that for most problems our algorithm
is faster than GMRES(k) and more robust than other hybrids.

The third comparison, with CGN, is relatively straightforward, at least in principle.
The hybrid GMRES algorithm should be the winner when A is ill-conditioned, loosely
speaking, or more precisely, when its squared singular values are less favorably distributed
than its (pseudo-) eigenvalues in the sense described in [18].

In our opinion, the most serious competitors are the Lanczos-type algorithms such
as CGS [4 ], whose work and storage requirements, unlike those of GMRES and OR-
THOMIN, do not grow with the iteration number. These algorithms do not minimize
anything, and their convergence is often quite erratic, but it is usually very fast. Most
recently (since the time when this manuscript was first submitted for publication), al-
gorithms in this class with less erratic convergence curves have been developed by Freund
[10] and van der Vorst [41]. Examples can be devised for which either CGS or hybrid
GMRES is superior. We hope that a fuller understanding of the comparison between
these two classes of iterative methods will come with further analysis, experiments, and
algorithmic development.
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