L N TREFETHEN
Pseudospectra of matrices

1 Spectra

The notion of eigenvalues developed historically in connection with hermitian matrices and
their infinite-dimensional counterparts, self-adjoint linear operators. Physically, eigenval-
ues may be the first thing one observes in such a system. The natural frequencies of
oscillation of a string or a drum, for example, present themselves to the ear immediately.
The great twentieth century example is quantum mechanics, with its remarkable discovery
that atoms and molecules occupy energy states that can be interpreted as eigenfunctions
of a self-adjoint Schrédinger operator. It was quantum mechanics that brought the ideas
of matrices, operators, and eigenvalues to the central position in science and mathematics
that they occupy today.

Speaking more generally, the matrices and operators that have been most studied over
the years are normal. This means that their eigenvectors can be taken to be orthogonal, or
equivalently, that they can be unitarily diagonalized. Along with the hermitian matrices,
the normal matrices include all those that are skew-hermitian, unitary, or circulant, as
well as others besides.

The history of spectral theory for non-normal matrices and operators is sparser. Most
books on functional analysis make no assumption of normality in presenting the funda-
mental definitions. Yet when it comes to applications, it is surprising how little has been
done with non-normal systems. The “small matrix” case, exemplified by such develop-
ments as the Jordan canonical form and its application to ordinary differential equations,
is of course well understood and widely used. But applications of spectral ideas for
strongly non-normal operators are rather rare, and in fact, among the largest consumers
appears to be numerical analysis. Numerical analysts come at operators by way of “large
matrices,” that is, matrices whose dimensions are determined by a potentially unbounded
discretization parameter rather than by the physics. Eigenvalues are typically applied to
analyze stability (|A| £17?) and convergence rates (|A[ < 17).

The point of these remarks is that the notion of eigenvalues, as applied to non-normal
matrices and operators, is not so clearly sanctified by history as you may think. In the
past few years I have become convinced that there is a reason for this. Eigenvalues and
eigenvectors are an imperfect tool for analyzing non-normal matrices and operators, a tool
that has often been abused. Physically, it is not always the eigenmodes that dominate
what one observes in a highly non-normal system. Mathematically, eigenanalysis is not
always an efficient means to the end that really matters: understanding behavior. The
essence of the eigenvalue idea is a normal one, whose appropriateness in the non-normal
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case has been accepted largely by analogy. For non-normal systems eigenvalues may still
be useful to a greater or lesser degree, like a nail file when a screwdriver can’t be found,
but they are rarely exactly right.

Here is an example. If u is a vector and A is a matrix of the same dimension, the
differential equation u; = Au has the solution u(t) = e*4u(0). Consider in particular the

2 X 2 matrices
-1 1 -1 5 :
() ()
0 -1 0 -2

Figure 1 shows the 2-norms [|e!4’|| and ||e*4”|| as functions of ¢, which control the growth
or decay that solutions u(t) may exhibit. Quiz for the reader: which curve is which?
Which of these matrices allows growth in norm during the transient phase?

0 I A i A 1 . A
0 1 2 3 4

Figure 1. ||e!4|| vs. ¢ for the matrices A’ and A” of (1). Which matrix corresponds
the upper curve? For the answer, see the text.

The answer is: A"”. The function |le!4’[|, the lower curve in the plot, decays monoton-
ically, but ”e’A”” grows for a time before eventually decaying. Now there is nothing deep
about this result. Nevertheless, it may be surprising to some who are used to making
predictions on the basis of eigenvalues. The eigenvalue —1 of A’ is defective, according
to one pattern of thinking, and therefore some growth must be expected in the transient
phase before eventual geometric decay. On the other hand the eigenvalues of A" are
negative and distinct, so no growth should occur. Figure 1 proves that such reasoning
is false. Defective eigenvalues are neither necessary nor sufficient for transient growth of
lle*A)l. In fact eigenvalues of any kind, defective or not, do not necessarily say much about
the behavior of !4 or of A” or of any other matrix process in the transient phase. Their
significance is asymptotic as ¢ — 0o or n — co.
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What makes this gap between the eigenvalués of A and the behavior of ||e!4]| possible
is the fact that the eigenvectors are not orthogonal. When two eigenvectors are far from
orthogonal, a linear combination of them may have large coefficients but small norm,
thanks to cancellation. If the coefficients drift out of phase with increasing ¢ so that the
cancellation is lost, the norm of the linear combination may increase even though each
individual eigenvector component is decaying monotonically. This is the explanation of
the upper curve in Figure 1.

For the simplest quantitative approach to such phenomena, let V denote any matrix
of eigenvectors of A and

(V) = VIV

its condition number (we define x(V)=oo if A is not diagonalizable). Then it is easy to
derive the bound
etal4) < ”etA” < &(V) cta(A)’ (2)

where a(A) denotes the spectral abscissa of A, i.e., the maximum of the real parts of its
eigenvalues. The analogous bound for matrix powers is

p(A)" < A < (V)e(A)", )

where p(A) is the spectral radius of A, and the analogous bound for arbitrary functions
f(z) analytic in a neighborhood of the spectrum A(A) is

Ifllacay < WA <« W) llacay (4)

where ||f||A(A) =SUP,cp(a) |f(2)|. If A is normal, (V') can be taken to be 1, and all three
inequalities (2)—(4) coalesce into equalities. But if A is non-normal, there is always a
gap. In general, any quantitative prediction about the behavior of a non-normal matrix,
if based on eigenvalues, can be valid only up to a factor such as £(V) that quantifies the
non-normality.

For the matrices A’ and A" we have x(V') = 0o and x(V")=10.1; obviously (2) need
not be sharp. For the matrices of Section 3 below, a typical value is x(V) a2 1010. Here
and throughout, eigenvector matrices V are taken to be normalized by columns ||vf|=1,
and decimal equalities such as “x = 10.1” are to be interpreted as accurate to the precision
given. .

This paper is meant for those who are surprised by Figure 1. It is also meant for
those who are not surprised. The fact is, many of us understand the pitfalls of eigenvalue
analysis clearly enough when the spotlight is on, but tend to make mistakes as soon as
the emphasis moves elsewhere. Nor are numerical analysts alone in such carelessness; one
finds mistakes in the use of eigenvalues also, for example, in the literature of hydrodynamic
stability in fluid mechanics. Our intuitions have been molded too greatly by the normal
case.
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2 Pseudospectra

If spectra may be misleading, what should one consider instead? Where in the complex
plane does a non-normal matrix or operator “live”? I must state immediately that there
is no fully satisfactory answer to this question. For a normal matrix, virtually any way of
making the question precise leads to the spectrum. If A is not normal, however, no set in
the complex plane has all the properties one would like. The spectrum is too small; the
field of values (= numerical range) is too large; the disk about 0 of radius ||A|| is even
larger. See the discussion of “spectral sets” in [38].

The purpose of this paper is to present examples of pseudospectra, another imperfect
answer that has the advantage of being a natural extension of the idea of spectra. The fol-
lowing ideas can be generalized to arbitrary closed operators in a Hilbert space {21,32,43],
but for the sake of brevity, let us assume from now on that A is a matrix of dimension
N < oo and ||-|| is the 2-norm.

Consider, as a function of z € C, the norm of the resolvent (2I — A)~}. When z is
an eigenvalue of A, ||(z]— A)7!|| can be thought of as infinite, and we shall use this
convention. Otherwise, it is finite. How large? If A is normal, the answer is simple:

1

II=H7M = g Ay

(5)
(Here A(A) again denotes the spectrum of A, and dist (z, S) is the usual distance from the
point z to the set S.) Thus in the normal case, the surface ||(z] — A)~}|| is determined
entirely by the eigenvalues like a tent hanging from its poles. In the non-normal case,
however, (5) is only a lower bound and the shape of the surface cannot be inferred from
the eigenvalues. As our examples will show, [l(zI — A)~|| may easily attain values as
great as 10!° or 102° even when z is far from A(A).

With this in mind it is natural to define the e-pseudospectrum of A, for each ¢ 20,
by

A(A) = {z€C: ||zI- ATz} (6)

The e-pseudospectra of A are closed, strictly nested sets with Ag(A) = A(A). If Ais
normal, (5) implies that A,(A) is equal to the union of the closed e-balls about the
eigenvalues of A. In general, it may be much larger.

The norm of (2] — A)~! is its largest singular value, i.e., the inverse of the smallest
singular value of zI — A. Therefore an equivalent definition of the pseudospectrum is: .

A(A) = {z€C: oy(z]- A)<¢}. | (7)

Another more interesting equivalent definition can be stated in terms of perturbations of
A: :

A (A) = {z€C: z is an eigenvalue of A+ E for some E with || E|| < €}. (8)
In other words, a pseudo-eigenvalue of A is an eigenvalue of a slightly perturbed matrix.
(The equivalence of (6) and (8) is easily proved.) This equivalence suggests a new way
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of regarding perturbations of eigenvalues: they may give information not only about how
the properties of a matrix change when its entries change, but about properties it had
already. In other words eigenvalue perturbations can be used as a visualization device.

Both matrices A’ and A" of (1) are non-normal, and their pseudospectra are accord-
ingly bigger than the e-neighborhoods about their spectra. Figure 2 plots A, (A') and
A (A") for the values e =0.05,0.15,0.25,...,0.65. The two pictures are decidedly differ-
ent, both near the eigenvalues and far away. For ¢=0.05, the innermost contour in each
plot, A (A’) extends slightly further to the right in the complex plane than A (A"). This
is a reflection of the defective eigenvalue of A’, and can be connected with the behavior of
[let4’|| as t — co. But for all of the larger values of ¢, A (A") extends further to the right
than A (A’'), and this can be connected with the behavior of ||e!4|| for finite t. (Precise
estimates can be derived by means of contour integrals; see [32,33,43].) As for the other
limit € — oo, it turns out that it can be used to derive the field of values of A, and this is
what controls behavior of |le*4|| for ¢t — 0 [21]. The field of values is equal to the limit (or
union) as € — oo of the intersection of all half-planes H C C for which H+A, D A,(A),
where A, denotes the disk about 0 of radius € [43,25].

(2]

-1F

AI

3 2 L 3 2 4 0 1
Figure 2. e-pseudospectra of A’ and A" for e = 0.05,0.15,...,0.65.

The study of non-normal matrices and operators is a large subject. Some applications
of pseudospectral ideas within numerical analysis include:

+ convergence of GMRES, CGS, and other nonsymmetric matrix iterations [29),

+ design of hybrid iterations that avoid eigenvalue estimates [30],

* convergence of upwind vs. downwind Gauss-Seidel and SOR sweeps,

* backward error analysis of eigenvalue algorithms and polynomial zerofinders [28],
* pseudospectra of Toeplitz matrices [36],
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+ stiffness of ordinary differential equations [17],

+ the Kreiss matrix theorem and generalizations [35],
+ Lax-stability of the method of lines [23,24,34,35],

+ stability of spectral methods [32,34,41].

Actual or potential applications of pseudospectra in other fields, usually involving opera-
tors instead of matrices, include:

+ simple differential operators [32],

+ convection-diffusion problems [31,32],

+ the Fadle-Papcovitch operator (= a biharmonic operator on a half-strip) [39],
+ Wiener-Hopf integral operators [1,32],

+ the Orr-Sommerfeld operator for Poiseuille flow [33],

+ Alfven waves in magnetohydrodynamics [22].

I am in the process of writing a book that will discuss most of these topics [43].

The remainder of this paper has a more limited ambition: to present graphical ezam-
ples of pseudospectra of matrices. The accompanying discussion will give some indication
of how pseudospectra may be useful in these application areas, but for full explanations,
see the references.

The notion of the pseudospectrum is not new. Under other names, it has been defined
previously by Varah [45], Demmel [5,6], Wilkinson {49], Godunov et al. [11}, and undoubt-
edly others. Contour plots as in Figure 2 have appeared in [6] and [11], as well as in the
publications [32,33,34] by myself and my colleagues. The recent work of Chatelin and
her colleagues is also closely related [4]. Nevertheless this geometric side of linear algebra
has received scant attention, and the emphasis has been on how eigenvalues change under
perturbations rather than on the exploitation of information that goes beyond eigenval-
ues. In an era when eigenvalue and singular value computations are routine and graphics
tools are universally available, this situation deserves to change.

3 Examples

Our examples consist of thirteen matrices of dimension N =32, all presented in the same
format. First the matrix is defined, usually by displaying its 6 x 6 analogue. Then two
plots are presented together on a page. At the head of the page is listed x(V), the
condition number of the normalized matrix of eigenvectors.

The upper plot shows 3200 dots representing eigenvalues of 100 perturbed matrices
A+ E, where each E is a random complex matrix with ||E|| = 10~%. The entries of E
are independent samples from a complex normal distribution with mean 0. To generate
E, first a dense matrix E is constructed whose entries are independent samples from the
complex normal distribution of mean 0 and standard deviation 1. Then the norm || £|| is
computed and we set E:=10"3E/|| E||.
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The lower plot depicts the boundaries of A, (A) for e= 10-2,1073,...,10~8, that is,
the level curves ||(z] — A)~!|| =102, 103,...,108. To determine these curves, the smallest
singular value o3,(z;;] — A) is computed for each value z;; on a grid of dimensions on
the order of 100 x 100. This takes two or three minutes on a Cray-2. The resulting
array of data is then fed to the Matlab contour plotter. The dashed curve on the same
plot (sometimes off-scale and hence invisible) is the boundary of the field of values of A
computed by the standard algorithm described, for example, in [19]. The thick solid dots
are the eigenvalues.

In summary, the upper plot in each example represents a cheap and vivid approx-
imation to the 10~3-pseudospectrum of A. The lower plot depicts the whole surface
[[(zI — A)~1|| instead of just a single slice.

Ezample 1. Jordan block [5,14,48]

There is only one place to begin: with the canonical non-normal matrix, the Jordan

block
0

1
01
0

>
!

1
0

O =

1
0

(Remember that despite appearances, the matrix under discussion is actually of dimension
32.) This is the best known matrix whose eigenvalues are sensitive to perturbations. The
solitary eigenvalue 0 of A, is defective with multiplicity 32, and a perturbation of ¢
in the lower-left corner changes it into 32 distinct eigenvalues of magnitude '/32 ~ 1.
Consequently, the upper plot reveals a rather elegant halo of dots at a radius slightly less
than (10-3)1/32 ~ 0.8. In the lower plot we see concentric circles. By construction, all
of the dots in the upper plot lie on or inside the second-largest of these circles, i.e., the
boundary of A,,_s(4;).

It is striking that most of the dots in the upper plot lie near the outside edge. For
this example, being defective, the density of dots at the origin is exactly 0, but even in
nondefective cases the same edge-clustering phenomenon is commonly observed. It is not
a result of taking random matrices E with || E]| = 1073 instead of || E|| <1073, but simply.
of choosing examples A that are interesting—that is, whose eigenvalues are sensitive to
perturbations.

The fact that the eigenvalues of a Jordan block are highly sensitive to perturbations
is widely familiar to numerical analysts. This is not entirely a good thing, for it is the
only familiar example of this kind of sensitivity, and yet Jordan blocks are by no means
representative of non-normal matrices. In general, the pseudospectra of a defective matrix
need not look like concentric disks. Conversely, equally interesting pseudospectra can arise
for matrices that are nondefective. In fact from the point of view of pseudospectra, Jordan
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blocks have no special significance whatever. Though it is true that every matrix is similar
to a direct sum of Jordan blocks, the similarity transformation involved is in general non-
unitary and does not preserve A,(A). By a unitary similarity transformation one can
make any matrix triangular (the Schur form), but not bidiagonal.

Ezample 2. Limagon [2,32,42)
The first of the points just made can be illustrated by the “super Jordan- block”

011
011
011
A = 01 1
01
0

Mathematically, A, is similar to A;. However, the similarity transformation in question
has condition number on the order of 102°. This explains how it is possible that the
figures are so different from those of Example 1. The pseudospectra are now bounded
approximately by curves known as limagons.

Notice the phenomenon of self-intersection in the curve of. dots in the upper plot,
which has no counterpart in the lower plot. Like the edge-clustering phenomenon, this
is a matter of probability densities that vary greatly with z. Another kind of clustering
phenomenon appears if one takes random matrices E that are real instead of complex
(try it!). All of these effects are interesting, but for most applications, I believe they are
unimportant.

These first two examples are both Toeplitz matrices, i.e., constant along diagonals. If
Ais an N x N Toeplitz matrix with entries a;_y,...,aq,...,ay_;, the symbol of A is the
Laurent polynomial N

-1
f(z) = E a2’
j=1-N
For Examples 1 and 2 the symbols are f;(z) =z and f,(z)=z+22. In general, it can be
shown that the pseudospectra of a Toeplitz matrix approximate the region in the complex
plane bounded by the image of the unit circle under the symbol. More precisely, A,(A)
approximates the set of points z € C that are enclosed by f(]z]=1) with nonzero winding
number. As N — oo and € — 0 this approximation becomes an equality, while for finite
N and ¢, more careful estimates can be derived that involve the image under f of various
curves |z| =r with r = O(e*1/¥). See [36]. The idea underlying such results is that e-
pseudo-eigenvectors for small € can be constructed in the form (1, z, 22,...,2¥ ‘l)T when
A is triangular, or as linear combinations of such vectors in the nontriangular case.
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Ezample 8. Grear matriz [15,30]
For a non-triangular Toeplitz example, consider the matrix

1 1 1 1
-1 1 1 1 1
-1 1 1 1 1
Ay = -1 1 1 1
-1 1 1
-1 1

investigated by Grcar, with symbol
fa(z) = =z V4 142422+ 25

The pseudospectra now look like two pearls connected by a chain. All of the eigenvalues of
Aj are sensitive to perturbations, with condition numbers increasing exponentially with
N (this is proved in [36]), but the eigenvalues at the end are especially sensitive.

This matrix is nondefective: its eigenvalues are distinct and x(V) is finite, though
large. This illustrates the second point made in Example 1, that pseudospectra can be
interesting even for diagonalizable matrices. From now on, all but two of our examples
are diagonalizable, and all but one have eigenvalues even more sensitive than those of Aj.

An interesting feature of the Grear example is that the region where the matrix
“lives” surrounds the origin but does not contain it. For example, the field of values
contains the origin, but it is clear from the pseudospectral contours that not much is
happening there; in fact o3,(A) has the rather sizeable value 0.951. These properties
become important in applications to iterative solution of nonsymmetric systems Az = b,
where the origin acquires a special significance. Many methods for such problems make
use of an estimated field of values or the convex hull of a set of estimated eigenvalues [26],
but for an example like this one, such methods cannot do very well. For better results
one must consider pseudospectra or some other non-convex sets [42], or better yet, avoid
the complex plane entirely [29]. '

Additional examples of pseudospectra of Toeplitz matrices are presented in [2], [36]
and [46).

Ezample . Wilkinson matriz [47,48]

Many interesting matrices, though not Toeplitz, are approximately Toeplitz in one
sense or another. An example is the “Wilkinson matrix”

¥ 1 \
£ 1
3
3 1
N
Ay = P
.1
\ 1/
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(Wilkinson himself took N = 20 and scaled up the entries by the factor N). Here the
diagonal element is not constant but varies smoothly. To a pure mathematician or a
careless applied mathematician this may suggest that A,, being diagonalizable, will behave
more or less as if it is diagonal. The truth is that with (V) greater than 1022, this matrix
behaves more like a Jordan block in most respects than like any diagonal matrix. This
is certainly the impression suggested by the plots. The pseudospectra approximate ovals
which one may think of as superpositions of disks with centers 1/N, 2/N,...,1. The fact
that the eigenvalues happen to lie exactly where they do inside these ovals is analogous
to the difference that distinguishes the carbon isotopes Ci2 and Ci3: important perhaps
in principle, and detectable by specialized experiments, but so deeply shielded by the
surrounding electrons as to have negligible effect on the chemistry.

Ezample 5. Frank matriz [14,48]

The idea of condition numbers become famous in connection with backward error
analysis of the effects introduced by machine arithmetic. In particular, suppose we want
to compute the eigenvalues of a matrix A. Then the standard conclusion of backward
error analysis has the following interpretation in terms of pseudospectra: unless A is
triangular or has some other special structure, one cannot in general expect to do better
on a computer than obtain a set of e-pseudo-eigenvalues for some € on the order of machine
precision.

Our next example, the Frank matriz, is a classic example of a matrix whose eigenvalues
are ill-conditioned and hence difficult to compute:

6 543 21
55 4 3 2 1

4 4 3 2 1

As = 33 21
2 21

11

(With N =32 the elements take the values 1,...,32.) By a similarity transformation it
can be shown that the eigenvalues of A are all real, but this is another similarity trans-
formation whose condition number grows exponentially with N. As Wilkinson pointed
out in [48], the lower eigenvalues have huge condition numbers and cannot be computed
accurately except in high precision. In other words, the Frank matrix can be described as
an example that illustrates that the pseudospectra of a matrix may be much bigger than
the spectrum. The plots reveal this.

The philosophy of backward error analysis might be summarized as follows: if the
answer is highly sensitive to perturbations, you have asked a hard question. However, the
main reason for studying pseudospectra is a deeper principle: if the answer is highly sen-
sitive to perturbations, you have probably asked the wrong question! When the eigenvalues
of a highly non-normal matrix are troublesome to work with, they are probably irrelevant
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anyway to whatever purpose one genuinely cares about. If the Frank matrix arose in an
application, the last thing one would properly want to do is diagonalize it.

Ezample 6. Kahan matriz [13,20]

Another example of historical interest to numerical analysts is the matrix

(1 - -c —c —c -c\

s —s¢ —sc —8¢ —SC

A s —s%c —s?¢ -5
6~ 8  —sc —s3¢
st —stc

\ .35/

with s¥-1=0.1 and ¢= /1= s2, which was devised by Kahan in the 1960s to illustrate
that QR factorization with column pivoting is not a fail-safe method for determining the
rank of a matrix. Rank determination is related to the question of distance to singularity
of a matrix A [18]: how large a perturbation E is required to make A singular? In the
2-norm the answer is o y(A), or equivalently, the smallest value of € for which 0 € A(A).
For the present example, the eigenvalues lie in the interval [0.1,1], which suggests that

| the matrix may be well-conditioned and hence unambiguously of full rank.- But the plots
‘ tell a different story. In fact we have g3, =1.04 x 1075, as can be seen in the plot by
noting that the origin lies more or less on the curve ||(z] — A)~!||=10° (check it with a

ruler!). This number shrinks at a rate e~CVN

Geometrically speaking, the point of Kahan’s example is that the pseudospectra are

lopsided, extending substantially to the left of the origin. It is easy to construct matri-

ces with lopsided pseudospectra, but Kahan’s ingenuity consisted in finding one that is

as NV — oo.

triangular and whose columns satisfy the requisite pivoting condition.

Ezample 7. Demmel matriz [6,18]

Another “matrix nearness problem” is that of distance to instability: how large a
perturbation E is required to move at least one eigenvalue of A into the right half-plane?

Our next example,
(1 B B? B Bt Bs\

1 B B? B’ B¢
1 B B! B
Ar=- 1 B B[’
1 B
\ 1/

with BN=1=108, was devised by Demmel in order to disprove a conjecture due to Van
Loan [44). The eigenvalues of A; are all —1, but under perturbations, they move away
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from the real axis and first hit the right half-plane at a point with sizable imaginary part.
This is evident in the plot. The Van Loan conjecture amounted to the assertion that the
point of impact must be real.

In a sense Demmel’s example is opposite to Kahan’s: its purpose is to make oy (A)
as large as possible, not as small as possible. Certainly the plots are very different. In
Example 7 the origin lies in a hole in the pseudospectra, entirely surrounded by regions
of A.(A) for smaller ¢. The reader may find these pictures a bit hard to interpret, for A
has entries as large as 108, and some of the action, including many of the 3200 dots, is
off-scale. The contour € =10~8 is the large oval in the left half-plane that encloses the
eigenvalue —1, and the contour e =10"2 is the smallest circle in the right half-plane. The
contours for other values of ¢ lie in between.

A plot like the lower one of Example 7 (with N =3 and B =100) appears in Demmel’s
1987 paper [6]. This is the earliest plot I have seen in print of computed pseudospectra.

Ezample 8. Matriz of Lenferink and Spijker [24]

Our next matrix is tridiagonal:

-5 2
1
2 —1 3
1 -9 4
= 3
As = L -1 5
1
3 13 6
1 -15

This elegant example was devised by Lenferink and Spijker to illustrate a point in the
theory of numerical stability for discrete approximations of partial differential equations.
In that field eigenvalues are often used for heuristic stability analysis, but they cannot be
relied upon. Highly non-normal examples require a more careful analysis based on other
ideas such as circle conditions [24], a generalized numerical range [24,25], or pseudospectra
[34,35], and we shall comment further on such applications with Example 11.

It is obvious that Ag can be symmetrized by the diagonal matrix D =diag(1,2!,3!,...,
NT, yielding a mathematically similar matrix in which all of the off-diagonal elements
are replaced by 1. Therefore the spectrum of Ag is real. What is interesting is the position-
dependence of the similarity transformation. Near the upper-left corner, to speak loosely,
Ayg is “close to normal,” but the departure from normality grows steadily as one goes
down the matrix. Each eigenvalue is more sensitive than the last, and in the complex
plane this shows up as a family of pseudospectra shaped like wedges about the negative
real axis.

Some of our examples become trivial in the limit N — oco. This is true in particular of
the Toeplitz matrices, for which the pseudospectra for finite N approach the spectrum of
the corresponding Toeplitz operator with N = oo, padded by a border of width O(e) [36].
The Lenferink-Spijker example is different. Computations indicate that the of)erator Agof
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dimension N = oo has a discrete negative real spectrum, like its finite-dimensional sections,
with pseudospectra spreading approximately ip unbounded wedges of equal angles about
that axis. For any finite ¢, no matter how small, A, is approximatelyan infinite wedge, not
a subset of the real axis. All of this structure is invisible if one looks just at the spectrum.
It is invisible also, incidentally, to the device for analyzing families of finite-dimensional
non-normal matrices known as the “spectrum of the family” [12,23].

Ezample 9. Companion matriz [27)

Example 9 is a companion matrix:

0 1

—C —€ —C —€ —C —Cj

with ¢; chosen so that the polynomial
p(z) = coteztotey gz 42N

has zeros equally spaced in [-2,2]: ; = —2+4(j—1)/(N—1). The same numbers {};} are
the eigenvalues of Ag; a proof consists of exhibiting the eigenvectors (1, A}, A}, ey A -T,

From the plots and the value (V) =~ 10° it is evident that companion matrices may
be far from normal. The eigenvalues are highly sensitive to perturbations, and there is
interesting structure in the pseudospectra. So far as I am aware, little is known about
this structure. This is unfortunate, for such a knowledge would have application to the
analysis of a familiar but poorly understood algorithm: computing zeros of polynomials
by solving matrix eigenvalue problems {27). In the language of the present paper, the
essential question in evaluating this algorithm is: what is the relationship between the
pseudospectra of a companion matrix and the sets of pseudozeros of the corresponding
polynomial, that is, the sets of complex numbers obtainable as zeros of slightly perturbed
polynomials? If the pseudozero sets are much smaller than the pseudospectra, the al-
gorithm is unstable, but to the extent that they can be made comparable in size, the
algorithm is stable. :

It was Wilkinson who made the possible ill-conditioning of polynomial zerofinding
problems famous, but he did not view the problem geometrically [47]. For a geometrical
study leading to a surprisingly simple algebraic characterization of pseudozero sets in the
oo-norm, see [28]. Pseudozero sets may also be interpreted as structured pseudospectra of
the companion matrix, defined as in (8) except with perturbations permitted only in the
bottom row.

One thing apparent in the plots is that in contrast to the Wilkinson matrix A4, whose
eigenvalues are also equally spaced and whose behavior might consequently have been
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expected to be analogous, the pseudospectra of Ay exhibit a marked scale-dependence:
the behavior is quite different inside and outside the unit circle. This is a consequence
of having 1 in the super-diagonal. By a diagonal similarity transformation, this number
1 can be replaced by any a #0, if c; is adjusted by a factor a3, this transformation
is essentially the scale change z — az applied to the polynomial p{z). More generally,
the technique of matrix “balancing” employed, e.g., in Eispack and Matlab introduces
an arbitrary diagonal similarity transformation. Little is known about how close such
balancing operations may bring the pseudospectra of Ay to the pseudozero sets of p(z)
[27], and this is a topic ripe for further research.

Ezample 10. Gauss-Seidel iteration matriz [8,9,36)

With the next example we turn to one of the icons of classical numerical analysis:
the Gauss-Seidel iteration matrix A;g = —(L+ D)~'U obtained from the symmetric
tridiagonal matrix

-2 1
1 -2 1
1 -2 1
B=L+D+U= 1 -2 1
1 -2 1
1 -2

Here L, D and U denote the lower-triangular, diagonal, and upper-triangular parts of B,
respectively. Though B is symmetric, A4 is not. It is a highly non-normal matrix that
is lower-Hessenberg and Toeplitz, except for zeros in the first column:

1
(0 z )
1 1
0 1 3
1 1 1
_ 8 1 2
Ar = L 1 1 1
6 8 4 2
o L1 1 1 1 1
32 16 8 1 2
1L 1 11
\0 64 32 16 8 4)

The eigenvalues of A, were determined analytically by Frankel in 1950 [9] and can also
be derived from the more general theory of David Young, to be found in many textbooks.

The plots reveal pseudospectra in the shape of snowshoes. The largest eigenvalues
of A, are insensitive to perturbations, but the smaller eigenvalues are so sensitive as
to be meaningless for practical purposes. Fortunately, they are never used for practical
purposes! It is the largest eigenvalue that determines the convergence rate, conventionally
speaking, and consequently, the non-normality of the Gauss-Seidel iteration matrix has
been ignored over the years with no ill effects.

If B is replaced by a nonsymmetric matrix, however, such as might arise in the
modeling of convection-diffusion equations, the situation changes. Now even the dom-
inant eigenvalue of A become highly sensitive to perturbations, and predictions about
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convergence based on eigenvalues may be misleading. In particular one encounters the
curious anomaly that the spectral radius, hence the classical convergence rate, is unaf-
fected by whether the Gauss-Seidel sweeps run “upwind” or “downwind,” even though
in actuality, the direction of sweep makes a great difference to convergence [16]. Such
upwind-downwind anomalies become less surprising when one considers the pseudospec-
tra for the two cases, which are utterly different. Realistic convergence bounds can be
obtained through the use of the inequality [43]

A < e p(A)"H, 9)

valid for any € > 0, where p.(A) denotes the e-pseudospectral radius of A defined by
p(A) =SUP,ep (a) |z] (compare (3)). I hope to discuss these matters in a future paper.

Ezample 11. Chebyshev spectral [3,34,41]

The next example comes from the ficld of spectral methods for the numerical solution
of partial differential equations, a source of many fascinating matrices. Let z,...,zy
denote the Gauss-Lobatto-Chebyshev points z; = cos(jz/N), 0 <j < N. Given data
Y1,---,¥y at the points zy,...,zy, let f; be the quantity obtained by (1) interpolating
the values (z;,y;), together with the boundary condition (z,0), by a polynomial py(z)
of degree N; (2) setting f; :=ply(z;), 1 <j < N. Clearly {y;} — {f;} defines a linear map
from RY to RY, hence a matrix which we denote A

Ay; = N72 x Chebyshev spectral differentiation matrix with b.c. u(1)=0.

The entries of A;; can be expressed by explicit formulas [3]. A Matlab program to generate
A;; can be derived either from these formulas or via the FFT; see [19].

The plots for Ay reveal a remarkable structure. The most striking feature is the set
of nearly perfectly straight lines to the left of the origin. This cannot be an accident, and
in fact, the explanation is that the differential operator that this matrix is approximating,
namely the first derivative operator on {—1, 1] with boundary condition u(1) =0, has pseu-
dospectra exactly in the form of half-planes. The resolvent contours [|(z] — A)~!|| = ¢~?
for that operator are all vertical lines in the complex plane, and ¢~! grows exponentially
as Rez — —co.

Finite difference discretizations yield less dramatic agreement of matrix pseudospectra
with those of the underlying operator. But it is likely that a wide class of discretizations,
spectral or finite-difference, satisfy at least the identity

Am A(Ly)—=A(L)  (Ve>0) (10)

if this limit is defined to mean, for example, pointwise convergence of ||(z] — L)~} to
l(zI = £)~*|| as N — oo, or uniform convergence on compact subsets. See [32] and [36].
Convergence of this kind leaves open the possibility of spurious eigenvalues that have no
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connection with the differential operator, so long as they move to oo as N — oco. Four of
these “outlying eigenvalues” are visible in the plots for A,;. They are common but not
universal in spectral discretization matrices [34].

It is essential to come to grips with the non-normality of spectral differentiation matri-
ces if one is to make correct predictions about their numerical stability. Typically a matrix
like A;, effects the space discretization of a time-dependent partial differential equation,
while the time-discretization is handled by an o.d.e. formula with time step At; this is the
method of lines. If the matrix were normal, it would be enough to fit its eigenvalues in the
stability region of the o.d.e. formula to ensure Lax-stability of the overall computation.
In the non-normal case, however, the restriction on At suggested by eigenvalue analysis
can be too generous by a factor as large as N, the number of points in the grid [34,41].
It has been shown that an appropriate stability criterion in the non-normal case is that
all points of the e-pseudospectrum must lie within a distance O(¢) of the stability region
as € — 0 [34,35]. This result can be interpreted as a transplantation of the Kreiss matrix
theorem [37] from the unit disk (for powers of matrices) to an arbitrary stability region
(for more general recurrences).

Ezample 12. Random [7,10)

Our penultimate example is a simple one:
Ajp =random matrix.

To be precise, A;, is an N x N matrix (with N =32 as always) whose entries are random
samples from the complex normal distribution of mean 0 and standard deviation N=1/2,
The standard deviation is normalized in this way so that the limit N — oo will be well-
behaved. In fact one has p(A;3) =1, ||As2|| =2, where p(A;;) denotes the spectral radius,
and these approximations can be shown to become equalities in various probabilistic senses
as N — co.

To clarify, Ay, is a particular, fixed matrix constructed as described above. Another
random matrix would look different in detail but probably not very different in general
features.

The upper plot for A, is unlike all those presented heretofore: it reveals just 32 dots
instead of 3200! Of course each of these dots is a superposition of 100 copies, which look
the same to this plotting resolution. The eigenvalues of A, are insensitive to perturbations
in comparison with the other examples we have presented. Still, the lower plot reveals
that the eigenvalues of smaller modulus are somewhat sensitive. So far as I know, no
theorems have been established to make these observations precise.

There is a lesson to be drawn from this example. If the matrices and operators that we
cared about arose at random, it might be appropriate to say that eigenvalue analysis failed
only in pathological cases of little importance. However, they do not arise at random.
Highly non-normal systems are of special interest in the sciences, and we have a special
interest in understanding them. ‘ '
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Ezample 13. Random upper-triangular [45]

Randomness alone does not ensure closeness to normality. For a final example we
define A;; exactly like A, except that all entries below the diagonal are set to zero:

A3 = upper-triangular random matrix.

The pictures change dramatically. Suddenly we have an exponential degree of non-
normality again, to judge by the cloud of dots in the upper plot and the approximately
circular contours, including all values down to 1078, in the lower plot. The condition
number x(V) has increased by ten orders of magnitude.

I consider this example a particularly fascinating illustration of the subtle relationship
between spectra and pseudospectra. Of course 4,3 has nonzero eigenvalues; they are the
diagonal entries of the matrix, a set of N random numbers from the complex normal
distribution of standard deviation N~1/2, On the other hand the pictures suggest that
the significance of these eigenvalues is open to question. The eigenvalue to the lower-right
is a clear outlier, insensitive to perturbations; it will “behave like an eigenvalue” by any
measure. The remaining eigenvalues become less and less sharply defined as one moves in
towards the origin. It is impossible to draw a sharp line between meaningful eigenvalues
and meaningless ones.

If A, is replaced by a strictly upper-triangular random matrix, with zeros on the
diagonal as well as the subdiagonals, the pictures change modestly. The curves become
more nearly circular, but the scale O(N -1/2) remains the same. The spectrum vanishes
to the origin, but the pseudospectra remain.

4 Conclusion

I hope the examples in this paper have convinced the reader that there is a geometrical
aspect to non-normality, and that it may be beautiful. The idea that it is also informative
has been asserted but not argued in depth. For discussions of this point in various
applications see [29,30,34,35,33] and the book [43], to appear, that will synthesize these
and other developments.

My advice in practice is simple: if you find yourself computing eigenvalues of non-
normal matrices, try perturbing the entries by a few percent and see what happens! If the
effect on the eigenvalues is negligible, it is probably safe to forget about non-normality.
If the effect is considerable, the time has come to be more careful. ,

Matrices are fascinating, but operators can be even more so [Reddy91]. That is where
some of the most remarkable effects of non-normality appear, and in a few years, when I
have studied more examples and found better ways to compute pseudospectra, I hope to
be able to write a paper like this one with N =o0.
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Example 1. Jordan block «(V)=o0
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Example 2. Limagcon &(V)=o00
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Example 5. Frank matrix  &(V)=7.81x10"
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Example 6. Kahan matrix (V) =6.84x10®

1 ¥ T L)
0 r X » -
-1 2 N . 1
-0.5 05 1.5
1 Ll T L] v
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Example 7. Demmel matrix

k(V)=o00

10 L} L

or -
-10 -

-10 0 10

10 T r




Example 8. Matrix of Lenferink and Spijker

40 r

-40 .

-80

40 T

-40 .

k(V)=1.75x10°
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Example 9. Companion matrix

k(V)=1.55x10°

6 T T r T T
ol |
-6 . ) : N .
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Example 10. Gauss-Seidel

k(V)=o00
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Example 11. Chebyshev spectral
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Example 12. Random

1.5

-1.5

-1.5
1.5

llllllllll

4 ~

\\\\\\
~

-
lllll
lllllll
llllllllll

2

-1.5

1.5

265




	scan0002.pdf
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008

