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ABSTRACT 

The eigenvalues of a nonhermitian Toeplitz matrix A are usually highly sensitive to 
perturbations, having condition numbers that increase exponentially with the dimension 
N. An equivalent statement is that the resolvent ( ZZ - A)- ’ of a Toeplitz matrix may be 

much larger in norm than the eigenvalues alone would suggest-exponentially large as a 
function of N, even when z is far from the spectrum. Because of these facts, the 

meaningfulness of the eigenvalues of nonhermitian Toeplitz matrices for any but the 
most theoretical purposes should be considered suspect. In many applications it is more 

meaningful to investigate the e-pseudo-eigenvalues: the complex numbers z with 
ll(zZ - A)-‘11 > &-l. This paper analyzes the pseudospectra of Toeplitz matrices, and 

in particular relates them to the symbols of the matrices and thereby to the spectra of 
the associated Toeplitz and Laurent operators. Our results are reasonably complete in 
the triangular case, and preliminary in the cases of nontriangular Toeplitz matrices, 

block Toeplitz matrices, and Toeplitz-like matrices with smoothly varying coefficients. 
Computed examples of pseudospectra are presented throughout, and applications in 
numerical analysis are mentioned. 
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1. INTRODUCTION 

Many of the nonhermitian matrices that arise in applications have eigenval- 
ues that are highly sensitive to perturbations. Indeed, for a family of matrices 
with variable dimension N, the sensitivity of the eigenvalues often increases 
exponentially as N -+ 03. In such circumstances eigenvalue analysis may lead 
to misleading conclusions, and the reasons lie deeper than the possibility of 
rounding errors on a computer. Highly sensitive eigenvalues are a reflection of 
the fact that the basis of eigenvectors is highly ill conditioned, and when this is 
the case, it is unlikely that there is good reason for working with that basis. Yet 
any statement about eigenvalues depends ultimately on the properties of the 
associated eigenvectors, whether or not they are mentioned explicitly. 

We believe that in problems like this, a fruitful alternative is the analysis of 
pseudo-eigenvalues. In particular, the purpose of this paper is to investigate the 
pseudospectra of various kinds of Toeplitz matrices, a special family of matri- 
ces with broad applications to integral equations, finite-difference equations, 
matrix iterations, spline approximation, signal processing, and other problems. 
Let A be a real or complex square matrix of dimension N, and let )I * )I denote 
the 2-norm. The definition of pseudo-eigenvalues is as follows: 

DEFINITION. Given E > 0, the number X E @+ is an &-pseudo-eigenvalue of 
A if any of the following equivalent conditions is satisfied: 

(i) X is an eigenvalue of A + E for some E E GNxN with 11 E 1) < E; 
(ii) HUE@‘, IIuIJ = 1, such that I\( A - Xl)uJI < E; 
(iii) 11(x1 - A)-‘11 > E-I; 
(iv) uN(xl - A) < E. 

The set of all E-pseudo-eigenvalues of A, the &-pseudospectrum, is denoted by 
A,( A) or simply At. 

A pseudo-eigenvalue, in other words, need not be near to any exact 
eigenvalue, but it is an exact eigenvalue of some nearby matrix. The vector u 
in (ii) is a (normalized) &-pseudo-eigenuector. The matrix (Xl - A)-’ in (iii) is 
the resolvent of A at the point X, and indeed, any statement about pseudo-ei- 
genvalues is equivalent to a statement about norms of the resolvent. In 
condition (iv), uN(XI - A) denotes the smallest singular value of XI - A. The 
proof of equivalence of (i)-(iv) is an easy matter. 

If A is an operator of infinite dimension instead of a matrix, we take 
condition (iii) to be the definition of A,( A). Equivalents of the other defini- 
tions can be obtained with slight modifications to ensure that the sets are 
closed. Our definitions generalize readily from matrices to operators, and also 
to other norms, but we shall not pursue such generalizations here; see 1261. 
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Throughout this paper we shall use the following notation: D is the open 
unit disk in the complex plane, S is the unit circle, and A = D U S is the 
closed unit disk. The corresponding disks and circles of arbitrary radius r are 
denoted by D,, S,, and Ar. 

To begin with the simplest possible example, consider the Jordan block’ 

A= (NX N). (1.1) 

The spectrum A = A0 of A is just the point {0}, but when N is large and E is 
small, its pseudospectrum A, is approximately the disk A,. with radius 

r = 5(~/5)“~ = 5 + 0( N-‘) P-2) 
(see Theorems 2.2 and 2.3). In many numerical experiments, A, represents a 
more meaningful spectrum for practical purposes than A. For an example of 
the relatively obvious kind involving rounding errors, suppose we take N = 50 
and work with the numerically computed matrix A: = QAQT, to ensure that 
rounding errors occur, where Q is a random unitary matrix. Figure l(a) shows 
that most of the “exact” eigenvalues of 2, computed numerically, lie near the 
circle S,, where r = 2.45 is the value given by (1.2) with E taken equal to V% 
(to model accumulation of rounding errors) times machine epsilon.’ This 
is consistent with the backward error analysis made famous by Wilkinson, 
which guarantees that a stable eigenvalue computation will yield the exact 
eigenvalues of a slightly perturbed matrix. 

In Figure l(b) we perturb A explicitly rather than relying on rounding 
errors. The figure shows a superposition of the eigenvalues of 100 matrices 
A + E, where each E contains independent normally distributed random 

’ Since this matrix is defective, any mathematician knows that analysis of eigenvalues 

alone is insufficient. However, our view is that whether or not a matrix happens to be exactly 

defective is of little practical importance (and indeed, is impossible to determine numerically). 

The behavior of this example would change negligibly if the diagonal elements were per- 

turbed by suf&iently small quantities to make the matrix diagonalizable; the condition 

number of the basis of eigenvectors would become finite, but still arbitrarily close to 0~. The 

same comments apply to the triangular matrices of Section 2, all of which are defective. The 

matrices of Section 3 are in general nondefective, but their eigenvalues are still ill behaved. 

‘All calculations in this paper were carried out in Matlab on a Sun workstation with 

machine epsilon 2-52 is 2.2 x 10-16. Except for Figures l(a) and 2, all of our results would 
look the same in exact arithmetic. 
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(a) L = QAQT (b) 100 matrices A + E, 1) EJI = E = lo-’ 

FIG. 1. (a) Numerically computed eigenvalues of the 50 x 50 matrix A, numeri- 
cally similar to the jordan block A of (1.1). The exact eigenvalues of A are all 0. (b) 

Eigenvalues of 100 perturbed matrices A + E, where E is a random matrix with 

II E II z E = 10-S. 

complete elements of standard deviation 10-s/2 v%, hence with )I E )I = lo-’ 

[8]. Much the same behavior is apparent as in Figure l(a), except that r now 
takes the somewhat larger value I: 3.35 corresponding to (1.2) with E = lo-‘. 

It is not only explicit computation of eigenvalues that tends to detect the 
pseudospectra instead of the spectrum. For example, Figure 2 shows com- 
puted norms of powers )( ;inII as a function of n for the same 50 x 50 matrix 
A as in Figure I(a). Though nilpotent in theory, this matrix is evidently not 
even power-bounded in practice; the norms grow on average at a rate close to 
r” = (2.45)“. 

In this paper we shall generalize this example to obtain a wide variety of 
pseudospectra of Toeplitz matrices. Our results are closely connected with the 

FIG. 2. Numerically computed norms of powers I( AnIl for the same matrix A as in 
Figure l(a). In exact arithmetic 1) AnIl would be zero for la > 50. 
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wealth of results that have arisen around Toeplitz matrices and operators since 
Otto Toeplitz first studied such problems at the beginning of this century. In 
particular, three sorts of operators and matrices have been of interest over the 
years: 

(i) Laurent operators (doubly infinite matrices), 
(ii) Toeplitz operators (infinite matrices), 
(iii) Toeplitz matrices (finite matrices). 

If the operator or matrix is hermitian, then the spectra are insensitive to 
perturbations and identical for Laurent and Toeplitz operators, and also for 
Toeplitz matrices in the limit N + 00. These problems have been studied by 
Szegij and others and are now very well understood [12, 151. Our interest, 
however, is in the nonhermitian case (more precisely, nonnormal), where the 
spectra are highly sensitive to perturbations and very different for the three 
problems (i)-(iii). The pseudospectra, by contrast, are quite well behaved. 

Our results, which are partly empirical, can be summarized as follows. For 
small E and large N, the e-pseudospectrum AE of a Toeplitz matrix is roughly 
the same as the spectrum of the associated Toeplitz operator, namely, a region 
in the complex plane bounded by the curve f(S), where f(z) is the symbol of 
the matrix. More precisely, A, is approximately a region bounded by f( S,) and 
f(S,), where r < 1 and R > 1 are parameters dependent on E and N; the two 
families of curves reflect the existence of geometrically decaying (r < 1) or 
increasing (R > 1) pseudo-eigenvectors. 

In our opinion these conclusions imply that the existing very different 
results on exact spectra of nonhermitian Toeplitz matrices, summarized after 
Theorem 3.1 below, are of dubious practical significance. 

There are many further interesting problems involving spectra of per- 
turbed matrices and operators that are not discussed here, such as eigenvalues 
of operators after infinitesimal perturbations (approximate eigenvalues as de- 
fined in [13]) or perturbations that are small in rank rather than in norm. In 
addition, there are other kinds of Toeplitz operators of interest besides (i)-(iii), 
particularly the family of circulunt matrices, whose spectra behave much like 
those of Laurent operators but are also related to the spectra of Toeplitz 
matrices, a connection exploited elegantly by the preconditioned conjugate 
gradient iteration devised by Strang [5]. H owever, because circulant matrices 
are normal, their spectra are not very sensitive to perturbations, and these 
matrices will therefore not be discussed in this paper. 

The idea of pseudo-eigenvalues seems to have been proposed first by 
Varah in 1979 [29]. Our own involvement began with [25], which discusses 
applications to matrix iterations. That paper was motivated by earlier work on 
the highly sensitive eigenvalue problems that arise in the numerical solution of 
partial differential equations by spectral methods, and an analysis of such 
problems from the point of view of pseudo-eigenvalues is given in [21]. A 
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survey of the theory of pseudo-eigenvalues and their applications in numerical 
analysis is in preparation [26]. 

However, the roots of the idea of pseudo-eigenvalues in numerical analysis 
go deeper. In the Russian literature on numerical stability, especially, one 
finds various notions of the spectrum of a family of matrices {AN}, which 
correspond to our e-pseudospectra in a limit E -+ 0 [3, 91. For example, the 
spirit of this paper is very much the same as in Section 6.5 of the book by 
Bakhvalov [3]. Our own formulation in terms of finite E may seem cumber- 
some, but it is unavoidable if one wants to use spectral-type ideas to get sharp 
estimates of matrix behavior-for example, stability conditions for method-of- 
lines discretizations of partial differential equations that are necessary as well 
as sufficient [21]. See also [30], which contains some figures much like ours. 
Besides these theoretical advantages, we think that the finite-e approach is a 
natural one for practical problems, since it enables one to make interesting 
statements about individual matrices. 

2. TRIANGULAR TOEPLITZ MATRICES 

Let A be an upper triangular Laurent operator, Toeplitz operator, or 
Toeplitz matrix defined by coefficients ak E CC, 0 < k Q N - 1 < w, 

A= (N x q (2.1) 

and let f(z) be the symbol of this operator or matrix, 

f(z) = kco%zk. (2.2) 

Since we are not concerned with sharp regularity conditions, we assume 

merely that f(z) belongs to the Wiener class of functions with absolutely 
convergent Taylor coefficients, 

P-3) 
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so that in particular, f(z) is analytic in D and continuous in A. In the case of a 
Toeplitz matrix this condition is vacuous, and we shall sometimes write the 
symbol as fN( z) to emphasize the finite dimensionality. 

The spectrum A( A) is well understood, and the results are summarized 
in the following theorem. For a highly readable presentation of the mathe- 
matics related to this theorem and to our analogous Theorem 3.1 for the 
nontriangular case, we recommend [31]. 

THEOREM 2.1. Let A and f be as described above. 

(i) If A is a Laurent operator, A( A) = f(S). 
(ii) If A is a Toeplitz operator, A( A) = f(A). 
(iii) If A is a Toeplitz matrix, A( A) = f({O}) = {a,,}. 

Proof (i): The result for Laurent operators was first proved by Toeplitz in 
1911 [23]. If A is a Laurent operator, then Au is a convolution a*u, where 
a is the sequence of values { a_k}. Since u E l2 and a E 1’ c l2 by assump- 
tion, the convolution is equivalent to an operation of pointwise multiplication 
in the Fourier domain L2[ - ?r, r]. To be precise, Au has semidiscrete 
Fourier transform Au(e) = 6(0)$(O), and the vector (XI - A)-‘u has 
Fourier transform 

w “P) 
X - “(0) = X -f(ei”) ’ 

Since G(e) = f(eie) is a continuous function on a compact domain, the resol- 
vent operator is evidently well defined and bounded in norm if and only if the 
denominator is never zero, i.e., X#f(S), as claimed. 

(ii): The result for Toeplitz operators was first proved by Wintner in 1929 
[34]. For any z E D, the vector (1, z, z2,. . . )T belongs to 2’ and is obviously 
an eigenvector of A with eigenvalue f(z). This proves that A includes f(D), 
and since A must be compact, it includes f(A). Conversely, let he G \ f(A) 
be arbitrary. Then [h - f(z)]- ’ is a bounded analytic function of the Wiener 
class in the unit disk, whose Taylor coefficients are easily seen to provide the 
matrix entries of an inverse (also Toeplitz) of the operator Xl - A. In other 
words, the resolvent (XI - A)- ’ exists as a bounded operator, so h is not in 
the spectrum. 

(iii): Since A is triangular, the result for Toeplitz matrices is trivial. n 

Note that the fact that A is triangular was not used in the proof of (i) 
above, and thus the same statement carries over to nontriangular Toeplitz 
matrices and operators, as we shall discuss in the next section. An alternative 
proof of (ii) can be obtained as a corollary of Theorem 2.2 below. 
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So much for the standard results. Now, what about pseudospectra? A 
comparison of statements (ii) and (iii) of Theorem 2.1 shows that the limit 
N -+ 00 is a discontinuous one as far as exact spectra are concerned, The 
pseudospectra, however, behave continuously. The fundamental observation is 
that if E is small and N is large, then A, looks not like f((O}) but instead more 
like 

with 

l/N N-l 

= 1 + O(N-l), cN= & iaki. (2.5) 

(The constant cN is not exactly right, as we shall see below, but its precise 
value matters little because of the Nth root.) Thus as N -+ 03 we have 
AC = f(A), which is the same as the spectrum of the associated Toeplitz 
operator. 

Before stating theorems to this effect, let us consider some examples. 
Figures 1 and 2 already dealt with the simplest nontrivial triangular Toeplitz 
matrix: a Jordan block. Here are three further matrices of interest: 

with spectra 

A= 

‘0 1 1 
0 1 1 

0 1 1 
0 1 

0 

1 

B= 

A( A) = (O), A(B) = A(C) = (1). 

(2.6) 
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Despite appearances, the dimension in each case is N. [Note that A is banded, 

the entries of B decay geometrically, and the entries of C do not decay at all, 

which means that it violates our assumption (2.3).] The symbols of these 
matrices in the limit N + 00 are 

f*(z) = 2 + z2, 

fB( 2) = I + :( 
1+2/4 

z + $9 + +3 + * * * ) = - 

1 -z/2’ 

1+z 
f,(z)=1+2(2+22+z3+‘.*)=I_t, 

and the corresponding regions f(A) are 

f*(A): a region bounded by a limacon, 

fs(A): the closed disk of radius 1 about X = 3, 
&(A): the closed right half plane. 

Figures 3-5 show computed &-pseudo-eigenvalues for A, B, and C for both 
N = 50 and N = 100. In each plot, the eigenvalues of ten random complex 

(a) N = 50 (b) N = 100 

0 

-2 L 
-2 

FIG. 3. Eigenvalues of A + E (2.6), 1) El1 = E = lo-‘; the results from ten ran- 

dom complex perturbations E are superimposed. The eigenvalues of A are all 0. The 

solid and dashed curves represent f(S,) with r given by (2.5) and equal to 1, 

respectively. Thus the outer part of the dashed curve is the boundary of the spectrum of 

the associated Toeplitz operator of dimension N = 03. 
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.. _-...- ._.._._. 

1 2 3 

(a) N = 50 

-1.51 I 
0 1 2 3 

(b) N = 100 

FIG. 4. Same as Figure 3, but for the matrix B of (2.6). The eigenvalues of B are 

all 1. 

perturbations A + E with (1 E (( = lOma are superimposed, and on top of these 

are drawn the curves f(S,) with T = (E/c~)~‘~ (solid) and r = 1 (dashed). In 
each case most of the computed eigenvalues lie close to the solid curve, in 

keeping with (2.4). 

(a)N = 50 (b) n = 100 

FIG. 5. Same as Figures 3 and 4 but for the matrix C of (2.6). The eigenvalues of 

C are all 1. Note the different scales in (a) and (b). As N + 03, the pseudospectra grow 

linearly to 611 the right half plane. 
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The following two theorems make these observations precise. Although the 
theorems are stated for upper triangular Toeplitz matrices, the same results 
are valid in the lower triangular case, and indeed, the identity A,( A) = A,( AT) 
holds trivially for any matrix A and any E. 

THEOREM 2.2. Let A, be an N x N (nondiagonal) triangular Toeplitz 
matrix with entries { ak} and symbol f& z). If cN and r are defined by 

then for any E 2 0, 

fN(Ar) c k( AN) cfN(A) + A~. (2.8) 

THEOREM 2.3. Let A be a triangular Toeplitz operator with abso- 
lutely summable entries { ak} and symbol f(z), and let A, denote the N x N 
triangular Toeplitz matrix defined by ao, . . . , aN_l. Then 

jy_Ae( AN) = f(A) + AE = AE( A) 

for each E > 0, and therefore 

F?. lii-iAE( AN) = f(A) = A( A). 

(2.9) 

(2.10) 

Before proving these theorems, let us clarify a few points. In Theorem 2.2, 
the motivation is problems with E e cN and thus r < 1, but this is not 
essential; the theorem holds as stated even if r > 1. Numerical experiments 
like those of Figures 3-5 suggest that the first set inclusion in (2.8) is typically 
much sharper than the second. In Theorem 2.3, the limit of sets is defined by 
lim y+8 AV = {Z EC : z, -+ z for some z, E A,}. The assumption of absolute 
summability of the entries {ak} in this theorem can certainly be weakened. 

Proof of Theorem 2.2. To prove the first set of inclusion in (2.8) we 
construct pseudo-eigenvectors as follows. Given E 2 0, let r be defined by 
(2.7). Now, given any X E fN(A,), let h = fN( z) for some z E Ar and define 
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u = (1, z, z2,. . .) 2 N-l)T. Then we readily calculate 

t 0 
UN-1 * 

(AI-AN)u=zN a; - : . u, 

a2 a3 

, a1 a2 a3 
. . . 

‘N-1 0 

(2.11) 

and since the norm of this matrix is bounded by cN, this implies 

(2.12) 

In other words, u is an e-pseudo-eigenvector of A,, and thus X E A,( AN) by 
condition (ii) of the definition in the Introduction. 

Our proof of the second set inclusion in (2.8) is less elementary; we do not 
know if it can be simpIified.* If he A,( AN), then by condition (iv) in the 

Introduction, uN(XI - AN) f E, or equivalently, with the definition 

’ UN-1 *** a2 a1 a0 - X‘ 

al a0 -X 

HN= a2 . . . a,- h (2.13) 

a1 

,a0 
-1 *. 

I 

oN( HN) < E. This matrix HN is known as a Hankel matrix, and by a result in 

the theory of AAK, or Caratheodory-Fejh (CF), approximation that goes back 
to Takagi in 1924, uN( HN) is equal to the distance in the supremum norm 

ll4~ll~ = ~UP,,S /4(z) I between 

aN_lz + -” +(a,- h)zN 

and its best approximation r(z) + g(z), where r(z) is a rational function of 

order at most N - 1 with no poles in A, and g( z-‘) is analytic and bounded 
in A [l, 241. (The order of a rational function is the maximum of the degrees of 

*It can: see the Note Added in Proof. 
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its numerator and denominator.) Therefore, 

=IluN_lZ-l + **- +(a, - X)CN- (r + g)(z-‘)lloD 

=Il(a, - A) + **- +aN_lzN-l - zN(r + g)(z-‘)llm 

(2.14) 

Now the function (r + g)(a) h as winding number < N - 1 about the origin 
when z traverses S, and therefore z “( r + g)( z- ‘) has winding number 2 1. 
If X $ fN(A), on the other hand, then fN( z) - X is a function with winding 
number 0 on S and minimum modulus there equal to the distance from h to 
fN(A). As in the proof of RouchB’s theorem, these facts are consistent with 
(2.14) only if that distance is < E, or in other words, x~f~(A) + A,. n 

In Theorem 2.2, the constant cN entering into the definition of r can be 
improved by using the ideas of AAK/CF approximation in the first part of the 
proof as well as the second. The number c N appeared only as an upper bound 
on the norm of the matrix in (2.11), and a sharper bound would be the number 
ZN defined by 

(2.15) 

that is, the radius of the smallest disk containing fN(D). As remarked above, 
however, the improvement will be insignificant in most applications because of 
the Nth root. 

Proof of Theorem 2.3. For any fixed E > 0, the value r of (2.7) converges 
to 1 as N + 00, so by (2.8) we have f(A) E limN+_ A,( AN) C f(A) + AE. The 
second inclusion must be an equality, however, since in particular we can 
always perturb A by a multiple of the identity. This establishes the first 
equality of (2.9). For the second, see Theorem 3.3 below and also the Note 
Added in Proof. 

Equation (2.10) follows from (2.9). W 

Note that Theorems 2.2 and 2.3 contain a rather intriguing assertion: 
although triangular Toeplitz matrices and operators have highly sensitive 
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eigenvalues in general, their eigenvalues are completely insensitive outside the 
region f(A). 

We close this section by mentioning that the pseudospectra of our matrices 
A, B, and C, besides showing something of the variety of behavior that may 
arise even within the narrow class of triangular Toeplitz matrices, also offer 
some more direct lessons for numerical analysis. The matrix A, which is the 
simplest nonhermitian example that is not just a Jordan block, illustrates that 
in general pseudospectra are not just disks. This is an indication that looking at 
the Jordan canonical form alone, although sufficient for linear perturbation 
analysis in a theoretical sense [17], is insufficient for perturbation analysis in 
practice-because a perturbation that is “small” for practical purposes may 
still lie far outside the linear range. The matrix I?, with pseudospectra 
consisting of disks eccentrically situated with respect to the spectral point 1, 
provided an example in [25] to illustrate that the convergence of a matrix 
iteration may be determined in practice by the pseudospectrum rather than 
the spectrum; similar phenomena and further Toeplitz examples are discussed 
in [20]. The matrix C, finally, is adapted from a well-known example devised 
by Kahan to prove that QR decomposition with column pivoting is not a 
failsafe method for determining the rank of a matrix [16; 11, p. 1671. Kahan’s 
matrix differs slightly from C, having the Toeplitz structure modified by a 
column scaling, but the essence of it can still be seen in C: though the exact 
spectrum contains only the point 1, other points in the right half plane-in 
particular the point z = d-lie well within the pseudospectrum and indeed 
are s-pseudo-eigenvalues for values of E that decrease exponentially as N -+ 00. 

3. GENERAL TOEPLITZ MATRICES 

Now let A be a not necessarily triangular Toeplitz matrix, Toeplitz 
operator, or Laurent operator, 

A= 

I a0 a1 *.* aN-2 uN-l 

a1 

a0 

a-1 

and let f(z) denote the symbol 

I 
(3.1) 

I 

(3.2) 
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167 

(3.3) 

In the case of Toeplitz or Laurent operators, the spectrum A of A is fully 
understood: 

THEOREM 3.1. Let A and f be as described above. 

(i) If A is a Laurent operator, A( A) = f(S). 
(ii) If A is a Toepplitz operator, A( A) = f(S) U {h E e : Z(f( S), A) # 0). 

Here and in the theorems below, Z( f( S), A) denotes the winding number or 
index of the continuous curve f(S) about the point X E @, 

z(f(s)> A) = $.s, ,;;‘A x d-z, Wf(s)- 

If X E f( S), then Z( f( S), X) is undefined. 
Theorem 3.l(ii) asserts that the spectrum of a Toeplitz operator can be 

divided into three parts, and these can be interpreted as follows: 

Z(f(S), A) > 0: 

Z(f(S), X) -= 0: 
AEf(S): 

geometrically decreasing right eigenvectors, 
geometrically decreasing left eigenvectors, 
approximate eigenvectors with no geomet- (3.4) 

ric increase or decrease. 

These interpretations will be the key to our analysis of pseudospectra below. 

Proof of Theorem 3.1. As mentioned in the last section, our proof of 
Theorem 2.1(i) carries over to the present case unchanged. As for (ii), this 
result was first proved independently around 1958 by Krein [18] and Calderon, 
Spitzer, and Widom [4], with the regularity assumption (3.3) and generalized 
to arbitrary continuous symbols by Devinatz in 1964 [7]. For a discussion see 
[31]. A proof based on (3.3) goes as follows. Without loss of generality 
consider h = 0, and suppose first X#f(S) U {h E @? : Z( f(S), A) # 0}, that is, 
Z(f(S), A) = 0. Then f(z) h as a continuous logarithm L(z) on S which is also 
in the Wiener class, and if we divide the Laurent series of L(z) into analytic 
and coanalytic parts with respect to S, L(z) = L+(z) + L_(z), then L+(z) 
and L_(z) are also in the Wiener class. This gives us a factorization of the 
symbol, 

f(z) = eLcz) = eL+@)eL-(‘) = f+(z)f_(z), 
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which corresponds to a factorization A = A+A_ of the Toeplitz operator into 
upper and lower triangular Toeplitz operators of the kind considered in 
Theorem 2.1(n). Since f+(z) and f_( Z- ‘) are nonzero in A, that theorem 
implies that A+ and A_ are both invertible, and therefore the same is true of 
their product A. 

Conversely, suppose X ~f( S) U { X E e : Z(f( S), X) # 0). If X ~f( S), then as 
indicated in (3.4), A may have no eigenvectors, but e-pseudo-eigenvectors can 
be constructed by multiplying vectors (1, z, .z2, . . . )T for .z E S by a smooth 
envelope to reduce edge effects. By making the envelope sufficiently smooth, 
E can be made arbitrarily small, and this implies XE A. On the other hand, 

suppose I(f( S), A) + 0, or, without loss of generality (by symmetry), I(f( S), X) 
= n > 0. The arguments below will show that A has geometrically decreasing 
E-pseudo-eigenvectors for arbitrarily small E, so again, X E A. A more standard 
proof notes that by the argument of the last paragraph, the Toeplitz operator 
defined by the symbol z-“f(z) is invertible. If A were invertible too, this 
would imply the invertibility of the Toeplitz operator defined by the symbol 
z_“f(z)/f(z) = Z-n, namely the nth power of a shift operator, which would 
be a contradiction. n 

Theorem 3.1 omits the case of Toeplitz matrices because their spectra 
have no simple characterization. Some results are known about the limits of 
the spectra as N + 00, however, for a family of Toeplitz matrices {AN} 
obtained as finite sections of a Toeplitz operator A as in Theorem 2.3. For 
each N, let Xk, N, k = 1,2,. . , N, be the eigenvalues of A,, and define the 
measure 0~~ on Bore1 sets E C 62 by 

If A is hermitian, then the measures ((Ye} converge weakly as N + 00 to the 
measure 

1 

a(E) = z s df3; 
f( e'+E 

see Grenander and SzegG [12]. If A is nonhermitian, it is known that if A is 
banded, there is a set G C $2 consisting of a finite union of closed analytic arcs 
such that crN converges weakly to a measure Q! with support G, for which 
explicit formulas are available [14, 271. Th e case of Hessenberg matrices with 
only two nonvanishing diagonals is particularly simple [14, 221. Results for 
Toeplitz matrices whose symbol is a semiinfinite Laurent series are discussed 
in [28], and other generalizations are considered in [19], [6], and [33]. For 
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analogous results concerning Wiener-Hopf integral operators, the continuous 

analogues of Toeplitz matrices and operators, see [2]. 
Now let us turn to pseudospectra. Our understanding here is not as 

complete as in the triangular case of the last section, but the main features of 
the answer are apparent, and we are able to prove at least some points. 

The fundamental observation is that if N is large and E is small, then in 
analogy to (3.4), AE looks approximately like the union of three sets: 

A E = 0, U QR U (A + At). (3.5) 

We must explain this notation. For any r < 1 and R > 1, the sets tl, and dlR 

are defined by 

n, = {z&: I(#& 2) > 0). QR = {zEG: I(f(SR), z) < 0). (3.6) 

In (3.5), appropriate values are 

r = (E/c)~‘~, R = (E/C)-"~ 

for some constants c and C analogous to cN of the last section. (In the figures 
below, c and C are taken equal to 1.) The sets 62,. and QR correspond to 

geometrically decreasing right and left pseudo-eigenvectors of A, respectively. 
Equivalently, they correspond to geometrically decreasing and increasing right 
pseudo-eigenvectors. Finally, the set A + As in (3.5) consists of the union of 

the e-balls about the eigenvalues of A, and corresponds to pseudo-eigenvec- 

tors with no geometric increase or decrease. 
To illustrate (3.5) let us begin with the tridiagonal matrix 

0 2 
1 0 2 

A= 

1 1 

1 0 2 
1 0 2 

1 0 

of dimension N. Since A can be symmetrized by a similarity transformation 
involving the matrix D = diag(I, 2l/‘, 2l, . . . ,2 N-1/2), its eigenvalues are real: 

(3.9) 

The condition number of D is exponentially large as a function of N, however, 

suggesting that the exact eigenvalues of A are unlikely to be very meaningful. 
Figure 6 shows that in fact, the e-pseudo-eigenvalues of A with E = 10e4 and 
N = 100 lie approximately along an ellipse. To explain this distribution, note 
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-3-w 

FIG. 6. Eigenvahres of A + E (3.8), jJEl( = E = 10m4, N = 100; results from ten 

random perturbations are superimposed. The eigenvalues of A are real and are marked 

by asterisks. As in the last section, the dashed curve is f(S), the boundary of the 

spectrum of the associated Toeplitz operator. The solid curve is the boundary of the set 

Q, U flR of (3.5), an approximation to the boundary of the s-pseudospectrum. 

that the symbol for this example is 

f(z) = 22 + z-l. (3.10) 

The dashed curve in the figure is the ellipse f(S), which is the boundary of the 
spectrum of the associated Toeplitz operator. The solid curve is f( S,) with r 
defined by (3.7). Evidently AE is closely approximated by the set 0, of (3.5). 
In this example 62, is the only term in (3.5) that matters, because A is 
contained in Q,, and QR is the empty set. 

Obviously the matrix (3.8) is very special. To illustrate (3.5) more fully, 
consider the more “generic” example 

B= 

0 0 1 0.7 
2i 0 0 1 0.7 

2i 0 0 1 0.7 
2io 0 1 

2i 0 0 
2i 0 

\ 

(3.11) 

I 

again of dimension N. The symbol of this matrix is 

j(z) = 2iz-’ + z2 + o.7z3. 
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The dashed curve in Figure 7 shows that this function maps S onto a rather 
complicated shape that might be a rendering by Picasso of the head of a bull. 
The two “horns” are enclosed by f(S) with winding number + 1, the “face” 
with winding number - 1, and according to Theorem 3.1, the spectrum of the 
Toeplitz operator is the union of both of these regions together with the 
dashed boundary curve. The pseudospectrum of the Toeplitz matrix, however, 
is smaller, and consists of three parts. Within each horn is a region Q, 
enclosed by f( S,) with winding number + 1 (solid curve). Within the face is a 
quite disjoint region dlR enclosed by f(S,) with winding number - 1, Con- 
necting these sets are chains of eigenvahres that are evidently insensitive to 
perturbations. 

For a more orderly pair of examples, Figures 8 and 9 are analogous plots 
for the two 100 x 100 matrices 

c, = 

0 1 

0 0 1 

1 0 0 1 

1 0 0 1 

1 0 0 I c 0.5 = 

FIG. 7. Same as Figure 6, but for the matrix B of (3.11), N = 100. The two 

regions of pseudo-eigenvalues within the “horns” are enclosed by f(S,) with winding 

number I = + 1, and the region of pseudo-eigenvalues in the “face” is enclosed by 

f(S,) with winding number I = - 1. The dashed curve corresponds to the Toeplitz 

operator. 
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2 

____.._.. --- . .._____ 

0 

-2 
-2 0 2 

FIG. 8. Same as Figure 6, but for the matrix C, of (3.12), N = 100. The three 

lobes of pseudo-eigenvalues are enclosed by f( S,) with winding number I = - 1. 

In both cases, the e-pseudospectrum for E = 10e4 is a three-fold symmetric 
shape about the origin consisting of the union of three spikes and a region with 
significant interior. The spikes would have lengths 3/(2’13) = 1.89 in Figure 8 
and i in Figure 9 in the limit N -+ 00. The regions with interior are the 
contributions Q, and QR. To see where they come from, note that C, and Ca.s 

Frc. 9. Same as Figure 6, but for the matrix Co., of (3.12), N = LOO. The 

triangular region of pseudo-eigenvalues is enclosed by f(~,.) with winding number 

I= i-l. 
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are special cases of a matrix CY with symbol 

f( 2) = 2 + yz-2. (3.13) 

For 1 y 1 < 0.5, f(S) has p osi ive t or zero index with respect to all points 
y E e 1 f(S), for 1 y 1 2 1 the index is negative or zero, and for 0.5 C 1 y I < 1 

there are points X of both positive and negative index. These observations 
explain the dashed curves in the figures, which bound the spectra of the 
associated Toeplitz operators. For the pseudo-eigenvalues of the Toeplitz 

matrices, other curves f( S,) and f(Sa) b ecome relevant. In Figure 8, with 
y = 1, Q, is empty and only QR contributes to the pseudospectrum. In Figure 
9, with y = 0.5, QR is empty and only a, appears. 

Up to this point we have presented an approximate formula (3.5), and 
examples that suggest it is reasonably close to the truth. This brings us to the 
question, how much of this can be made precise? Even in the last section, for 
triangular matrices, there was a sizable gap between the two set inclusions of 
(2.8). Here, the gap widens. 

Our main result is an estimate for banded Toeplitz matrices which is 
analogous to the left-hand inclusion of Theorem 2.2. The following theorem 
implies that except when f(S) s i a curve with no interior, the sensitivity of 
the eigenvalues of a banded Toeplitz matrix grows exponentially with the 
dimension. 

THEOREM 3.2. Let A be a banded Toeplitz operator with bandwidth 1, i.e., 
ak = 0 for I k 1 > 1. Let f( z) be the symbol of A, and let A, denote the N x N 
Toeplitz matrix defined by al_N,. . . , aN_l. Then for any r < 1 and p > r we 
have 

fl, U @” U (A( A) + A,) E AE( AN) for E = CpN, (3.14) 

where C is a constant that depends on r, p. and a _ I, . . . , al but not on N. 

Proof. First of all we note that the inclusion A(A) + AE C A,( AN) is a 
triviality, valid for any matrix or operator. Second, by symmetry, Q’/r must 
satisfy an estimate of the type (3.14) if Q, does. Thus all that we really have to 
prove is Q, E A,( AN). 

The idea is to construct geometrically decreasing pseudo-eigenvectors as in 
the proof of Theorem 2.2. Given any r < 1, let )\EQ, be arbitrary. Assume 
without loss of generality that a_l # 0. Then f(z) has a pole of order exactly I 
at z = 0, and since I( f( S,), X) 2 1, it follows by the argument principle that 
the equation f(z) = X has at least 1 + 1 solutions z ED,., counted with 
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multiplicity. Let zo, zr, . . . , zl be any 1 + 1 of these solutions; if there are 
more, we do not need them. Assume for the moment that the Z. are distinct. 
Corresponding to each zj is a vector uj = (1, zj, .zf, . . . , zj N-l)Tlthat satisfies, 
in analogy to (2.11), 

where vj is defined via an N x N matrix with nonzero entries only in the 
upper-right 1 x 1 triangle: 

i 

a-1 *** a-1 

“j = “3” . + . . 
a-1 

Now let u = C:=o cjuj be a nonzero linear combination of these 1 + 1 vectors 
with the property that the last I entries of Cj=c ~3 “cjuj are 0. Then the 
contributions involving vj in (3.15) cancel, and we have 

(XI - A,)u = (3.16) 

We need to relate the norm of the right-hand side of this equation to )I u 11. To 
do this, write u = UC, where U is the N x (I + 1) Vandermonde matrix whose 
columns are the vectors uj, and c is an (1 + I)-vector. Let L be the lower 
triangular matrix above, and let D be the diagonal matrix with elements 
zt,..., aIN. Then we have 

IIUDcI) = IIUDU+Uc(I = (IUDU+ull 6 +)(IDll Ilull> 

where U+ denotes the pseudoinverse of U and K(U) = ua /al is its condition 
number. Since II DIJ < r , N it follows that (3.16) implies 

II( ‘I - AN)“ll 
II 4 

< rN+)llLll, (3.17) 
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and therefore, by condition (ii) of the definition in the Introduction, h E A,( AN) 
for & = rNK(u)II LII. 

This completes the proof except for two points: the constant C in (3.14) is 
required to be independent of X E tl, and N, and we have assumed that the 
roots za, . . . , z[ are distinct. These matters can be dealt with as follows. If the 
roots za, . . . , zl are distinct for all X E fir, then the function 

sup UN( AI- AN) 
rN 

= sup IIP - AN)-1II-1 
N>l N,l TN 

is a continuous function of X on the compact set fir; its maximum provides the 
constant C in (3.14), and we can take p = r. On the other hand, if some of the 
roots za, . . . , zl are confluent at some points X E a,., then an analysis involving 
confluent Vandermonde matrices yields a bound analogous to (3.17) except 
with rN replaced by an algebraically growing factor at worst N’r N. In this 
case we need to take p > r. Doing so yields the conclusion that 

sup uN( xz - AN) = sup Il(x’- AN)-‘II-1 
N>l PN N>l PN 

is bounded at every point X, E a,., and since this supremum is easily shown to 
be continuous, this establishes (3.14) in the confluent case. n 

What about an analogue of Theorem 2.3 for the limit N -+ ao? We do not 
know the form of A,( A) in the nontriangular case, but H. Widom has pointed 
out to us that the following result is a corollary of Theorem II of [32]: 

THEOREM 3.3. Let A be an arbitrary Toeplitz operator with absolutely 
summable entries, and let A, denote its N x N Toeplitz matrix section. Then 

$y_‘,( AN) = *E(~) (3.18) 

for each E > 0, and therefore 

ti-“, lihmAc( AN) = A( A). (3.19) 

To close this section, we present a final example from numerical analysis. 
Let 

A=L+D+U (3.20) 
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be the symmetric tridiagonal matrix with entries 1, -2, 1, with L, D, and U 
denoting the subdiagonal, diagonal, and superdiagonal parts. Such a matrix 
would arise in the discrete solution by finite differences of a one-dimensional 
constant-coefficient diffusion equation. When a linear system Ax = b is solved 
iteratively by the Gauss-Seidel iteration, the errors ecn) satisfy e(“) = C”e(‘), 
where 

G= -(L+D)-lU 

is the Gauss-Seidel iteration matrix. The spectrum of this matrix has been of 
interest for many years, because it determines the asymptotic convergence 
rate of the Gauss-Seidel iteration. Frankel showed in 1950 that all the 
eigenvalues of G are real and lie in [0, l), and that 1 N/2] of them are equal to 
zero. The asymptotic convergence factor is the spectral radius p(G), which is 
equal to the largest of these eigenvalues and of size 1 - 0( N-‘). 

It is readily shown that except for a first column which is zero, G is an 
upper Hessenberg Toeplitz matrix: 

G= 

If one ignores the first column, the symbol of this matrix in the limit N + 03 is 
the quotient of the symbols of - U and L + D: 

For N = 100, the corresponding curve f(0,) and some computed pseudo- 
eigenvalues are shown in Figure 10. 

Why was the sensitivity to perturbations of the eigenvalues of the Gauss- 
Seidel iteration matrix not discovered in the 195Os? The reason is that the 
largest eigenvalue of G is insensitive; in fact, one can show that its condition 
number is asymptotic to 1 as N + (~1. Thus the distinction between eigenval- 
ues and pseudo-eigenvalues has no effect on the observed convergence rate for 
the Gauss-Seidel iteration applied to the matrix A of (3.18). If A is taken 
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FIG. 10. Eigenvahes of G + E, 11 E )I = E = 10m4, where G is the Gauss-Seidel 

iteration matrix of (3.19) with N = 100; results from ten random perturbations are 

superimposed. As shown by Frankel in 1950, the eigenvalues of G are real numbers in 

[0, 1) (marked by asterisks). The eigenvalues of G + E are very different. 

to be nonsymmetric, however, as occurs in the discretization of convection- 
diffusion problems, the picture changes utterly. The pseudospectral radius 
of G may be much closer to 1 than the spectral radius, with dramatic effects 
upon convergence. We shall discuss such matters in a future paper. 

4. BLOCK TOEPLITZ MATRICES 

What can be said of the pseudo-eigenvalues of the N x N bidiagonal 
matrix 

A= 

1 Y 

-1 Y 

1 Y 

-1 Y 

1 Y 

-1 

(YEG), (4.1) 

whose eigenvalues are obviously { - 1, l}? This matrix looks like a Jordan 
block, except that the diagonal elements are not constant but cycle repetitively 
through a fixed sequence. Figure 11 shows computed eigenvalues correspond- 
ing to y = 1, N = 50 and 100, and ten random complex perturbations A + E 
with IJEll = E = 10-4. 
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(a) N = 50, y = 1 

0 

(b) N = 100, y = I 

FIG. 11. Eigenvahres A + E (4.1), 11 E )I = e = 10e4; results from ten complex 
perturbations are superimposed. The eigenvalues of A are + 1. The solid and dashed 
curves represent the lemniscates )I A2 - 1 II = y2r = r with r given by (4.6) and equal 
to 1, respectively. 

Though it may not be obvious to the reader, the pseudo-eigenvalues in 
each of these pictures lie approximately along a lemniscate: the curve or union 
of curves in the complex plane along which a polynomial p(X) has constant 
modulus 1 p(X) 1 = C. For the matrix A of (4.1) the polynomial is p( 1) = p 
- 1, and C depends on the choice of y. By varying y and the sequence of 
elements on the diagonal, one can obtain pseudospectra that approximate 
arbitrary lemniscates of arbitrary polynomials. 

The explanation for this behavior is as follows. The matrix A of (4.1) can 
be viewed as an upper bidiagonal block Toeplitz matrix of dimension N/2, 

A= (” : ;I, (4.2) 

where D and E are the 2 x 2 matrices 

D= (; _;), E= (; ;). (4.3) 

Just as in Section 2, A will accordingly have approximate pseudo-eigenvectors 
of the form u = U 63 (1, z, z2, . . . , .z(~-~)“)~, where U is a 2-vector and 63 
denotes the tensor product. This e-vector will be either of the eigenvectors of 
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the symbol of A, which is now the 2 x 2 matrix function 

f(z)=D+zE= ,‘z _: . ( I (4.4 

The e-pseudo-eigenvalues of A will be the corresponding eigenvalues h of 
f(z), namely the roots of the equation 

x2 - 1 = y%. (4.5) 

If z ranges over the disk D,., these values of X fill the region bounded 
approximately by the lemniscate 1 h2 - 1 1 = y2r. Since the highest power of 
z present is z(~-~)/~, the appropriate value of r will be 

r = c2fN. (4.6) 

If this explanation of Figure 11 is correct, then a pseudospectrum bounded 
approximately by the critical lemniscate 1 hz - 11 = 1 should be obtained if 
we pick y and N to satisfy 

I = -y2r = y2e2fN, 

that is, 

y = &-r/N. 
(4.7) 

Figure 12 shows results of an experiment with this value of y for N = 50 and 
100. As predicted, the eigenvalues fall roughly on the critical lemniscate. 

(a) N = 50, y = ~~~~~ = 1.202 (b) N = 100, y = E- 1’N = 1.096 

FIG. 12. Same as Figure 11, but for y given by (4.7). The solid curve now 

coincides with the critical lemniscate 1 X2 - 1 1 = 1. 
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These examples give just a hint of the phenomena that may arise in 
pseudospectra of block Toeplitz matrices. For block Toeplitz matrices with 
larger blocks and more than two nonzero diagonals, the variety of pseudospec- 
tra that can be obtained goes far beyond the class of lemniscates. We have not 
explored these matters, and will not attempt to give any theorems on the 
subject here. For the spectra of block Toeplitz operators, results can be found 
in [lo] and [19]. 

5. VARIABLE COEFFICIENTS 

Another variation on the theme of Toeplitz matrices is to let the coefi- 
cients vary-usually smoothly. Such problems are related to integral equations 
with variable kernels, and it is natural to expect the resulting spectra and 
pseudospectra to be associated with the symbols f(z) obtained by freezing the 
coefficients at various points. Roughly speaking, the pseudospectra of matrices 
obtained in this fashion approximate superpositions of pseudospectra of the 
associated Toeplitz matrices defined by frozen coefficients (though not for the 
same E). We shall not attempt to make this statement precise. In the 
hermitian case for exact spectra, theorems to this effect have been given in a 
well-known paper of Kac, Murdock, and Szegij [15]. 

We shall give two examples. First, Figure 13 shows computed pseudo- 

FIG. 13. Eigenvalues of A + E (5.1), 11 EJJ = E = 10m4, N = 100; results from ten 

random perturbations are superimposed. The eigenvalues of A lie on the unit circle 

and are marked by asterisks. 



PSEUDO-EIGENVALUES 

eigenvalues of the bidiagonal matrix 

A= 

181 

(5.1) 

with N = 100. For large N, the pseudospectra of A approximate a superposi- 
tion of pseudospectra of bidiagonal Toeplitz matrices with elements eie on the 
diagonal and 1 on the superdiagonal. This is a superposition of disks about the 
points eie -in other words, a region in the shape of a ring sausage, as in the 
figure. 

The fact that the sausage has ends may be viewed as accidental. If a,,,1 is 
set to 1 instead of 0 in (5.1) giving a “circulant matrix with variable 
coefficients,” the ends of the sausage disappear and we are left with a 
pseudospectrum in the form of an annulus (not shown).3 

In our second example, also bidiagonal, we vary the superdiagonal rather 
than the diagonal elements (Figure 14). The matrix is 

‘0 1 \ 

0 * 

0 + 

B= 0 . . (5.2) 
1 

. N-l 
0 \ 

again of dimension N = 100. If the dimension were N = 03, the transpose of 
this matrix could be interpreted as the map 

3 This alteration of a N, 1 is an example of a matrix perturbation that is small in rank rather 

than in norm. The fact that low-rank perturbations may have dramatic effects on spectra is 

well known, and discussed, for example, in [13]. For a more subtle example of low-rank 

perturbations see [30], which considers spectra of matrices that are Toeplitz except in a few 

of the first and last rows. 
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0 

-0.1 

I I I I 
-0.1 0 0.1 

FIG. 14. Same as Figure 13, but for the matrix B of (5.2), N = 100. The only 

eigenvdue of B is 0. 

described in the basis of monomials. Very loosely speaking, for each r E 
[O.Ol, 11, it is as if B had a Jordan block with r on the superdiagonal, with the 
dimension of the block increasing as r decreases. Superimposing the resulting 
pseudospectra gives a radially symmetric dependence on E that remains 
nontrivial even in the limit N + 00. This further illustrates the point made at 
the end of Section 1, the basis of our definition of pseudospectra, that to fully 
understand the behavior of matrices and operators one must sometimes be 
prepared to consider finite E. 

The examples of this section are extremely simple, being both bidiagonal. 
For more complicated “Toeplitz matrices” with variable coefficients, the 
pseudospectral possibilities are extremely varied. 

We would like to thank Professor 1. C. Gohberg, P. Halmos, and N. 
Levenberg for discussions and references. We are especially grateful to Professor 
H. Widow for his remarks on the subject of A,(A,) + A,(A), which led to 
fundamental improvements in Sections 2 and 3. 
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Note added in proof. Since this manuscript was accepted for publication, 

several contributions have been made by S. C. Reddy. First, our proof of the 
second inclusion in (2.8) can be simplified; an elementary proof of this 
inclusion, as well as of the second equality in (2.9), follows from the fact that 
for a triangular infinite matrix such as XZ - A, the N x N section of the 
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inverse equals the inverse of the N x N section. Second, our results of Section 
2 generalize to constant-coefficient differential operators with boundary condi- 
tions at one endpoint; the details are given in Reddy’s dissertation [35]. 
Finally, in work not yet published, Reddy has shown that these results also 
generalize to triangular Wiener-Hopf integral operators. 

Additional examples of pseudospectra of non-normal matrices, both 
Toeplitz and non-Toeplitz, are presented in [36]. 
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